

グラフの木分割を用いたコミュニティ発見手グラフの木分割を用いたコミュニティ発見手グラフの木分割を用いたコミュニティ発見手グラフの木分割を用いたコミュニティ発見手法法法法

付興艶† 岩井原瑞穂†

†早稲田大学大学院情報生産システム研究科

福岡県北九州市若松区ひびきの２－７

E-mail: †xinyanfu@fuji.waseda.jp, †iwaihara@waseda.jp

ABSTRACT

A number of researches in graph mining have been

devoted in the discovery of communities. In this report, we

study a query-dependent variant of the

community-detection problem based on the tree

decomposition methodology. In the tree decomposition of a

graph, each tree node is labeled with a set of graph vertices,

and each clique in the graph is always contained by a tree

node.

Also, tree nodes containing an identical graph vertex are

always connected. Using such properties, we discuss an

algorithm that finds a community that contains a given

query node. By pre-computing tree decomposition, the task

of finding a community can be reduced. We show the

experimental results on community detection over real data

sets.

Keyword: graph mining, community detection, tree

decomposition

1. Introduction

Graphs are one of the most ubiquitous data

representations, and they find applications in a wide range

of areas including physics, biology, social sciences, and

information technology. With the increasing availability of

very large networks, there is a need for designing efficient

algorithms for graph mining and for discovering latent

structures in graphs.

Discovering communities in graphs and social networks

has drawn a large amount of attention in recent years [1, 2,

3, 4, 7]. It has been one of the most well-studied problems

in graph mining. The general notion of community

structure in complex networks was first pointed out in the

physics literature by Girvan and Newman [4], and refers to

the fact that nodes in many real networks appear to group

in subgraphs in which the density of internal connections is

larger than the connections with the rest of nodes in the

network.

 Community detection is a popular topic in a wide range

of areas. Most of the work focused on the scenario where

communities need to be discovered in an a-priori manner,

with only reference to the input graph. However, in many

application scenarios, we are interested in discovering the

community defined by a given set of nodes, where nodes

may represent users of interest, or given criteria.

 In this paper, we study a query-dependent variant of the

community detection problem. Our problem formulation

takes as input an undirected graph G (V, E), and a set of

query vertices, and the task is to find a dense connected

subgraph of G that contains the query vertices. We use the

tree decomposition technique to preprocess the graph G to

improve the performance in exploring communities from

various query vertices.

 Note that from now on, a node in the graph G is referred

to as a vertex, and a node in a tree decomposition is

referred to as a tree node or simply a node.

In graph theory, a tree decomposition is a mapping of a

graph into a tree that can be used to speed up solving

certain problems on the original graph. The treewidth

measures the number of graph vertices mapped onto any

tree node in an optimal tree decomposition. It is NP-hard to

ⓒ 2011 Information Processing Society of Japan1

情報処理学会研究報告
IPSJ SIG Technical Report

Vol.2011-DBS-153 No.21
2011/11/3

determine the treewidth of a graph. Many instances of

NP-hard problems on graphs can be solved in polynomial

time if their treewidth is bounded by a constant [18, 19,

20].

Tree decomposition has been used for a number of

applications, like combinatorial optimization problems,

expert systems, computational biology, etc. Utilizing tree

decomposition for shortest path problem in large graphs is

shown in [5].

In the tree decomposition of a graph, each tree node

contains a set of graph vertices, and each clique in the

graph is always contained by a tree node. Also, each vertex

in the graph induces a connected subtree in the

decomposed tree, and the tree nodes belonging to a

community C is also a subtree. In the subtree containing a

community C, each tree node includes multiple vertices

which also appear in community C. We call the number of

vertices which appear in community C of a tree node

community width. The community width can be used to

measure the density of relationship between a tree node

and a community. We can terminate exploring the tree

decomposition if the community width decreases to a

predefined level. This allows us to search communities

locally on the tree decomposition.

