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ABSTRACT 

A number of researches in graph mining have been 

devoted in the discovery of communities. In this report, we 

study a query-dependent variant of the   

community-detection problem based on the tree 

decomposition methodology. In the tree decomposition of a 

graph, each tree node is labeled with a set of graph vertices, 

and each clique in the graph is always contained by a tree 

node. 

Also, tree nodes containing an identical graph vertex are 

always connected. Using such properties, we discuss an 

algorithm that finds a community that contains a given 

query node. By pre-computing tree decomposition, the task 

of finding a community can be reduced. We show the 

experimental results on community detection over real data 

sets. 

 

Keyword: graph mining, community detection, tree 

decomposition 

 

1. Introduction 

Graphs are one of the most ubiquitous data 

representations, and they find applications in a wide range 

of areas including physics, biology, social sciences, and 

information technology. With the increasing availability of 

very large networks, there is a need for designing efficient   

algorithms for graph mining and for discovering latent 

structures in graphs.  

Discovering communities in graphs and social networks 

has drawn a large amount of attention in recent years [1, 2, 

3, 4, 7]. It has been one of the most well-studied problems 

in graph mining. The general notion of community 

structure in complex networks was first pointed out in the 

physics literature by Girvan and Newman [4], and refers to 

the fact that nodes in many real networks appear to group 

in subgraphs in which the density of internal connections is 

larger than the connections with the rest of nodes in the 

network. 

  Community detection is a popular topic in a wide range 

of areas. Most of the work focused on the scenario where 

communities need to be discovered in an a-priori manner, 

with only reference to the input graph. However, in many 

application scenarios, we are interested in discovering the 

community defined by a given set of nodes, where nodes 

may represent users of interest, or given criteria. 

 In this paper, we study a query-dependent variant of the 

community detection problem. Our problem formulation 

takes as input an undirected graph G (V, E), and a set of 

query vertices, and the task is to find a dense connected 

subgraph of G that contains the query vertices. We use the 

tree decomposition technique to preprocess the graph G to 

improve the performance in  exploring communities from 

various query vertices. 

 Note that from now on, a node in the graph G is referred 

to as a vertex, and a node in a tree decomposition is 

referred to as a tree node or simply a node. 

In graph theory, a tree decomposition is a mapping of a 

graph into a tree that can be used to speed up solving 

certain problems on the original graph. The treewidth 

measures the number of graph vertices mapped onto any 

tree node in an optimal tree decomposition. It is NP-hard to 
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determine the treewidth of a graph. Many instances of 

NP-hard problems on graphs can be solved in polynomial 

time if their treewidth is bounded by a constant [18, 19, 

20].  

Tree decomposition has been used for a number of  

applications, like combinatorial optimization problems, 

expert systems, computational biology, etc. Utilizing tree 

decomposition for shortest path problem in large graphs is 

shown in [5].  

In the tree decomposition of a graph, each tree node 

contains a set of graph vertices, and each clique in the 

graph is always contained by a tree node. Also, each vertex 

in the graph induces a connected subtree in the 

decomposed tree, and the tree nodes belonging to a 

community C is also a subtree. In the subtree containing a 

community C, each tree node includes multiple vertices 

which also appear in community C. We call the number of 

vertices which appear in community C of a tree node 

community width. The community width can be used to 

measure the density of relationship between a tree node 

and a community.  We can terminate exploring the tree 

decomposition if the community width decreases to a 

predefined level. This allows us to search communities 

locally on the tree decomposition. 

 The rest of the paper is organized as follows. In Section 

2 we explain related work, and in Section 3 we explain an 

existing tree decomposition algorithm we use. In Section 4, 

we show our algorithm for searching communities over 

tree decomposition. In Section 5 we present experimental 

results, and Section 6 concludes the paper and discusses  

the future work. 

