脳CT画像におけるラクナ梗塞自動検出に関する研究

 $|| 潟山 - 樹^{\dagger}$ 鹿嶋 雅之 † 佐藤 公則 † 渡邊 睦 † 宮之原正和 ††

† 鹿児島大学大学院理工学研究科 〒 890-0065 鹿児島県鹿児島市郡元1丁目 21-40
 †† 京町内科・脳神経クリニック 〒 896-0003 鹿児島県いちき串木野市京町 43

E-mail: [†]{sc106019,kashima,kimi,mutty}@ibe.kagoshima-u.ac.jp, [†]†kyoumati@po3.synapse.ne.jp

あらまし 脳梗塞の診断は医学上重要であるが,医学的知識と経験によるところが大きく医師の目視が現状であり, 客観性・定量性に乏しい.そこで本研究では,一般病院で普及している CT 画像から日本人に多い脳梗塞 ラクナ梗 塞を自動検出することによる診断支援を目的とした.まず頭蓋骨(前頭稜と内後頭隆起)を用いて撮影時の回転補正 を行う.次に LevelSet 法を用いて検出対象領域の抽出を行い,この検出対象領域におけるフィルタリング処理によ り,ラクナ梗塞候補領域の初期候補検出を行う.その後,形状や部位・周辺明度情報を用いた解析結果に対して,特 徴画像を生成しサポートベクターマシンによってラクナ梗塞候補領域を確定する.本手法を臨床 CT 画像に適用し, 基本的な有効性を確認した.

キーワード CT, ラクナ梗塞, 医用画像, コンピュータ支援診断, LevelSet法

1. はじめに

脳血管障害は日本人の三大死因の一つとなっており, 平成22年には死因の10.3%を占めている[1].現在,医 療の様々な場面においてX線CTやMRI,US(超音波 画像)を用いた画像診断が普及しており,脳血管障害の 診断にはX線CT装置やMRIを用いた断層撮影画像が 用いられる.MRIは導入・維持費用が極めて高いため に,中小規模の病院ではCTのみを導入しているところ が多い.

しかしながら,画像診断は医学的知識と経験に依存す るところが大きく,医師の目視が現状であり定量的でな いという問題がある.このため診断環境や医師間におい て所見に違いが生じる可能性がある.このような背景か ら,画像診断における定量的評価による診断支援が必要 であると考えられる.

X線 CT に関しては軟部組織のコントラストは MRI に比べて低く,得られる情報もX線吸収率のみと少ない が,撮影時間が5分程度と短いために,初期検査として 用いられることが多い.またX線 CT は MRIに比べて 出血や骨におけるコントラストは優れる,磁気を用いな いため MRI では撮影ができない金属使用者(心臓ペー スメーカー装着者等)の検査も可能であるという利点が ある.

しかし頭部医用画像処理においては MRI が主流となっ ており,普及台数の多い X線 CT では急性期脳梗塞や救 急分野での研究はあるものの,利用される場面は限られ ている.本研究では,日本人に多い脳梗塞であるラクナ 梗塞に着目し,CT 画像処理による自動検出と定量的評 価による診断支援を目的とした.

2. ラクナ梗塞

図1 臨床的分類

図2の白い矢印で示した箇所がラクナ梗塞である.ラ クナ梗塞とは脳梗塞のうち,直径1.5cm以下のもので ある.日本人に多い脳梗塞であり,日本における脳梗塞 全体の30~35%を占めている.意識障害はあまりみら れず,運動麻痺,感覚障害,言語障害など比較的軽度な 症状が多く,無症候性脳梗塞の大半を占めると考えられ ている.ラクナ梗塞が多発していた場合,大きな血管が 狭窄している疑いがある.以下にラクナ梗塞の特徴を挙 げる.

(1) 直径が 3mm 以上 15mm 以下である.

(2) 直線的でなく, 円形・楕円に近い.

(3) 周辺より明度が低い(低吸収域)

(3) は X 線 CT のみにおける特徴である. MRI においては T1 強調画像においては低明度, T2 強調画像においては高明度という特徴がある.