 The rest of the paper is organized as follows. In Section

2 we explain related work, and in Section 3 we explain an

existing tree decomposition algorithm we use. In Section 4,

we show our algorithm for searching communities over

tree decomposition. In Section 5 we present experimental

results, and Section 6 concludes the paper and discusses

the future work.

2. Related Work

Many different algorithms, coming from different fields

such as physics, statistics, data mining, have been proposed

to detect communities in complex networks [11, 12, 13, 14,

15, 9]. One of the most famous algorithms is by Newman

and Girvan [9], which divides a graph in separated clusters

of vertices, which includes the removal of the edges

depending on their betweenness values. By iteratively

cutting the edge with the greatest betweenness value, it

uses the Network Modularity Q to obtain an optimized

division of the network with O(m3) time complexity[16].

The concept of modularity Q:

Q =∑ −
r

rrr ae)(2

where err are the fraction of links that connect two

vertices inside the community r, a r the fraction of links

that have one or both vertices inside of the community r,

and the sum extends to all communities r in a given

network.

A community in a graph is a group of vertices having a

higher density of edges within them, and a lower density of

edges between groups. Because there is no universal

agreement on the concept of density, so this definition of

community is not clear. But a more formal definition has

been introduced in [21, 22]. Let C is a subgraph of graph G,

SC is the graph G removed subgraph C. The number of

edges in C is denoted as

interEdge = sum(edges in C)

The number of edges between C and SC is denoted as

 outerEdge = sum(edges between C and SC)

The rate d between interEdge and outerEdge is denoted as

outerEdge

 interEdge
=d

The subgraph C is a community if d>1, and the bigger of d

the stronger sense of C.

 Recently, the problem of searching community based on

given query nodes is also studied. Mauro Sozio and

Aristides Gionis proposed a measure of density based on

minimum degree and suggested pruning nodes based on

their distance to the query nodes [23].

ⓒ 2011 Information Processing Society of Japan2

情報処理学会研究報告
IPSJ SIG Technical Report

Vol.2011-DBS-153 No.21
2011/11/3

3. Tree Decomposition

3.1. Definition and properties

An undirected graph G = (V, E) consists of the vertex set

V = {0, 1, … , n-1} and the edge set E⊆V×V. Let n=|V| be

the number of vertices and m=|E| be the number of edges.

In this paper, we consider only undirected graphs, where

∀u, v∈V: (u, v)∈E ⇔ (v, u) ∈E holds. Moreover, we

assume that the edges are not labeled.

Definition 1 (Tree Decomposition). A tree decomposition

of G = (V,E), denoted as TG, is a pair ({Xi | i ∈ I}, T),

where { Xi | i ∈ I} is a collection of subsets of V and T =

(I,F) is a tree with node set I and edge set F, such that:

 1. VX
Ii i =∈U .

 2. for every (u, v) ∈ E, there is i ∈ I, s.t. u,

v ∈ Xi.

 3. for all v ∈ V , the set {i | v ∈ Xi } induces

a subtree of T.

A tree decomposition consists of a set of tree nodes,

where each node contains a set of vertices in V. It is

required that every vertex in V should occur in at least one

tree node (condition 1), and for every edge in E, both

vertices of the edge should occur together in at least one

tree node (condition 2). The third condition is usually

referred to as the connectedness condition, which requires

that given a vertex v in the graph, all the tree nodes which

contain v should be connected.

Given a tree decomposition TG , we denote its root as R.

Given any graph G, there may exist many tree

decompositions which fulfill all the conditions in

Definition 1. However, we are interested in those tree

decompositions with smaller node sizes. We call the

cardinality of a node the width of the node.

Definition 2 (width, treewidth). Let G = (V, E) be a

graph.

� The width of a tree decomposition ({Xi | i ∈ I},

T) is defined as max{| Xi | | i ∈ I }.

� The treewidth of G is the minimal width of all tree

decompositions of G. It is denoted as tw(G) or

simply tw.

Figure 1 shows a graph G (18 vertices) and a possible

tree decomposition of G. The width of the shown tree

decomposition is 6.