 

2. Related Work 

Many different algorithms, coming from different fields 

such as physics, statistics, data mining, have been proposed 

to detect communities in complex networks [11, 12, 13, 14, 

15, 9]. One of the most famous algorithms is by Newman 

and Girvan [9], which divides a graph in separated clusters 

of vertices, which includes the removal of the edges 

depending on their betweenness values. By iteratively 

cutting the edge with the greatest betweenness value, it 

uses the Network Modularity Q to obtain an optimized 

division of the network with O(m3) time complexity[16]. 

The concept of modularity Q: 

Q =∑ −
r

rrr ae )( 2
 

where err are the fraction of links that connect two 

vertices inside the community r, a r the fraction of links 

that have one or both vertices inside of the community r, 

and the sum extends to all communities r in a given 

network. 

A community in a graph is a group of vertices having a 

higher density of edges within them, and a lower density of 

edges between groups. Because there is no universal 

agreement on the concept of density, so this definition of 

community is not clear. But a more formal definition has 

been introduced in [21, 22]. Let C is a subgraph of graph G, 

SC is the graph G removed subgraph C. The number of 

edges in C is denoted as  

interEdge = sum(edges in C) 

The number of edges between C and SC is denoted as 

 outerEdge = sum(edges between C and SC) 

The rate d between interEdge and outerEdge is denoted as 

outerEdge

 interEdge
=d  

The subgraph C is a community if d>1, and the bigger of d 

the stronger sense of C. 

  Recently, the problem of searching community based on 

given query nodes is also studied. Mauro Sozio and 

Aristides Gionis proposed a measure of density based on 

minimum degree and suggested pruning nodes based on 

their distance to the query nodes [23]. 
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3. Tree Decomposition 

3.1. Definition and properties 

An undirected graph G = (V, E) consists of the vertex set  

V = {0, 1, … , n-1} and the edge set E⊆V×V. Let n=|V| be 

the number of vertices and m=|E| be the number of edges. 

In this paper, we consider only undirected graphs, where 

∀u, v∈V: (u, v)∈E ⇔ (v, u) ∈E holds. Moreover, we 

assume that the edges are not labeled. 

Definition 1 (Tree Decomposition). A tree decomposition 

of G = (V,E), denoted as TG, is a pair ({Xi | i ∈ I}, T), 

where { Xi | i ∈ I} is a collection of subsets of V and T = 

(I,F) is a tree with node set I and edge set F, such that: 

 1.  VX
Ii i =∈U . 

 2. for every (u, v) ∈ E, there is i ∈ I, s.t. u, 

v ∈ Xi. 

 3. for all v ∈ V , the set {i | v ∈ Xi } induces 

a subtree of T. 

A tree decomposition consists of a set of tree nodes, 

where each node contains a set of vertices in V. It is 

required that every vertex in V should occur in at least one 

tree node (condition 1), and for every edge in E, both 

vertices of the edge should occur together in at least one 

tree node (condition 2). The third condition is usually 

referred to as the connectedness condition, which requires 

that given a vertex v in the graph, all the tree nodes which 

contain v should be connected. 

Given a tree decomposition TG , we denote its root as R. 

Given any graph G, there may exist many tree 

decompositions which fulfill all the conditions in 

Definition 1. However, we are interested in those tree 

decompositions with smaller node sizes. We call the 

cardinality of a node the width of the node. 

Definition 2 (width, treewidth). Let G = (V, E) be a 

graph. 

� The width of a tree decomposition ({Xi | i ∈ I}, 

T) is defined as max{| Xi | | i ∈ I }. 

� The treewidth of G is the minimal width of all tree 

decompositions of G. It is denoted as tw(G) or 

simply tw. 

 

Figure 1 shows a graph G (18 vertices) and a possible 

tree decomposition of G. The width of the shown tree 

decomposition is 6. 