3. 関連研究

松井ら [3] の脳 MR 画像を用いたラクナ梗塞検出のシ ステムでは,まず最初に T1 強調画像を用いて脳実質を

 (a) 症例 1
 (b) 症例 2

 図 2
 ラクナ梗塞

抽出している.次にT2強調画像トップハット変換を行 い,ラクナ梗塞の初期検出を行っている.その後円形度 やT1・T2強調画像間での差を用いて特徴量を抽出し, ルールベースとニューラルネットワークを用いて最終的 な候補領域を出力している.上記の手法ではX線CTで は得ることのできないT1・T2強調画像を用いて検出を 行っている.X線CTとMRIにおけるラクナ梗塞の撮 影結果は前章でも述べたように異なる画像特徴を有して いるため,X線CT装置に対して上記システムを直接導 入することはできない.

長島ら [4] の頭部 CT 画像における急性期脳梗塞検出 では,左右対象性を考慮したコントララテラル差分技術 を用いて検出を行っている.コントララテラル差分技術 は反転画像と原画像の差分をとることにより病変部位の 抽出を行う.これは急性期脳梗塞検出を目的としたシス テムであり,左右対称に発症したものや,陳旧性脳梗塞 やラクナ梗塞等には不適である.

4. 提案手法

4.1 全体の概要

図3に本研究全体の流れを示す.

まず,原画像を用いて頭部の回転角度,および位置を取 得する.その後,分離度計算を行いエッジを強調し,検 出対象領域設定を行う.検出対象領域設定には動的輪郭 モデルの一つである LevelSet 法を用いた.そして検出対 象領域に対してフィルタリング処理による初期候補領域 を抽出する.次に,抽出した初期候補領域に対し主成分 分析を用いて形状による判定,周辺明度による判定を行 う.その後,判定結果領域において特徴画像を生成し, サポートベクターマシン(以下 SVM)による判定を行い, 候補領域を確定する.

4.2 頭部回転検出

撮影時の頭部の回転は,次の処理である検出対象領域 設定における初期探索点の決定に影響する.そのため頭 部の回転角度を算出する必要がある.また,処理結果に 回転補正を行うことで提示時の視認性が向上する効果も 期待でき有用である.

まず最初に,症例中の全スライスから頭部を含む楕円

図 3 本研究の処理の流れ

を検出する.複数個検出された場合は傾きが最小である 楕円を選択する.これはX線CTがOML(orbito-meatal line)と呼ばれる眼窩中央と外耳孔の中心を結ぶ線を基準 に撮影されるため,傾きは最小限となるためである.こ の処理によって得られた傾きを全スライス画像に適用し, 回転補正を行う.

次に補正画像から,前頭稜と内後頭隆起を探索する. 本研究では前頭稜と内後頭隆起を結ぶ直線を正中線と設 定した.各スライスから検出された正中線も同様に傾き が最小のものを選択する.これにより楕円検出のみを適 用した場合よりもより高精度な補正が実現される.

4.3 分離度によるエッジ強調

X線CT装置で撮影した画像は頭部内部等の軟部組織 のコントラストがMRIに比べ低い.輝度勾配に基づく輪 郭抽出法は,これまでさまざまな分野に適用されて効果 をあげているが,弱いエッジから構成される不明瞭な輪 郭を安定に抽出することが難しく,また対象物のカラー, テクスチャ情報などの領域情報を有効に利用できないた め,対象領域設定時に正しく領域を抽出できない可能性 がある.また脳室等に隣接しているラクナ梗塞があった 場合には,脳室の一部として除外してしまう可能性があ る.そこで,線形判別分析により二つの領域に属する特 徴集合が統計的にどの程度分離されているかを示す分離 度[6]を用い,エッジ強調を行った.

4.3.1 分離度の定義

一般的には輪郭を「輝度が急変する位置」と定義して いる.分離度とは,ある集合を二つのクラスに分割した 場合,クラス間の変動が全集合に占める割合である.物 体輪郭を「輝度が急変する位置」ではなく「領域間を最 も分離する境界」と定義する.完全に分離されている場 合は,最大値1.0をとる.逆に,分離できない場合は, 最小値0になる.