 (a) (b)

Figure 1: A graph G (a) and a tree decomposition of G (b)

Induced subtree. Let G = (V, E) be a graph and TG =

({Xi | i ∈ I}, T) be a tree decomposition of G. Due to the

third condition in Definition 1, for any vertex v in V there

exist an induced subtree of TG in which every node

contains v. We denote the induced subtree as Tv. Further,

we denote the root of Tv as rv and its corresponding tree

node as Xrv . For example, XB, XC, XD, XE and XG

constitute the nodes of the induced subtree of vertex 6 in

Figure 1(b), because vertex 6 occurs precisely in these five

nodes. Since XB is the root of the induced subtree, we have

r6 = B.

Using the tree decomposition concept, and using the

property of decomposed trees, the efficiency of the

proposed approach for the shortest path problem was

showed. Inspired by the above paper, we use the tree

decomposition concept to design an efficient algorithm for

community detection.

Our approach on the community detection problem

ⓒ 2011 Information Processing Society of Japan3

情報処理学会研究報告
IPSJ SIG Technical Report

Vol.2011-DBS-153 No.21
2011/11/3

contains two steps:

Step 1: Decompose the given graph G, and create a tree

as an indexing.

Step2: Given a set of query nodes in the graph G, we find

a subgraph of G that contains the query nodes and satisfies

specified community criteria.

Since the same tree decomposition can be reused for

different query nodes, Step 1 can be preprocessed. Thus

only Step 2 needs to be evaluated when answering a query.

3.2. Algorithm for tree decomposition

In this subsection, we explain the tree decomposition

algorithm proposed by Fang Wei[5]. First, compose the

decomposed nodes to a tree and create an index save the

location of every vertex in the tree. The algorithm consists

of three steps (see Algorithm 1).

Algorithm 1 tree_decomposition(G)

Input: G = (V, E)

Output: TG and index of vertices.

 1: graph_reduction(G); {output the vertex stack S}

 2: tree_construction(S,G); {output the tree decom-

position TG}

 3: index_construction(S, TG); {output the index IT for

every vertex in TG}

 Virtual Edge. Let v1, v2∈V, and (v1, v2) ∉ E, but in the

process of computation, we add (v1, v2) to E for the need of

composition process, then we call edge (v1, v2) as virtual

edge. The opposite of the virtual edge is called a real edge.

 The main idea of Wei’s tree decompostion algorithm is

to reduce the graph by removing the vertices one by one

from the graph, and at the same time push the removed

vertices into a stack, so that later on the tree can be

constructed with the information from the stack. Each time

we identify a vertex which has a minimum degree at the

time. We first check whether all its neighbors form a clique,

if not, we add the missing edges as virtual edges to

construct a clique. Then the node v, its neighbors and the

real edge between them are pushed into the stack, which is

followed by the deletion of v and the corresponding edges

in the graph.

 The program will terminate if the remaining graph

becomes a clique by real edges and virtual edges. Then

push the remaining clique’s vertices and virtual edge into

the stack.

 After the reduction process, a tree decomposition can be

constructed as follows: (1) At first we pop the top of stack

S, and obtain a set of vertices and edges, assign the set as

the tree node of the tree root R. The node size of the root is

the greatest among all nodes in the tree decomposition. (2)

Let Xc be the set of vertices {v, v1,…,vn} which is popped

up from the top of S. Here v is the removed vertex and

{ v1,…,vn } are the neighbors of v which form a clique.

Locate the parent node Xp which contains {v1,…,vn}, and

add Xc to Xp as a child node. This process proceeds until S

is empty.

 For efficient access to the tree decomposition, we create

a hash table which stores the root of each vertex induced

subtree in the TG .

4. Searching Community from Given Vertices

In this section, we introduce our community detection

algorithm utilizing a decomposed tree. In a decomposed

tree, the vertex list and edge list between them are stored at

each tree node. We traverse one vertex induced subtree to

obtain all information about the vertex and its neighbors. If

we further traverse neighbors of the induced subtree, we

can obtain more information around the original vertex. So

under certain conditions, we can obtain a community (also

called subgraph) containing the given vertex without

traversing the entire tree decomposition.