 

     (a)                             (b) 

Figure 1: A graph G (a) and a tree decomposition of G (b) 

 

Induced subtree. Let G = (V, E) be a graph and TG =  

({Xi | i ∈ I}, T) be a tree decomposition of G. Due to the 

third condition in Definition 1, for any vertex v in V there 

exist an induced subtree of TG in which every node 

contains v. We denote the induced subtree as Tv. Further, 

we denote the root of Tv as rv and its corresponding tree 

node as Xrv . For example, XB, XC, XD, XE and XG 

constitute the nodes of the induced subtree of vertex 6 in 

Figure 1(b), because vertex 6 occurs precisely in these five 

nodes. Since XB is the root of the induced subtree, we have 

r6 = B. 

Using the tree decomposition concept, and using the 

property of decomposed trees, the efficiency of the 

proposed approach for the shortest path problem was 

showed. Inspired by the above paper, we use the tree 

decomposition concept to design an efficient algorithm for 

community detection. 

Our approach on the community detection problem 
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contains two steps: 

Step 1: Decompose the given graph G, and create a tree 

as an indexing. 

Step2: Given a set of query nodes in the graph G, we find 

a subgraph of G that contains the query nodes and satisfies 

specified community criteria. 

Since the same tree decomposition can be reused for 

different query nodes, Step 1 can be preprocessed. Thus 

only Step 2 needs to be evaluated when answering a query. 

3.2. Algorithm for tree decomposition 

In this subsection, we explain the tree decomposition 

algorithm proposed by Fang Wei[5]. First, compose the 

decomposed nodes to a tree and create an index save the 

location of every vertex in the tree. The algorithm consists 

of three steps (see Algorithm 1). 

                                                              

Algorithm 1 tree_decomposition(G)                     

Input: G = (V, E) 

Output: TG and index of vertices. 

  1: graph_reduction(G); {output the vertex stack S} 

  2: tree_construction(S,G); {output the tree decom- 

position TG} 

  3: index_construction(S, TG); {output the index IT for 

every vertex in TG}                                         

   

  Virtual Edge. Let v1, v2∈V, and (v1, v2) ∉ E, but in the 

process of computation, we add (v1, v2) to E for the need of 

composition process, then we call edge (v1, v2) as virtual 

edge. The opposite of the virtual edge is called a real edge. 

  The main idea of Wei’s tree decompostion algorithm is 

to reduce the graph by removing the vertices one by one 

from the graph, and at the same time push the removed 

vertices into a stack, so that later on the tree can be 

constructed with the information from the stack. Each time 

we identify a vertex which has a minimum degree at the 

time. We first check whether all its neighbors form a clique, 

if not, we add the missing edges as virtual edges to 

construct a clique. Then the node v,  its neighbors and the 

real edge between them are pushed into the stack, which is 

followed by the deletion of v and the corresponding edges 

in the graph. 

  The program will terminate if the remaining graph  

becomes a clique by real edges and virtual edges. Then 

push the remaining clique’s vertices and virtual edge into 

the stack. 

  After the reduction process, a tree decomposition can be 

constructed as follows: (1) At first we pop the top of stack 

S, and obtain a set of vertices and edges, assign the set as 

the tree node of the tree root R. The node size of the root is 

the greatest among all nodes in the tree decomposition. (2) 

Let Xc be the set of vertices {v, v1,…,vn} which is popped 

up from the top of S. Here v is the removed vertex and 

{ v1,…,vn } are the neighbors of v which form a clique. 

Locate the parent node Xp which contains {v1,…,vn}, and 

add Xc to Xp as a child node. This process proceeds until S 

is empty. 

 For efficient access to the tree decomposition, we  create 

a hash table which stores the root of each vertex induced 

subtree in the TG . 

 

4. Searching Community from Given Vertices 

In this section, we introduce our community detection 

algorithm utilizing a decomposed tree. In a decomposed 

tree, the vertex list and edge list between them are stored at  

each tree node. We traverse one vertex induced subtree to 

obtain all information about the vertex and its neighbors. If 

we further traverse neighbors of the induced subtree, we 

can obtain more information around the original vertex. So 

under certain conditions, we can obtain a community (also 

called subgraph) containing the given vertex without 

traversing the entire tree decomposition. 
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4.1. Community criteria  

 There are many definitions of community proposed in 

various fields. The community we searched need to fulfill 

two conditions.  First, the community must contains the 

given query vertices. Secondly, vertices in a community 

have high density links between them. There are a number 

of ways to define community density.  In this paper we 

introduce a simple condition that can be tested over a tree 

decomposition. Before introduce our condition, we will 

introduce two related definitions firstly. 

