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Designated Verifier Signature (DVS) guarantees that only a verifier desig-
nated by a signer can verify the “validity of a signature”. In this paper, we
propose a new variant of DVS; Proxiable Designated Verifier Signature (PDVS)
where the verifier can commission a third party (i.e., the proxy) to perform some
process of the verification. In the PDVS system, the verifier can reduce his com-
putational cost by delegating some process of the verification without revealing
the validity of the signature to the proxy. In all DVS systems, the validity of a
signature means that a signature satisfies both properties that (1) the signature
is judged “accept” by a decision algorithm and (2) the signature is confirmed at
it is generated by the signer. So in the PDVS system, the verifier can commis-
sion the proxy to check only the property (1). In the proposed PDVS model,
we divide verifier’s secret keys into two parts; one is a key for performing the
decision algorithm, and the other is a key for generating a dummy signature,
which prevents a third party from convincing the property (2). We also de-
fine security requirements for the PDVS, and propose a PDVS scheme which
satisfies all security requirements we define.

1. Introduction

1.1 Background
Designated Verifier Signature (DVS) was first introduced by Jakobsson, Sako

and Impagliazzo 1). In the DVS system, a signer designates a certain receiver for
a verifier and only the verifier designated by the signer can verify the validity of
a signature.

DVS is useful for a situation where a signer expects that the validity of the
signature is confirmed by only specific person and is not confirmed by the others.
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We consider the situation of public procedures. The person sends his personal
information (a report of one’s removal, etc.) to the government office. He hopes
that this information cannot be leaked to others. He must generate his signature
for this document, but he worries about leaking and being confirmed his personal
information. If he uses the DVS, he can inform his personal information to the
government and not have to worry about leaking it.

A simple strategy in which the signer encrypts his digital signature by the
public key of the verifier seems to achieve the property of the DVS. However in
this strategy, the verifier is able to leak the validity of the signature by decrypting
the encrypted signature and revealing it to the third party. While in the DVS
system, even the verifier cannot leak the validity of the signature, he can verify it.
Hence the strategy of using the public key encryption and the digital signature
cannot achieve the property of the DVS.

Another kind of signature where the signer can restrict receivers to verify the
validity of the signature is the Undeniable Signature (US) 2). In the US system,
the verifier needs interaction with the signer to perform the verification. The
signer designates a certain receiver for the verifier by selecting the person whom
the signer interacts with for verification. The third party who does not interact
with the signer can not confirm the validity of the signature, and the verifier
cannot convince the third party of validity of the signature which the verifier
verified before by revealing the records of verification process.

In the US system, the verifier must interact with the signer whenever he verifies
the signature. On the other hand in the DVS system, the signer designates a
certain receiver for the verifier when he generates the signature, and the verifier
can verify the validity of the signature at any time without interaction with the
signer.

By using Message Authenticate Code (MAC), the prover can also designate a
certain receiver as the verifier. MAC is also verified the validity without interac-
tion. However the prover and the verifier must share a common secret key before
using MAC. In the DVS system, the signer can designate a certain receiver for
the verifier using only the verifier’s public key.

In the DVS system, the validity of a signature is checked by following two pro-
cedures: Decision and Distinction. By Decision, the signature is checked whether it
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is “accepted” by the decision procedure. By Distinction, the signature is checked
whether it is exactly generated by the signer. In this paper, we call a signature
which is accepted by Decision an acceptable signature, and a signature which is
acceptable signature and generated by the signer a valid signature. The meaning
of verifying the validity of a signature is confirming that the signature is valid by
performing Decision and Distinction.

In the DVS system, the verifier can also generate an acceptable signature. We
call such an acceptable signature a dummy signature, while we call a signature
generated by a signer an original signature. Only the original signature must be
confirmed as the valid signature. Any third party should be unable to distinguish
the original signature from dummy signatures. Even if a third party accepts a
signature, he is unable to confirm that the signature is the original signature
because it could be a dummy signature. Therefore, a third party is unable to
verify the validity of the signature. On the other hand, the verifier can decide
whether the signature is the original signature by using his own list of dummy
signatures generated by himself. Hence, the verifier cannot convince a third party
the validity of the signature.

In several DVS systems 1),3)–5), anyone can perform the Decision. However, a
third party cannot confirm the validity of a signature because he can not perform
Distinction. We call those DVS systems ordinary DVS . In the ordinary DVS
system, a third party can narrow the signer to two candidates. On the other
hand, strong DVS 6)–8) in which only the verifier can perform the Decision was
proposed. In the strong DVS system, a third party cannot even narrowed down
the candidates for the signer to two.

1.2 A Motivating Problem
In a strong DVS system, all processes of the verification can be performed by

only a verifier. If one person is designated by large numbers of signers, he must
proceed large amount of the task of the verification procedure by himself.