ⓒ 2011 Information Processing Society of Japan4

情報処理学会研究報告
IPSJ SIG Technical Report

Vol.2011-DBS-153 No.21
2011/11/3

4.1. Community criteria

 There are many definitions of community proposed in

various fields. The community we searched need to fulfill

two conditions. First, the community must contains the

given query vertices. Secondly, vertices in a community

have high density links between them. There are a number

of ways to define community density. In this paper we

introduce a simple condition that can be tested over a tree

decomposition. Before introduce our condition, we will

introduce two related definitions firstly.

Definition 3 (Node Width, Community Width). Let Xi

be a tree node, and C be a community.

� Node Width: The number of vertices in node Xi ,

denoted as | Xi |.

� Community width: The community width cw(Xi)

of a community C is the number of the vertices

that appear both in C and Xi.

Apparently cw(Xi) <= | Xi | holds. Then by the above

definitions, we introduce two parameters: (1) minimum

community width m and (2) minimum linkage k.

Suppose that we have an original community Co and a

candidate new vertex v. If v and Co are connected by more

than k edges, v is added to community Co. Or if the

degree of v is less than k in the graph G and all the

neighbors of v are in Co, v is added to community Co.

Suppose that we have an original subtree To which

contains original community Co , and a candidate new tree

node t. If community width cw(t) on community Co is no

less than minimum community width m, t is added to

subtree To. The new To becomes the new boundary of

expanding the community. Additionally, other candidate

conditions can be used to add new tree nodes to To. For

example, cw(t) is more than r% of the maximum

community width in To. But in this paper, we only discuss

the minimum community width.

4.2. Community detection from a Single query

vertex

 Firstly, we will introduce our approach to detect

community from a single query vertex. When a single

query vertex v is given, use the index IT to obtain the

location of Tv’s root rv on the decomposed tree TG , and

traverse the TG starting from rv . If vertices satisfying the

community criteria are found, add them to the community.

The algorithm consists of three steps (see Algorithm 2).

Algorithm 2 community detection for single (TG, IT, v)

Input: decomposed tree TG, index IT, query vertex v

Output: community C.

 1: initial_community(TG, IT, v); {output the initial

community Ci}

 2: add_node(TG, Ci); {output the new traversal tree Tc }

 3: traversal(TG , Tc, Ci); {repeat 2-3, output the new

community C }

 The first step of community detection is to obtain a set

of vertices which are directly connected to query vertex v.

Subtree that Tv is induced by vertex v. Then traverse Tv

and obtain the initial community C = {v’ | v’∈ Xi , Xi

∈Tv , (v,v’)∈E}.

 The second step is to expand Tv . In Step 1, we

traversed Tv and obtained the initial community C. Now

we let Tc = Tv, check the nodes {Xi} around Tc, compute

cw(Xi) on community C. While cw(Xi) is no less than m(m

is aninteger parameter for minimum community width),

add Xi to Tc. Repeatedly check {Xi} around Tc until the

community width becomes less than m. Return the

resulting Tc as output.

 The last step of community detection is to traverse Tc.

We visit each node Xi in Tc. We check each vertex {v’}

contained in Xi and find v’ that is not in C. If (1) v’ and C

are connected by more than k edges, or (2) the degree of v’

ⓒ 2011 Information Processing Society of Japan5

情報処理学会研究報告
IPSJ SIG Technical Report

Vol.2011-DBS-153 No.21
2011/11/3

is less than k and all the neighbors of v’ are in C, then add

v’ to C. The traversal ends when all nodes of Tc are visited.

 Repeat Step 2 and Step 3, until no more new nodes are

added to Tc. When Algorithm 2 terminates, we obtain the

latest C as community.

5. Experiments

In this section we evaluate our approach for community

detection on real social graphs. All tests are executed on an

Intel(R) Core 2 Duo 3.0 GHz CPU, and 4 GB of main

memory. All algorithm are implemented in JAVA with

JUNG (Java Universal Network Graph) Framework 2.0 .