Definition 3 (Node Width, Community Width). Let Xi  

be a tree node, and C be a community. 

� Node Width: The number of vertices in node Xi , 

denoted as | Xi |. 

� Community width: The community width cw(Xi) 

of a community C is the number of the vertices 

that  appear both in C and Xi. 

Apparently cw(Xi) <= | Xi | holds. Then by the above 

definitions, we introduce two parameters: (1) minimum 

community width m and (2) minimum linkage k.  

Suppose that we have an original community Co and a 

candidate new vertex v. If v and Co are connected by more 

than k edges, v is added to community Co.  Or if the 

degree of v is less than k in the graph G and all the 

neighbors of v are in Co, v is added to community Co. 

Suppose that we have an original subtree To which 

contains original community Co , and a candidate new tree 

node t. If community width cw(t) on community Co is no 

less than minimum community width m, t is added to 

subtree To. The new To becomes the new boundary of 

expanding the community. Additionally, other candidate 

conditions  can be used to add new tree nodes to To. For 

example, cw(t) is more than r% of the maximum 

community width in To. But in this paper, we only discuss 

the minimum community width. 

 

4.2. Community detection from a Single query 

vertex 

  Firstly, we will introduce our approach to detect 

community from a single query vertex. When a single 

query vertex v is given, use the index IT to obtain the 

location of Tv’s root rv on the decomposed tree TG , and 

traverse the TG starting from rv . If vertices satisfying the 

community criteria are found, add them to the community.  

The algorithm consists of three steps (see Algorithm 2). 

                                                              

Algorithm 2 community detection for single (TG, IT, v)                    

Input: decomposed tree TG, index IT, query vertex v 

Output: community C. 

  1: initial_community(TG, IT, v); {output the initial 

community Ci} 

  2: add_node(TG, Ci); {output the new traversal tree Tc } 

  3: traversal(TG , Tc, Ci); {repeat 2-3, output the new 

community C }                                      

 

  The first step of community detection is to obtain a set 

of vertices which are directly connected to query vertex v.  

Subtree that Tv is induced by vertex v.  Then traverse  Tv 

and obtain  the initial community  C = {v’ | v’∈ Xi , Xi 

∈Tv , (v,v’)∈E}.  

  The second step is to expand Tv .  In Step 1, we 

traversed  Tv and obtained the initial community C. Now 

we let Tc = Tv, check the nodes {Xi} around Tc, compute 

cw(Xi) on community C. While cw(Xi) is no less than m(m 

is aninteger parameter for minimum community width), 

add Xi to Tc. Repeatedly check {Xi} around Tc until the 

community width becomes less than m.  Return the 

resulting Tc as output. 

  The last step of community detection is to traverse Tc. 

We visit each node Xi in Tc. We check each vertex {v’} 

contained in Xi and find v’ that is not in C. If (1) v’ and C 

are connected by more than k edges, or (2) the degree of v’ 
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is less than k and all the neighbors of v’ are in C, then add 

v’ to C. The traversal ends when all nodes of Tc are visited. 

  Repeat Step 2 and Step 3, until no more new nodes are 

added to Tc. When Algorithm 2 terminates, we obtain the 

latest C as community. 

   

5. Experiments 

In this section we evaluate our approach for community 

detection on real social graphs. All tests are executed on an 

Intel(R) Core 2 Duo 3.0 GHz CPU, and 4 GB of main 

memory. All algorithm are implemented in JAVA with 

JUNG (Java Universal Network Graph) Framework 2.0 . 