This situation will often occur if the DVS system is applied to the situation
of public procedures. In this case, a lot of people would send their documents
with DVSs to one government office. Then, the officer must verify large amount
of DVSs. Hence, the officer would like to entrust other organizations to some
processes of verification.

1.3 Contribution
In order to reduce the computational cost for verification, we will propose Prox-

iable Designated Verifier Signature (PDVS) where the verifier can commission a
third party (i.e., the proxy) to perform some process of the verification. In pre-
vious DVS systems, the third party can perform the Decision, but he cannot
confirm the validity of a signature. Hence in the PDVS system, the Decision is
delegated to the proxy and the verifier performs only the Distinction. If the ver-
ifier does not issue any dummy signature for message m, he verifies that (m,σ)
is valid immediately when he is reported that (m,σ) is acceptable by the proxy.
Hence the verifier can reduce his computational cost.

In previous strong DVS systems 6)–8), there is only one kind of verifier’s se-
cret key which is used for performing the Decision algorithm and for generating
dummy signatures. If the verifier gives his secret key in order to delegate the De-

cision, the proxy can also generate a dummy signature. In this case, the verifier
cannot perform the Distinction. Thus in the previous strong DVS systems, the
verifier cannot delegate the verification task to the proxy.

Hence in the PDVS system, there are two kinds of verifier’s keys; one is a key
for performing the Decision and the other is for generating dummy signatures.
The verifier can delegate the Decision to the proxy by giving only the secret key
for performing the Decision, and the verifier keeps the both of keys; a key for
performing the Decision and a key for generating dummy signatures.

Unlike the previous DVS systems, there is the new entity proxy in the PDVS
system. Hence we consider the requirements for each position, not only the ver-
ifier and the third party but also the proxy. We define security requirements
for PDVS scheme by capturing the following requirements. (1) The verifier can
surely verify the validity of the signature at any time. (2) The proxy can per-
form the Decision, but cannot generate any acceptable signature. (3) The third
party cannot perform even the Decision. We describe the definition of security
requirements in Section 3.2.

In this paper, we formalize PDVS, and define security requirements for PDVS
in Section 3. We propose a concrete PDVS scheme and prove that our PDVS
scheme satisfies security requirements we define in Section 3.2.
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1.4 Related Works
In 1996, DVS 1) was first introduced and is the first ordinary DVS. After

that, strong DVS 6) was proposed, and several security requirements for DVS
was defined 4),6),7).

At the same time, several variants of DVSs were proposed. multi-DVS 9) is the
DVS where the signer can designate some receivers for a verifier in one signature,
and the verifiers can verify the signature individually. Universal DVS 5),8),10),11)

is a system that a basic digital signature can be converted to a designated verifier
signature. Designated proxy signature (DVPS) 12) is the DVS where the signer
can delegate his signing capacity to the third party (i.e., the proxy).

In all of the DVS systems which ware proposed before, the verifier has to verify
the validity of the signature himself.

2. Preliminaries

We will provide several definitions which are building blocks of our PDVS
scheme.

Definition 1 (Bilinear map) Let (G,+), and (H, ·) be two groups of the
same prime order q. Let P be a generator of G. A bilinear map is a mapping
e : G×G→ H satisfying the following properties:
• bilinear: e(aQ, bR) = e(Q,R)ab, for all (Q,R) ∈ G

2, and all (a, b) ∈ Z
2;

• non-degeneration: e(P, P ) �= 1;
• computability: there exists an efficient algorithm to compute e;
Definition 2 (Prime-order-BDH-parameter-generator) Prime-order-

BDH-parameter-generator is a probabilistic algorithm that takes on input a se-
curity parameter k, and outputs a 5-tuple (q, P, G, H, e) satisfying the following
conditions:
• q is a prime with 2k−1 < q < 2k;
• G and H are groups of order q;
• e : G×G −→ H is a bilinear map;
Definition 3 (Computational Diffie-Hellman assumption) Let Gen be

a Prime-order-BDH-parameter-generator. Let A be an adversary that takes an
input 5-tuple (q, P, G, H, e) generated by Gen and (X,Y ) ∈ G

2, and returns an
element of Z ∈ G. We consider the following random experiments, where k is a

security parameter;

Experiment Expcdh
Gen,A(k)

(q, P, G, H, e) R← Gen(k)

(x, y) R← Z
∗2
q ,X := xP, Y := yP

Z ← A(q, P, G, H, e,X, Y )
Return 1 iff Z = xyP

We define the corresponding success probability of A via

Succcdh
Gen,A(k) = Pr[Expcdh

Gen,A(k) = 1].