 First, we decompose the graph and obtain a tree

decomposition. We test a variety of real graph data

including biological networks (PPI, Yea and Homo), social

networks (Pfei, Geom, Erdos, Dutch, and Eva), information

networks (Cal and Epa), DBLP, Arxiv and American

College Football dataset. Except American College

Football dataset [4] all the graph data are provided by the

authors of [5]. The tree decomposition results are shown in

Table 1.

Graph Vertices Edges Nodes of Tree
Root
Vertices

Root
Edges

PPI 1458 1948 1409 50 19

Pfei 1738 1876 1709 30 5

Yeast 2284 6646 2016 269 997

Dutch 3621 4310 3509 113 31

Geom 3621 9461 3452 170 1030

Epa 4253 8897 3986 268 773

Eva 4475 4652 4463 13 7

DBLP 592983 591981 589704 3280 1390

ACFD* 115 616 67 49 96

Cal 5925 15770 5582 344 703

Erdos 6927 11850 6745 183 902

Homo 7020 19811 6266 755 3247

Arxiv 27400 352021 18890 8511 150444

* ACFD = American College Football dataset

Table 1: Statistics of real graphs and its decomposed tree

 From Table 1 we can see that the number of tree nodes is

almost equals to the number of vertices in graph G, and

little less than the number of vertices. The largest node of a

tree is often the root.

 Now we evaluate our community detection algorithm on

the decomposed tree. After the tree decomposition is done,

we can find communities from different query nodes while

reusing the same tree decomposition. We also evaluate on

the results by varying linkage parameter k and minimum

community width parameter m. In a tree node, the linkage

between candidate vertex and community C is always less

than the community width on C. So we can assume that m

≧k.

 We show a discovered community from American

College Football dataset by query vertex 76, and various

parameter m and k. It is showed in Table 2.

m k community size Rate d

2 2 33 1.245

3 2 28 1.403

4 2 27 1.351

5 2 16 1.038

3 3 16 1.229

4 3 15 1.244

5 3 12 0.268

4 4 15 1.244

5 4 12 0.268

5 5 12 0.268

Table 2: results of community detection for query vertex 76

 From Table 2, we can see that when m = 3 and k = 2, the

rate d (introduced in section 2) is the biggest. So the

community containing 28 vertices is the optimal result. We

compared the community with the ones found by

Cluset-Newman-Moore community detection algorithm,

which is downloaded from SNAP (Stanford Network

Analysis Package) [6]. The size of the community which

contains query vertex 76 is 27, so we will compare the

ⓒ 2011 Information Processing Society of Japan6

情報処理学会研究報告
IPSJ SIG Technical Report

Vol.2011-DBS-153 No.21
2011/11/3

result with parameters m = 3 and k = 2 and the result of

Cluset-Newman-Moore [16].

 Figure 2 depicts the community discovered by our

algorithm. The pink vertices are in the community we

discovered from query vertex 76 (in the red circle), and the

green ones are not in the community. Figure 3 is the result

of Cluset-Newman-Moore. Each color expresses one

community. Query vertex 76 is in the community colored

in yellow, and vertex 76 is surrounded by the red circle.

Figure 2: American College Football dataset for query vertex 76

Figure 3: Cluset-Newman-Moore for American College Football

dataset

 Vertex list of our result: 17 20 24 27 44 45 48 53 56 57

59 62 63 65 66 69 70 75 76 86 87 91 92 95 96 97 112 113;

Vertex list of Cluset-Newman-Moore result: 17 20 27 36 42

44 48 56 57 58 59 62 63 65 66 70 75 76 86 87 91 92 95 96

97 112 113.

 The similarity rate between the two results is 88.89%.

6. Conclusion and Future Work

In this paper, we introduced an approach for community

detection based on tree decomposition. We showed an

algorithm for single-query vertex community detection

depended on the decomposed tree of the graph.

In future, a number of issues will be done for this

approach, for example, multiple query vertices algorithm,

evaluation of this approach, complexity analysis, and how

to determine the parameters k and m.