輪郭モデル上において曲線と垂直な向きに方形探索領 域を設けて,二つの領域を分割する場合を考える.分離 度は輪郭モデル上に離散的に設けられた複数の探索領域 から求まる「部分的な分離度」の平均として得られる. 境界 *x* で分割された二つの領域に対して,分離度 *η* は次 式で定義される.

$$\eta = \frac{\sigma_b^2}{\sigma_T^2} \tag{1}$$

$$\sigma_b^2 = n_1 (\overline{P_1} - \overline{P_m})^2 + n_2 (\overline{P_2} - \overline{P_m})^2 \tag{2}$$

$$\sigma_T^2 = \sum_{i=1}^{N} (P_i - \overline{P_m})^2 \tag{3}$$

ここで, $N = n_1 + n_2$, $n_1 = 探索領域1$ 内の画素数, $n_2 = 探索領域2$ 内の画素数, σ_T は,領域全体の分散値, P_i は位置iの輝度レベル, $\overline{P_1}$ は領域1の平均輝度レベ ル, $\overline{P_2}$ は領域2の平均輝度レベル, $\overline{P_m}$ は領域全体の平 均輝度レベルを示している.

4.4 LevelSet 法を用いた検出対象領域設定

4.4.1 LevelSet 法

LevelSet 法は Osher, Sethian らによって提案された 動的輪郭モデル[7][9]である.KassのSnakes[8]に代表 される動的輪郭モデルは,分離や結合など境界の位相変 化への対応が困難であることが問題であった.これに対 しLevelSet法は本質的に位相変化が可能な動的輪郭モデ ルである.検出する境界を一次元高い補助関数のゼロ等 高面とみなし,境界面の進行条件である偏微分方程式を 数値的に解いて補助関数の形状を変更し,そのゼロ等高 面を次々に検出することにより境界形状を動的に制御す る.これにより領域の結合,分割を自然な形で表現する ことができる.

本研究では倉爪ら[10]の提案する Fast Level Set Method を用いた. Fast Level Set Method は高速で安定 した LevelSet 法の解法であり,

i) 拡張成長速度の利用と高速な拡張成長速度の構築

ii) 補助関数の再初期化処理の高速化と頻繁な再初期化 が特徴である.

2次元画像 I(x,y)において,時刻 t での境界線を $C(\mathbf{p},t)$ とする.ただし $\mathbf{p} = (p_x, p_y)$ である.ここで新たな補助 関数 $\phi(x, y, t)$ を導入し,境界線 $C(\mathbf{p}, t)$ は $\phi(x, y, t) = 0$ を満たす ϕ で表されると考える.ここで閉曲線上のグ リッド (i, j) での成長速度を $F_{i,j}$ とすると

$$F_{i,j} = k_{I,i,j}(a - b\kappa_{i,j}) \tag{4}$$

で与えられる . $k_{I,i,j}$ は輝度勾配に関する項 , a,b は定数 である . 本研究では $k_{I,i,j}$ を

$$k_{I,i,j} = \frac{1}{1 + max(|\nabla I(x,y)|, |\nabla S(x,y)|)}$$
(5)

とした.また $\kappa_{i,j}$ は補助関数値の曲率であり,補助関数 $\phi_{i,j}$ を用いて以下のように示される.

$$\kappa_{i,j} = \nabla \cdot \left(\frac{\nabla \phi_{i,j}}{|\nabla \phi_{i,j}|} \right)$$
$$= \frac{\phi_{xx} \phi_y^2 - 2\phi_x \phi_y \phi_{xy} + \phi_{yy} \phi_x^2}{(\phi_x^2 + \phi_y^2)^{\frac{3}{2}}}$$
(6)

ただし

$$\phi_{x} = \frac{\phi_{i+1,j} - \phi_{i,j}}{h}
\phi_{y} = \frac{\phi_{i,j+1} - \phi_{i,j}}{h}
\phi_{xx} = \frac{\phi_{i+1,j} - 2\phi_{i,j} + \phi_{i-1,j}}{h^{2}}
\phi_{yy} = \frac{\phi_{i,j+1} - 2\phi_{i,j} + \phi_{i,j-1}}{h^{2}}
\phi_{xy} = \frac{\phi_{i+1,j+1} + \phi_{i,j} - \phi_{i+1,j} - \phi_{i,j+1}}{h^{2}}$$
(7)

である.ここで h は離散化幅である.