Let t ∈ N. CDH is said to be (k, t, ε)-hard if no adversary A running in time t

has Succcdh
Gen,A(k) ≥ ε.

Definition 4 (Gap-Bilinear Diffie-Hellman assumption) Let Gen be a
Prime-order-BDH-parameter-generator. Let A be an adversary that takes on
input 5-tuple (q, P, G, H, e) generated by Gen and (X,Y,Z) ∈ G

3, and returns an
element of h ∈ H. We consider the following random experiments, where k is a
security parameter;

Experiment Expgbdh
Gen,A(k)

(q, P, G, H, e) R← Gen(k)

(x, y, z) R← Z
∗3
q ,X := xP, Y := yP, Z := zP

h← ADBDH(q, P, G, H, e,X, Y, Z)
Return 1 iff h = e(P, P )xyz

where ADBDH denotes that the adversary A has access to a DBDH oracle. A
DBDH oracle is an oracle that for input aP , bP , cP , and e(P, P )d, decides
whether d = abc or not. We define the corresponding success probability of A
via

Succgbdh
Gen,A(k) = Pr[Expgbdh

Gen,A(k) = 1].

Let t ∈ N. GBDH is said to be (k, t, ε)-hard if no adversary A running in time t

has Succgbdh
Gen,A(k) ≥ ε.
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3. Definitions of Proxiable DVS

In this section, we will propose the definition of the PDVS and will define
several security properties of the PDVS.

3.1 The Models of PDVS Scheme
A PDVS scheme consists of seven algorithms: Let k be a security parameter.

Each definition is described as follows.
Common parameter generation (SetUp): A probabilistic algorithm, on input k,

outputs the public parameters params.
Signer’s key generation (SKeyGen): A probabilistic algorithm, on input params,

outputs the public and secret signer’s key PKs and SKs.
Verifier’s key generation (VKeyGen): A probabilistic algorithm, on input

params, outputs verifier’s secret key SKv and SKp, and the verifier’s public
key PKv . SKv is kept by only the verifier. SKp is given to the proxy by the
verifier.

Designated signing (DSign): A probabilistic algorithm, on input params, mes-
sage m, signer’s secret key SKs and signer’s and verifier’s public keys PKs,
PKv , outputs a original signature σ.

Transcript simulation (TSim): A probabilistic algorithm, on input params, mes-
sage m, verifier’s secret key SKv , and signer’s and verifier’s public keys PKs,
PKv , outputs a dummy signature σ’.

Designated verifying 1 (Decision): A deterministic algorithm, on input params,
message m, a signature σ, public key’s PKs, PKv and verifier’s secret key
SKp, outputs a verification decision, accept or reject.

Designated verifying 2 (Distinction): A deterministic algorithm, on input
params, message m, an acceptable signature σ, PKs, PKv , verifier’s secret
key SKv and the list of dummy signatures which the verifier issued before,
outputs a verification decision, valid or invalid.

3.2 Definitions of Security Properties of PDVS
In this section, we propose definitions of security requirements for the PDVS.
3.2.1 Strong Unforgeability
Yoneyama, et al. 13) defined rigorous security requirements for DVS, and

pointed out that Existential Unforgeability (EUF) is not sufficient and Strong

Existential Unforgeability (sEUF) must be satisfied for secure DVS schemes.
We point out that PDVS schemes must also satisfy sEUF. Since in the PDVS

system satisfying EUF but not satisfying sEUF, the proxy is also able to confirm
the validity of the signature.

We consider a following strong-forgery-attack. The strong-forgery-attacker gen-
erates an acceptable message/signature pair (m,σ∗) from another acceptable
message/signature pair (m,σ). No one can distinguish whether (m,σ∗) is gen-
erated by the formal procedures (DSign or TSim) or the strong-forgery-attack.
Such an attacker could exist in a PDVS system satisfying just EUF, because EUF

only guarantees that anyone is unable to generate an acceptable (m∗, σ∗) where
m∗ is different from any acceptable signed message m.

If such a strong-forgery-attacker exists, the following situation occurs. The veri-
fier generates a dummy signature σTSim for a message m, and issues (m,σTSim).
Then the strong-forgery-attacker can generate a forgery (m,σ∗

TSim) by using
(m,σTSim). After that, the signer generates an original signature σDSign for the
message m. In this case, even if the verifier can decide that (m,σ) is acceptable,
he cannot confirm where σ is the original signature σDSign or the forgery σ∗

TSim.
Then even the verifier is unable to confirm the validity of the signature by the
Distinction. So the verifier is unable to issue any dummy signature to confirm the
validity of the signature in any cases. In the above situation, the proxy is able
to confirm the validity of the signature by performing the Decision, because the
acceptable signature is surely the original signature. Hence, if the PDVS does
not satisfy sEUF, the proxy is able to confirm the validity of the signature. So,
the PDVS must satisfy sEUF.