  First, we decompose the graph and obtain a tree  

decomposition. We test a variety of real graph data 

including biological networks (PPI, Yea and Homo), social 

networks (Pfei, Geom, Erdos, Dutch, and Eva), information 

networks (Cal and Epa), DBLP, Arxiv and American 

College Football dataset.  Except American College 

Football dataset [4] all the graph data are provided by the 

authors of [5]. The tree decomposition results are shown in 

Table 1.  

Graph Vertices Edges Nodes of Tree 
Root 
Vertices 

Root 
Edges 

PPI 1458 1948 1409 50 19 

Pfei 1738 1876 1709 30 5 

Yeast 2284 6646 2016 269 997 

Dutch 3621 4310 3509 113 31 

Geom 3621 9461 3452 170 1030 

Epa 4253 8897 3986 268 773 

Eva 4475 4652 4463 13 7 

DBLP 592983 591981 589704 3280 1390 

ACFD* 115 616 67 49 96 

Cal 5925 15770 5582 344 703 

Erdos 6927 11850 6745 183 902 

Homo 7020 19811 6266 755 3247 

Arxiv 27400 352021 18890 8511 150444 

* ACFD = American College Football dataset 

Table 1: Statistics of real graphs and its decomposed tree 

 

  From Table 1 we can see that the number of tree nodes is 

almost equals to the number of vertices in graph G, and 

little less than the number of vertices. The largest node of a 

tree is often the root. 

  Now we evaluate our community detection algorithm on 

the decomposed tree. After the tree decomposition is done, 

we can find communities from different query nodes while 

reusing the same tree decomposition. We also evaluate on 

the results by varying linkage parameter k and minimum 

community width parameter m. In a tree node, the linkage 

between candidate vertex and community C is always less 

than the community width on C. So we can assume that m

≧k. 

  We show a discovered community from American 

College Football dataset by query vertex 76, and various 

parameter m and k. It is showed in Table 2. 

 

m k community size Rate d 

2 2 33 1.245 

3 2 28 1.403 

4 2 27 1.351 

5 2 16 1.038 

3 3 16 1.229 

4 3 15 1.244 

5 3 12 0.268 

4 4 15 1.244 

5 4 12 0.268 

5 5 12 0.268 

Table 2: results of community detection for query vertex 76 

 

  From Table 2, we can see that when m = 3 and k = 2, the 

rate d (introduced in section 2) is the biggest. So the 

community containing 28 vertices is the optimal result. We 

compared the community with the ones found by 

Cluset-Newman-Moore community detection algorithm, 

which is downloaded from SNAP (Stanford Network 

Analysis Package) [6]. The size of the community which 

contains query vertex 76 is 27, so we will compare the 
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result with parameters  m = 3 and k = 2 and the result of 

Cluset-Newman-Moore [16]. 

  Figure 2 depicts the community discovered by  our 

algorithm. The pink vertices are in the community we  

discovered from query vertex 76 (in the red circle), and the 

green ones are not in the community. Figure 3 is the result 

of Cluset-Newman-Moore. Each color expresses one 

community. Query vertex 76 is in the community colored 

in yellow, and vertex 76 is surrounded by the red circle.  

 

 

Figure 2: American College Football dataset for query vertex 76 

 

 

Figure 3: Cluset-Newman-Moore for American College Football 

dataset 

 

  Vertex list of our result: 17 20 24 27 44 45 48 53 56 57 

59 62 63 65 66 69 70 75 76 86 87 91 92 95 96 97 112 113; 

Vertex list of Cluset-Newman-Moore result: 17 20 27 36 42 

44 48 56 57 58 59 62 63 65 66 70 75 76 86 87 91 92 95 96 

97 112 113. 

  The similarity rate between the two results is 88.89%. 

   

6. Conclusion and Future Work 

In this paper, we introduced an approach for community 

detection based on tree decomposition. We showed an 

algorithm for single-query vertex community detection 

depended on the decomposed tree of the graph. 

In future, a number of issues will be done for this 

approach, for example, multiple query vertices algorithm, 

evaluation of this approach, complexity analysis, and how 

to determine the parameters k and m. 
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