4.4.2 初期探索点の設定

検出対象領域の設定にあたり,初期輪郭の配置が重要 となる.本研究では位相変化が可能な LevelSet 法の特性 を利用し,初期輪郭を多数配置した.以下この初期輪郭 群を初期探索点と呼ぶ.最初に適用する初期探索点は脳 の平均画像からスライス別に決定したものである.しか しながら,症例ごとに頭部の形状は異なるため,それぞ れの症例に適するように初期探索点の位置を自動的に補 正することとした.

初期探索点の自動調整は,原画像に対して二値化処理 を行った画像を用いて行う.自動処理の手順は図4に示 す.まず脳の平均画像から作成した初期探索点を二値画 像上に配置する.この時に初期探索点下の明度値が0で あれば,初期探索点として設定する.0でない場合には 初期探索点を中心とする45×45の調整領域を二値画像 上に設定する.調整領域内をさらに5×5に分割してそ れぞれの明度平均を算出し,9×9のブロックを作成す る.次に調整領域内の画像モーメントを計算し,重心を 求める.求めた重心下のブロックの明度値が0であった 場合は,その重心を初期探索点として設定する.重心下 のブロックの明度値が0でなかった場合にはその初期探 索点を消去する.

4.4.3 検出対象領域設定

4.4.2 で設定した初期探索点を用いて, LevelSet 法を 適用する.LevelSet 法は領域の結合と分離が自然な形で 実現できるため,症例に対して検出対象外となる脳室・ 脳溝の領域を適切に設定できる.また同様にして,頭蓋 内部の検出対象内領域の設定もLevelSet 法を用いてい る.これら二つより決定される領域を合わせて検出対象 領域を設定する.

4.5 フィルタリング

フィルタリングには以下の式を用いる.

$$P(x,y) = \sum_{n=1}^{m} |I_{a+n}(x,y) - I_{a+n-1}(x,y)|$$
(8)

ここで P(x,y) は生成フィルタ, $I_w(x,y)$ はウインドウ値 w で生成した CT 画像である.これにより, CT 画像に おいて病変部位である可能性が高い高吸収域(高明度)と 低吸収域(低明度)を抽出する.次に 4.4.3の検出対象領 域を適用することにより,ラクナ梗塞初期候補領域を抽 出する.

4.6 候補領域抽出処理

2. で示したラクナ梗塞の特徴を用いて,候補領域の絞込みを行い,候補領域として抽出する. 4.6.1 主成分分析

(8)によって得られたフィルタに対して主成分分析を
 行い,2.章で述べた(2) 「円形・楕円に近い」という
 特徴を用いて判定を行った.処理の流れを図5に示す.

まずフィルタに対してラベリング処理を行う.その後, ラベリングで得られた各領域に対して主成分分析を行い, 寄与率を用いて判定を行う.寄与率は1に近づくほど, その領域が直線的であることを示している.これを利用 して形状による判定を行っている.この処理を収縮処理 を行いながら繰り返すことで,大きな領域と結合してい るラクナ梗塞を分離抽出する.寄与率の判定基準は4.4 の結果を基に,皮質周辺と脳室周辺は厳しく設定してい る.ラクナ梗塞は皮質周辺で発症しにくいことや,除去 できなかった脳室部分の影響を考慮している.

図 5 主成分分析の流れ

4.6.2 周辺明度判定

次に候補領域周辺の濃度を用いて候補領域の確定を行う.まずフィルタに対してラベリング処理を行う.ラベリングで得られた各領域の膨張処理を行い,候補領域周辺の平均明度と標準偏差を取得する.その後,候補領域と周辺領域の平均明度差,標準偏差を用いて判定を行う. この処理を周辺領域のサイズを変更させながら繰り返す.

図 6 周辺濃度判定の流れ

4.7 候補領域確定処理

4.6 で抽出を行った候補領域に対し,特徴画像を生成し,SVMを用いた判定を行い,最終的な候補領域として確定する.

4.7.1 特徵画像

SVM を用いた学習に用いるデータとして,病変部位 の画像を処理したものを用いた.以下学習に用いた画像 を特徴画像とする.この特徴画像は2.の特徴を含むよう に生成している.特徴画像生成の手順は図7に示す.ま ず,病変部位中心を基準に,約2cm四方の画像としてク リッピングする.このとき,基準点をずらしながら周辺 でも同様にクリッピングを行う.その後切り取った各画 像を1°ずつ回転させ,画像中央の行を抽出する.そし て抽出結果を水平・垂直方向を合成し,特徴画像を生成 する.