The PDVS requires that not only an arbitrary third party but the proxy, who
has verifier’s secret key SKp, is not able to forge a signature.

Definition 5 (Strong Unforgeability)�1 LetA be a strong-forgery against
adaptive chosen message attack (sEUF-CMA)-adversary against PDVS, ΣS be
the original signing oracle, ΣT be the dummy signing oracle, and Υ be the distinc-

�1 In the basic digital signature, the security notion of strong unforgeability is proposed by
Ref. 14). We define strong unforgeability for the PDVS by adapting strong unforgeability
to the PDVS system.
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tion oracle �1 . Let {(m1, σ1), · · · , (mqΣS
, σqΣS

)} be a set of message and signature
pair which is given to A by oracle ΣS , {(m′

1, σ
′
1), · · · , (m′

qΣT
, σ′

qΣT
)} be a set of

message and signature pair which is given to A by oracle ΣT . Let k be a security
parameter. We consider the following random experiment:

Experiment Expseuf−cma
PDVS ,A (k)

params
R← Setup(k)

(PKs,SKs) R← SKeyGen(params)

(PKv ,SKv ,SKp) R← VKeyGen(params)
(m∗, σ∗)← AΣS ,ΣT ,Υ(params,PKs,PKv ,SKp)
s.t. (m∗, σ∗) �∈ {(m1, σ1), · · · , (mqΣS

, σqΣS
)} ∪ {(m′

1, σ
′
1), · · · , (m′

qΣT
, σ′

qΣT
)}

Return 1 iff Decision(params,m∗, σ∗,PKs,PKv ,SKp) = accept
∧Distinction(params,m∗, σ∗,PKs,PKv ,SKv , list of dummy signatures)

= valid
We define the success probability of the adversary A by

Succseuf−cma
PDVS ,A (k) = Pr[Expseuf−cma

PDVS ,A (k) = 1].

A PDVS scheme is said to be (k, τ, ε)-sEUF-CMA secure, if no adversary A
running in time τ has a Succseuf−cma

PDVS ,A (k) ≥ ε.
3.2.2 Privacy of Signer’s Identity
In the PDVS system, a third party who has only public keys must be unable to

confirm whether a signature is acceptable or not. To capture this requirement,
we define Privacy of signer’s identity (PSI) as “there are two possible signers.
An adversary sees a signature σ, he is not able to distinguish the signer who
generates σ” �2. This condition can be described as follows.

Definition 6 (Privacy of signer’s identity) Let A be a PSI-CMA-
adversary against PDVS, ΣS0 and ΣS1 be original signing oracles, ΣT be the
dummy signing oracle, Γ be the Decision oracle, and Υ be the Distinction oracle.
Let k be a security parameter. We consider the following random experiment for

�1 The Decision oracle is not needed in this experiment, because the adversary who has SKp
can execute the Decision by himself.

�2 The concept of PSI was proposed by Laguillaumie, et al. 9). We modify the definition of
PSI to suit to PDVS model.

i ∈ {0, 1}.
Experiment Exppsi−cma−i

PDVS ,A (k)

params
R← Setup(k)

(PKs0,SKs0) R← SKeyGen(params)

(PKs1,SKs1) R← SKeyGen(params)

(PKv ,SKv ,SKp) R← VKeyGen(params)
m∗ ← AΣS0 ,ΣS1 ,ΣT ,Γ,Υ(params,PKs0,PKs1,PKv)
σ∗ ← DSign(params,m∗,SKsi ,PKv)
Return i′ ← AΣS0 ,ΣS1 ,ΣT ,Γ,Υ(params,m∗, σ∗,PKs0,PKs1,PKv)

We define the advantage of the adversary A by

Advpsi−cma
PDVS ,A(k) = |Pr[Exppsi−cma−0

PDVS ,A (k) = 1]− Pr[Exppsi−cma−1
PDVS ,A (k) = 1]|

A PDVS scheme is said to be (k, τ, ε)-PSI-CMA secure, if no adversary A running
in time τ has Advpsi−cma

PDVS ,A(k) ≥ ε.

3.2.3 Source Hiding
In the PDVS system, anyone except the verifier who has all secret keys must

be unable to confirm whether a signature is valid signature or not in order to
guarantee that the Distinction is able to be performed by only the verifier. In
this paper, Source Hiding (SH) means “even if any adversary A has all secret
and public keys, he can not distinguish the original signature from the dummy
signature.”

It is clear that if a PDVS scheme satisfies SH, A who has part of a secret key
cannot distinguish the original signature from the dummy signature. Thus if a
scheme satisfies SH, the proxy can not confirm the validity of the signature.