References

[1] Y. Dourisboure, F. Geraci, and M. Pellegrini.
Extraction and classification of dense communities in
the web. In WWW, 2007.

[2] G. W. Flake, S. Lawrence, C. L. Giles, and F. M.
Coetzee. Self-organization and identification of web
communities. Computer, 35(3):66–71, 2002.

[3] D. Gibson, R. Kumar, and A. Tomkins. Discovering
large dense subgraphs in massive graphs. In VLDB,
2005.

[4] M. Girvan and M. E. J. Newman. Community
structure in social and biological networks.
Proceedings of the National Academy of Sciences of
the USA, 99(12):7821–7826, 2002.

[5] Fang Wei. TEDI: Efficient Shortest Path Query
Answering on Graphs. In SIGMOD’10, June6-11,
2010, Indianapolis, Indiana, USA.

[6] http://snap.stanford.edu/snap/index.html

[7] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W.
Mahoney. Statistical properties of community
structure in large social and information networks. In
WWW, 2008.

[8] P. Pons and M. Latapy. Computing communities in
large networks using random walks. In ISCIS2005,
pages 284{293, 2005.

[9] A. Clauset, M. Newman, and C. Moore. Finding
community structure in very large networks. Physical
Review E, 70(066111), 2004.

[10] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and
D. Parisi. De¯ning and identifying communities in
networks. PNAS, 101(9):2658{2663, March 2004.

[11] John E. Hopcroft, Omar Khan, Brian Kulis, and Bart
Selman. Natural communities in large linked
networks. In Proc. International Conference on
Knowledge Discovery and Data Mining (KDD’03),

ⓒ 2011 Information Processing Society of Japan7

情報処理学会研究報告
IPSJ SIG Technical Report

Vol.2011-DBS-153 No.21
2011/11/3

pages 541–546, 2003.

[12] M. E. J. Newman. Fast algorithm for detecting
community structure in networks. Physical Review E,
69:066133, 2004.

[13] Filippo Radicchi, Claudio Castellano, Federico
Cecconi, Vittorio Loreto, and Domenico Parisi.
Defining and identifying communities in networks.
Proc. Natl. Acad.Sci. USA (PNAS’04),
101(9):2658–2663, 2004.

[14] A. Arenas and A. Diaz-Guilera. Synchronization and
modularity in complex networks. European Physical
Journal ST, 143:19–25, 2007.

[15] S. Lozano, J. Duch, and A. Arenas. Analysis of large
social datasets by community detection. European
Physical Journal ST, 143:257–259, 2007.

[16] M. E. J. Newman and M. Girvan. Finding and
evaluating community structure in networks. Physical
Review E, 69(026113), 2004.

[17] http://www.facebook.com/

[18] W. Cook and P. D. Seymour. An algorithm for the
ring-routing problem. in: Bellcore Techn.
Memorandum, Bellcore (1994).

[19] W. Cook and P. D. Seymour. Tour merging via branch
decomposition. Inform. J. Comput., 15, No. 3,
233–248 (2003).

[20] A. M. C. A. Koster, H. L. Bodlaender, and S. P. M.
van Hoesel. Treewidth: Computational experiments.
in: Zib-Report-38, Berlin (2001).

[21] Filippo Radicchi, Claudio Castellano, Federico
Cecconi, Vittorio Loreto, and Domenico Parisi.
Defining and identifying communities in networks.
Proc. Natl. Acad.Sci. USA (PNAS’04), 101(9):
2658–2663, 2004.

[22] Clara Pizzuti. Overlapped Community Detection in
Complex Networks. GECCO’09, July 8–12, 2009,
Montréal Québec, Canada.

[23] Mauro Sozio and Aristides Gionis. The
Community-search Problem and How to Plan a
Successful Cocktail Party. KDD’10, July 25–28, 2010,
Washington, DC, USA.

ⓒ 2011 Information Processing Society of Japan8

情報処理学会研究報告
IPSJ SIG Technical Report

Vol.2011-DBS-153 No.21
2011/11/3