図7 特徴画像生成の流れ

4.7.2 SVM 判定処理

判定には2クラス分類器である SVM を用いる.SVM はマージン最大化という特徴を持ち,未学習のデータに 対して高い汎化能力を持っている.元々SVM は線形の 識別器であり,以下の式で表わされる.

$$f(\mathbf{x}) = \sum_{j=1}^{d} \omega_j x_j + b \tag{9}$$

ここで, SVM の識別関数, 学習問題共にサンプル間の 内積で記述されているので, カーネル関数に置き換える ことによって非線形に拡張できる.特徴空間に SVM を 適用すると重みベクトルは

$$\omega = \sum_{i=1}^{n} \alpha_i y_i \Phi(\mathbf{x}_i) \tag{10}$$

と表される.このとき識別関数は,

$$f(\Phi(\mathbf{x})) = \sum_{i=1}^{n} \alpha_i y_i \Phi(\mathbf{x})^T \Phi(\mathbf{x}_i) + b$$
$$= \sum_{i=1}^{n} \alpha_i y_i k(\mathbf{x}_i, \mathbf{x}_i) + b$$
(11)

と示される.本研究での SVM の学習・判定には以下の RBF カーネルを用いた.

$$k(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\frac{||\mathbf{x}_i - \mathbf{x}_j||^2}{\sigma^2}\right)$$
(12)

学習データは 4.7.1 の特徴画像を用い生成し,病変部位 と非病変部位の学習をさせた.判定は,4.6 で抽出した 領域の各画素を中心とした特徴画像を生成し,この特徴 画像によって行う.この判定結果を最終的なラクナ梗塞 候補領域として確定している.

5. 実験結果

5.1 実験条件

評価実験に用いた PC のスペックを以下に示す.

- CPU Intel Pentium(R) Dual-Core CPU E6300 2.80GHz RAM 4.0GB
- OS Microsoft Windows 7 Professional
- 開発言語 Microsoft Visual C++ 2010

上記条件において 5.2 で示す対象に対し処理を行った.

5.2 実験対象

共同研究者である第5著者が提供した臨床データ61症 例を用いて評価実験を行った.ラクナ梗塞のある61断面 を処理の対象とした.X線CT装置からの臨床データは 医用画像機器の標準規格であるDICOM(Digital Imaging and COmmunication in Medicine)形式で生成されるの で,変換ソフトを用いて16bitのデータに変換して用 いた.

CT 撮影時の管電圧は 120kVp, 空間分解能は 0.42mm である.

5.3 実験結果

55 例中,第5 著者が特定したラクナ梗塞の疑いがあ る箇所は87 箇所,提案手法により候補領域として自動 検出された箇所は78 箇所となった.これより検出率は 89.7% となった.一方過剰検出については一断面あた り9.97 箇所であった.

画像一枚あたりの処理時間は 30~120 秒となった.

5.4 分離度によるエッジ強調

図 8(a) に対して,分離度によってエッジ強調を行った 画像を図 8(b) に示す.

5.5 頭部回転検出

4.2の実行結果例を図9に示す.図9(a)は頭部楕円を 検出した結果,図9(b)は楕円より得た角度を元に前処 理した結果である.この前処理結果より正中線を決定し た結果を図9(c)に示す.画像中央の縦線が決定した正中 線である.これらより算出した角度を用いて図9(d)を 補正した結果を図9(e)に示す.正しく補正されているこ とが確認できる.

5.6 検出対象領域設定

5.6.1 初期探索点設定

4.4.2の処理結果を図 10 に示す.補正前の初期探索点 は図 10(a) における白点,補正後の初期探索点は図 10(b) における白点である.図 10(a) においては脳の平均画像 から設定してあるために,脳室・脳溝から初期探索点が ずれており,症例に対して適切でないことがわかる.そ れに対し図 10(b) では白で示す初期探索点が脳室・脳溝 内に入っており,症例に対して適切に補正されているこ とが確認できる.