Definition 7 (Source Hiding) Let A be an arbitrary completely source
hiding (SH)-adversary against a PDVS scheme. Let k be a security parameter.
We consider the following random experiment:

Experiment Expsh
PDVS ,A(k)

params
R← Setup(k)
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(PKs,SKs) R← SKeyGen(params)

(PKv ,SKv ,SKp) R← VKeyGen(params)
m∗ ← A(params,PKs,PKv ,SKs,SKv ,SKp)
r ←R {0, 1}
if r = 1 : σ∗ ← DSign(params,m∗,SKs,PKs,PKv)
otherwise : σ∗ ← TSim(params,m∗,SKv ,PKs ,PKv)
r′ ← A(params,m∗, σ∗,PKs ,PKv ,SKs,SKv ,SKp)
Return 1 iff r′ = r

We define the advantage of the adversary A by

Advsh
PDVS ,A(k) =

∣
∣
∣
∣
Pr[Expsh

PDVS ,A(k) = 1]− 1
2

∣
∣
∣
∣
.

A PDVS scheme is said to be (k, τ, ε)-SH-CMA secure, if no adversary A running
time τ has Advsh

PDVS ,A(k) ≥ ε.
3.2.4 Non-coincidental Property
For message m, if the probability that σDSign = σTSim for those σDSign ←

DSign(params,m∗,SKs,PKs ,PKv) and σTSim ← TSim(params,m∗,SKv ,PKs ,
PKv) is non-negligible, the verifier cannot confirm the validity of the signature.
Since he cannot confirm that (m,σDSign) is the original signature because he
cannot distinguish (m,σDSign) from the dummy signature (m,σTSim) he issued
before.

Hence, the PDVS must satisfy the property that the probability that the orig-
inal signature is identical with the dummy signature is negligible. In this paper,
we call this property Non-coincidental property (NCP).

Definition 8 (Non-coincidental property) A PDVS scheme is said to be
(k, ε)-NCP secure, if for any m,

Pr[σDSign = σTSim|params ← SetUp(k);
(SKs,PKs)← SKeyGen(params);

(PKv ,SKv ,SKp) R← VKeyGen(params)
σDSign ← DSign(params,m∗,SKs,PKs ,PKv);
σTSim ← TSim(params,m∗,SKv ,PKs ,PKv)]
≤ ε.

4. Our Proposed PDVS Scheme

In this section, we propose a PDVS scheme satisfying all security requirements
which we defined in Section 3.2.

First, we propose a naive PDVS scheme, which does not satisfy sEUF. Next,
we show a strong-forgery attack for the naive PDVS scheme. Finally, we propose
a PDVS scheme which is improved from the naive PDVS scheme and satisfies
sEUF and other security requirements.

4.1 Naive PDVS Scheme
4.1.1 Idea
We achieve the naive PDVS scheme by using the bi-DVS scheme proposed by

Laguillaumie and Vergnaud 9). In the bi-DVS, a signer designates two receivers
for a verifier in one signature. The bi-DVS system does not capture dummy
signatures and the validity of the signature is confirmed by only checking the
Decision. Two verifiers have their own secret key respectively and can execute
the Decision by using only his secret key �1.

We find that the bi-DVS scheme has a property where a person who has both
two verifiers’ secret keys can generate an acceptable signature without using
the signer’s secret keys, and such an acceptable signature is not distinguished
from the signature generated by the signer. That is, he can generate a dummy
signature. We achieve the PDVS scheme by corresponding the key for performing
the Decision to one of two verifiers’ keys in the bi-DVS and keys for generating
dummy signatures to both of two verifiers’ keys.

4.1.2 Naive PDVS scheme
Let k be a security parameter.
SetUp: Let Gen be a prime-order-BDH-generator and let (q, P, G, H, e) be an

output of Gen(k). Let H : G×G −→ H be a hash function family and H be
a random member of H.

�1 If each of the verifiers can generate a dummy signature, the other verifier cannot confirm
the validity of the signature. If it is so, there are more than two entities who can generate
an acceptable signature and the verifier cannot confirm that the signature is generated by
the signer. In the bi-DVS system, the validity of the signature is confirmed by only checking
the Decision. So, each of verifiers can transfer the validity of the signature to a third party.
Therefore, to be exact, the bi-DVS is not DVS.
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SKeyGen: Pick a
R← Z

∗
q and compute PA = aP . The signer’s public key PKs is

PA and the secret key SKs is a.
VKeyGen: Pick b

R← Z
∗
q and compute PB = bP . Pick c

R← Z
∗
q and compute

Pc = cP . The verifiers’ public key PKv is PB and PC . The secret keys SKv
which the verifier keeps are b and c, and the secret key SKp which the proxy
is given by the verifier is c.

DSign: Given a message m ∈ {0, 1}∗, pick (r, l) R← Z
∗2
q , compute PBC = PB +

PC , u = e(PB , PC)a and M = H(m,ul) and set QA = a−1(M − rPBC) and
QBC = rP . The signature σ of m is (QA, QBC , l).

TSim: Given a message m ∈ {0, 1}∗, pick (r′, l′) R← Z
∗2
q . Compute PBC =

PB + PC , u = e(PA, PC)b and M ′ = H(m,ul′), and set Q′
A = r′P and

Q′
BC = (b+c)−1(M ′−r′PA). The dummy signature σ′ of m is (Q′

A, Q′
BC , l′).

Decision: Given m and σ, compute u = e(PA, PB)c and M = H(m,ul). Finally,
check whether e(QA, PA)e(QBC , PBC) = e(M,P ). If it does, return accept .
Otherwise return reject .

Distinction: Given an acceptable message/signature pair (m,σ), check whether
(m = m′) ∧ (σ = σ′) for any message/dummy signature pair (m′, σ′) which
was issued before. If it does not, return valid . Otherwise return invalid .

4.1.3 Strong-forgery-attack for Naive PDVS Scheme
We describe the strong-forgery-attack for the naive PDVS scheme.
Select ε

R← Z
∗
q for accepted (m,σ), and compute Q∗

A = QA − εPBC ,
Q∗

B = QBC + εPA and output forgery (Q∗
A, Q∗

BC , l). Then (Q∗
A, Q∗

BC , l) satis-
fies e(Q∗

A, PA)e(Q∗
BC , PBC) = e(M,P ). Therefore anyone can generate forgery

(Q∗
A, Q∗

B , l) by using an acceptable message/signature pair.
4.2 Proposed PDVS Scheme
4.2.1 Idea
To prevent the strong-forgery attack in Section 4.1.3, we add a signing proce-

dure for generating a new part of signature ch corresponding to (m,σ). ch is
computed only by using the signer’s or verifier’s secret key. A valid signature
consists of σ and ch. Even if a third party generates (m,σ∗), he cannot generate
ch∗ corresponding to (m,σ∗).

The validity of ch is verified by Distinction by computing ch corresponding to

(m,σ) with verifier’s secret key. Even if (m,σ∗) is accepted by Decision, it is
not judged as a valid signature by Distinction, because any third party cannot
generate ch∗ corresponding to (m,σ∗). Hence by checking ch by Distinction, any
third party never generates strong-forgery (m,σ∗, ch∗).

4.2.2 PDVS Scheme
Let σ be a signature which is generated by DSign or TSim in the naive PDVS

scheme and Σ be a family of σ.
SetUp: Let be the same as SetUp in the naive PDVS. In addition, let G:{0, 1}∗×

Σ×G −→ H be a hash function family and G be a random member of G.
SKeyGen: Pick (a, a′) R← Z

∗2
q and compute PA = aP and PA′ = a′P . The

signer’s public keys PKs are PA and PA′ , and the secret keys SKs are a and
a′.

VKeyGen: Pick (b, b′) R← Z
∗2
q and compute PB = bP and PB′ = b′P . Pick

c
R← Z

∗
q and compute Pc = cP . The verifiers’ public keys PKv are PB, PB′

and PC . The secret keys SKv that the verifier keeps are b, b′ and c. The
secret key SKp that the proxy is given by the verifier is c.

DSign: Given m, generate σ by DSign in the naive PDVS scheme and compute
ch = G(m,σ, a′PB′). The original signature σnew of m is (σ, ch).

TSim: Given m, generate σ′ by TSim in the naive PDVS scheme and compute
ch′ = G(m,σ′, b′PA′). The dummy signature σ′

new of m is (σ′, ch′).
Decision: Let be the same as Decision in the naive PDVS scheme.
Distinction: Given an acceptable message/signature pair (m,σ, ch), if m �= m′

for any m′ which was issued with dummy signature before, output valid.
Else if (m = m′) ∧ (σ = σ′) for any message/dummy signature pair (m′, σ′)
which was issued before, output invalid. Otherwise check whether ch =
G(m,σ, b′PA′), if it does, output valid.

4.3 Comparison
In this section, we compare previous DVS schemes with our proposed PDVS

scheme in terms of the computational cost of the verification task for the verifier.
We describe the cost of computing modulo exponentiation as E and the cost

of computing pairing calculation as P .
In previous strong DVS systems, Decision is performed only by the verifier.
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The cost of performing the Decision of the scheme by Saeednia, et al. 6) is 3E,
and the scheme by Laguillaumie, et al. 9) is E + 4P .