(a) 初期探索点補正前(b) 初期探索点補正後図 10 初期探索点設定

5.6.2 検出対象領域設定

4.4.3の処理結果をを図 11 に示す.図 11(a) は検出対 象外領域,図 11(b) は検出対象内領域である.これら二 つを用いて設定した検出対象領域を図 11(c) に示す.

(a) 検出対象外領域(b) 検出対象内領域(c) 検出対象領域図 11 検出対象領域設定

5.7 フィルタリング

図 12(a) に対し, 4.5 のフィルタリングによる候補領 域を図 12(b) に示す.

 (a) 原画像
 (b) フィルタリング結果

 図 12
 フィルタリング結果

5.8 候補領域抽出処理

4.6 での処理結果を図 13(a),図 13(b),図 13(c) に示 す.図 13(a) は主成分分析における重み画像であり,赤 い部分は判定基準を緩く,黄,緑,青となるにつれて厳 しくしている.

(a) 寄与率重み付け(b) 主成分分析結果(c) 周辺濃度結果図 13 候補領域抽出結果

5.9 特徵画像生成結果

4.7.1で生成した特徴画像を図 14 に示す.図 14(a)・ 図 14(d) が回転画像,図 14(b)・図 14(e) が特徴画像とで ある.図 14(c)・図 14(f) は図 14(b)・図 14(e) をわかりや すくカラーで表現したものである.図 14(a)・図 14(d) は 回転させながら画像中央の行を上から順に構成していっ たものである.これらの画像を周辺の回転画像と統合し たものが,特徴画像である.病変部位の特徴画像である 図 14(b)・図 14(c) は中央に低明度のラインが入ってお リ,対象部位が円形であることとを示している.非病変 部位の図 14(e)・図 14(f) では歪な形状が現れている.こ れにより,病変部位と非病変部位に有意な差があること が確認できる.

今回 SVM の学習データとして,病変部位における特 徴画像 40 枚,非病変部位における特徴画像 295 枚の計 335 枚の画像を用いた.

5.10 候補領域検出結果

実験結果を図 15(a) ~ 図 18(a) に示す.ラクナ梗塞候 補領域は赤で示した箇所である.図 15(b) ~ 図 18(b) の 白い矢印で示した箇所が検出に成功したラクナ梗塞であ る.図 18(b) では検出に失敗したラクナ梗塞を青い矢印 で示している.

 (a) 医師特定結果
 (b) 候補領域確定結果

 図 15 処理結果 1

(a) 医師特定結果 図 16

结果 (b) 候補領域確定結果
図 16 処理結果 2

(a) 医師特定結果
 (b) €
 図 17 処理結果 3

(a) 医師特定結果 (b) **f** 図 18 処理結果 4

(b) 候補領域確定結果

6. 考 察

6.1 ラクナ梗塞検出

図3の手法を用いることにより,61 症例における検出 率は89.7% となった.一方でラクナ梗塞の見落とし箇 所は87箇所中9箇所であった.これら見落としの原因 は4.6 での候補領域抽出時のパラメータと4.7 での学習 データに起因するものである.

この問題への対策として,判定に用いているパラメー タを検出位置に対して適応的に変化させることと,学習 データの強化や他特徴の学習を用いることが考えられる. 現在,候補領域の位置情報は4.6.1 での重み付けとして 利用しているのが,頭蓋内での候補領域の正確な位置を 計算し,パラメータの係数として利用することを検討し ている.また隣接スライスにおける検出結果を用いて, 近辺を重点的に探索することによって見落としの低減を 実施していく.

(a) 医師特定結果
 (b) 従来手法結果
 図 19 結果比較 1

(c) 本手法結果

(a) 医師特定結果

(b) 従来手法結果図 20 結果比較 2

(c) 本手法結果

6.2 過剰検出

過剰検出に関しては断面あたり平均9.77箇所,最大で 22箇所となっている.従来の手法では平均17.4箇所,最 大37箇所であったため,改善されている.過剰検出箇所 の多くはラクナ梗塞の発生しない脳室・脳溝や,PVL(脳 室周囲白質軟化症)とみられる部位である.これらの部 位は他の部位に比べ明度値が低いため,ラクナ梗塞と同 様の形状特徴を有している場合,候補として出力されて しまう.