In our proposed PDVS scheme, the verification cost of the verifier is at most E.
But this calculation is performed when only the message/signature pair (m,σ)
satisfies (m = m′) ∧ (σ �= σ′) for any (m′, σ′) which the verifier issued before. In
the PDVS system, indeed, the verifier need not issue any dummy signature. In
this case, the verifier verifies that (m,σ) is valid immediately when he is reported
that (m,σ) is acceptable by the proxy. Hence, in practice, the verification cost
of the verifier is much smaller than that of previous DVS systems.

4.4 Security Proofs
4.4.1 Strong Unforgeability
We will prove that PDVS is satisfies sEUF-CMA.
Theorem 1 (Strong Unforgeability) For any sEUF-CMA-adversary A in

the random oracle model, with security parameter k, which has the success prob-
ability ε = Succseuf−cma

PDV S,A (k), and makes qG queries to the random oracle, qΣS

queries to the original signing oracle, qΣT
queries to the dummy signing oracle,

qΥ queries to the Distinction oracle, there exists an adversary A for CDH which
has the advantage Succcdh

Gen,A(k) upper-bounded by ε′ such that

ε′ ≥ ε− (qG + qΥ)(qΣS
+ qΣT )

24k
− 1

2k
.

Proof. Suppose A is an adversary that (k, t, ε)-breaks sEUF-CMA of the PDVS
scheme. A who is given information params, PKs, PKv and SKp can query mes-
sages for original singing and dummy signing oracle and obtains signatures (σ, ch)
for any message m. (mi, σi, chi) for i ∈ {1, · · · , qΣS

+qΣT
} are message/signature

pairs which A obtains by signing oracles. A also can ask the Distinction oracle
whether message and the signature pairs are valid or not. Finally A outputs a
forgery (m∗, σ∗, ch∗).

We construct B which solves CDH problem by using A. Let (X,Y ) be an
inputs for B where X = xP and Y = yP in G for uniformly random (x, y) in Z

∗
q .

B computes xyP . Let σ be a triple (QA, QBC , l) and Σ be a family of σ.
Input: B picks (a, b, c) R← Z

∗3
q , sets PA = aP , PB = bP , PC = cP , PA′ = X,

PB′ = Y , and inputs PA, PB , PC , PA′ , PB′ , c to A.

G-Queries: For any query (m,σ, ω) ∈ {0, 1}∗ × Σ × H, B checks whether
e(ω, P ) = e(PA′ , PB′). If it does, B outputs ω and halt. Else if there exist
(m,σ, ω, ch, 0,⊥) in G-List, B return ch. Otherwise B picks ch

R← H, returns to
A and adds (m,σ, ω, ch, 0,⊥) to G-List.

DSign-Queries: For any m, B computes σ ← DSign(m) by using a and picks
ch

R← H. If there exists (m,σ, ∗, ch, 0,⊥) in G-List, B abort the simulation.
Otherwise B returns (σ, ch) to A and add (m,σ,⊥, ch, 1,DSign) to G-List.

TSim-Queries: For any m, B computes σ ← TSim(m) by using b and c, and
picks ch

R← H. If there exists (m,σ, ∗, ch, 0,⊥) in G-List, B abort the simulation.
B picks ch

R← H and returns (σ, ch) to A and adds (m,σ,⊥, ch, 1, TSim) to
G-List.

Distinction-Queries: For any (m,σ, ch), if an output of Decision(m,σ) is
reject , B returns invalid . If there does not exist (m,σ, ∗, ch, ∗, ∗), B returns
invalid and adds (m,σ,⊥, ch, 0,⊥). Else if there exists (m,σ, ∗, ch, 1, TSim) in
G-List, B returns invalid . Otherwise B returns valid.

The above simulation is perfectly indistinguishable from the real forgery unless
the following events happen:
• The simulation is aborted in DSign-Queries or TSim-Queries. This hap-

pens with the probability at most (qG + qΥ)(qΣS
+ qΣT

)2−4k through the
entire simulation.

If A outputs the strong forgery (m∗, σ∗, ch∗), B obtains (m∗, σ∗, ω∗, ch∗, 0,⊥)
in G-List and outputs ω∗. If A does not query to the G-List, then B fails to solve
CDH problem. This happens with the probability at most 2−k.

Thus, we obtain the following probability:

ε′ ≥ ε− (qG + qΥ)(qΣS
+ qΣT

)
24k

− 1
2k

.