この問題への対策としては,6.1 でも述べたように隣 接スライスの情報を利用した対象領域設定を行うことと, 各部位の正確な抽出を行うことである.現時点では隣接 スライス間の脳室・脳溝の形状変化や関連性を利用して いない.4.4 では初期探索点(初期輪郭)として脳の平均 画像から設定した点を利用しているが,これを前後スラ イスで得られた脳溝・脳室を基準として設定するように 検討している.

6.3 従来結果比較

従来手法 [11] での結果との比較を図 19,図 20 に示す. 6.3.1 検 出 率

従来手法による検出率は89.4%,本手法による検出率 は89.7%であり,検出率の点においては0.3%向上して いる.これは従来手法には採用していなかったSVMを 取り入れたことと,パラメータの変更によるものであり, 学習データの再構成や適応的パラメータの変更により精 度向上が見込めると考えている.図19(b),図19(c)の 結果を見てみると,本手法の結果の方が病変部位を的確 に示していることが分かる.

6.3.2 過剰検出

過剰検出に関しては従来手法が断面あたり平均17.4 箇 所,最大で37 箇所であったのに対し,本手法では断面あ たり平均9.77 箇所,最大で22 箇所であった.過剰検出 に関しては平均箇所数において43.9%の低減となった. また図 19,図 20を見ても,箇所数だけでなく,過剰検 出領域の面積もより小さくなっている.これにより,従 来よりも病変箇所の視認性が向上している.

6.4 隣接スライス

実験に用いている臨床データは1症例あたり20枚の スライス画像で構成されている.現在は20スライスに 対して各々に処理行い,独立した検出結果を出している. 今後の検討として,隣接スライス間での関連性を用いる と挙げているが,病変含有スライスとその隣接スライス を見てみると,複数断面に渡りラクナ梗塞が表出してい るものが多くあった.また単一スライスでは病変とは判 断しづらいものの,明度変化を伴うものもあった.これ らの情報を総合的に利用することにより,より高精度の 検出ができるのではないかと考える.

7. ま と め

脳 CT 画像に対して LevelSet 法を用いて検出対象領域 設定し,フィルタリングを行い形状・周辺濃度による判 定を行い,SVM によってラクナ梗塞候補領域を検出す る手法を考案し,基本的な有効性を確認した.今後はス ライス間での関連性を利用すると共に,更に多くの症例 に対し実験を行い,医師との連携により定量的な評価を 実施していく.

文 献

[1] 厚生労働省,平成22年(2010)人口動態統計の年間推 移,

http://www.mhlw.go.jp/toukei/saikin/hw/jinkou/suikei10/index.html, (2010)

- [2] 図解 診療放射線技術ガイド,高橋正治・高橋隆(編),文 光堂,(2006)
- [3] 松井篤, "脳 MR 画像を用いたラクナ梗塞検出の支援診 断システムの開発",信学技報, MI, 医用画像 105(579), pp. 25-28, (2006)
- [4] 長島宏幸, "頭部 CT 画像における急性期脳梗塞のコンピュータ検出",群馬県立県民健康科学大学紀要2, pp.1-12,(2007)
- [5] 後藤 弘明, "救急医療頭部 CT 画像における頭蓋内病 変検出アルゴリズムの開発",信学技報,MI,医用画像 105(386), pp. 79-84, (2005)
- [6] 福井和弘,"領域間の分離度に基づく物体輪郭抽出",信 学論, Vol.J80-D-II, No.6, pp. 1406-1414, (1997)
- [7] Osher, S. and Sethian, J. A.: Front propagating with curvature dependent speed: Algorithm based on Hamilton-Javobi formation, Journal of Computational Physics, Vol. 79, pp. 12-49, (1988)
- [8] M.Kass, et.al: Snakes: Active Contour Models, Int J Cmpt Vision, 321-331, (1988)
- [9] Sethian, J.: Level Set Methods, 1st ed, Cambridge University Press, New York, (1996);
- [10] 倉爪 亮, "Fast Level Set Method の提案とビデオ画像 の移動物体のリアルタイム追跡",情報処理学会論文誌, 44(8), pp.2244-2254, (2003)
- [11] 潟山一樹,鹿嶋雅之,佐藤公則,渡邊睦,宮之原正和, "脳 CT 画像におけるラクナ梗塞自動検出に関する研 究",MIRU2010 論文集, IS2-77 (2010)