�
4.4.2 Privacy of Signer’s Identity
We will prove that PDVS scheme satisfies PSI in the random oracle model,

assuming that GBDH is hard.
Theorem 2 (Privacy of signer’s identity) For any PSI-CMA-adversary
A, in the random oracle model, with security parameter k, which has the success
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probability ε = Succpsi−cma
PDV S,A(k), and makes qH and qG queries to the random

oracle, qΣS
queries to the original signing oracle, qΣT

queries to the dummy sign-
ing oracle, qΓ queries to the Decision oracle, qΥ queries to the Distinction oracle,
there exist an adversary A for GBDH which has the advantage Succgbdh

Gen,A(k)
upper-bounded by ε′ such that

ε′ ≥ ε

2
− qΓ + qΥ

2k
− (qH + qΣS

+ qΣT
)(qΣS

+ qΣT
)

2k
− (qG + qΥ)(qΣS

+ qΣT
)

24k
.

Proof. We construct B which solves GBDH by using A. Let (X,Y,Z) be inputs
for B where X = xP , Y = yP and Z = zP in G for uniformly random (x, y, z)
in Zq. B computes e(P, P )xyz by using DBDH oracle.

In order to simulate the environment of A, B performs as follows:
Input: B picks α

R← Z
∗
q , (a′

0, a
′
1, b

′) R← Z
∗3
q , sets PA0 = X, PA′

0
= a′

0P ,
PA1 = αX, PA′

1
= a′

1P , PB = Y , PB′ = b′P , PC = Z, and inputs PA0 , PA′
0
, PA1 ,

PA′
1
, PB , PB′ and PC to A. Then we use i ∈ {0, 1}.

H-Queries: For any query (m, v) ∈ {0, 1}∗ ×H

• B checks whether H-List includes a quadruple (m, v,⊥,M). If it does, B
returns M .

• Else B browses H-List and checks for all quadruple (m,⊥, l,M) whether
v1/l = e(P, P )xyz by using DBDH oracle. If it does, B returns M .

• Otherwise, B picks M
R← Z

∗
q , records (m, v,⊥,M) in H-List, and returns M .

G-Queries: For any query (m,QA, QBC , l, ω) ∈ {0, 1}∗ × H
2 × Z

∗
q × H, B

checks whether ω = a′
ib

′P . If it does and there exists (m,QA, QBC , l, ω, ch, 0,⊥)
in G-List, B returns ch. Otherwise B picks ch

R← H, returns to A and adds
(m,QA, QBC , l, ω, ch, 0,⊥) to G-List.

DSign-Queries (resp. TSim-Queries): For any m, whose signature is
queried to ΣSi (resp. ΣTi) corresponding to Signer Si, by either the adver-
sary or the challenger, B picks (qA, qB) R← Z

∗2
q , l

R← Z
∗
q , and computes

M = qAαiPAi
+ qBPB , and sets QA = qAαiP and QBC = qBP .

• If H-List includes a quadruple (m,⊥, lαi, ∗), B aborts the simulation,
• Else B browses H-List and checks for each quadruple (m, v,⊥,M), whether

v1/lαi

= e(P, P )xyz by using DBDH oracle. If it does, B aborts the simulation.
• Otherwise B adds the quadruple (m,⊥, lαi,M) to H-List and returns

(QA, QBC , l).

B picks ch
R← H. If there exist (m,QA, QBC , l, ∗, ch, 0,⊥) in G-List, abort the

simulation. Otherwise return (QA, QBC , l, ch) to A and add (m,QA, QBC , l,⊥,

ch, 1,DSigni) (resp. (m,QA, QBC , l,⊥, ch, 1, TSimi)) in G-List.
DVerify-Queries: For any inputs (m,QA, QBC , l, ch, Si), the followings are

queried
• B checks whether H-List includes a quadruple (m, ∗, ∗,M). If it does not, B

returns reject .
• If H-List includes a quadruple (m,⊥, l,M), B returns accept if

e(QAi
, PAi

)e(QBC , PB) = e(M,P ).
• If H-List includes a quadruple (m, v,⊥,M), B returns accept if both v1/lαi

=
e(P, P )xyz and e(QAi

, PAi
)e(QBC , PB) = e(M,P ).

Distinction-Queries: For any (m,QA, QBC , l, ch, Si), B checks whether
(m,QA, QBC , l, ch) is acceptable or not by performing the DVerify-Queries, if
it does not, returns invalid . If there does not exist (m,QA, QBC , l, ∗, ch, ∗, ∗),
B returns invalid and adds (m,QA, QBC , l,⊥, ch, 0,⊥). Else if there exist
(m,QA, QBC , l, ∗, ch, 1, TSimi) in G-List, return invalid . Otherwise B returns
valid .

For m∗ that A outputs, B picks i
R← {0, 1} and generates σ∗ = (Q∗

Ai
, Q∗

BC ,

l∗, ch∗) by using the above DSign-Queries or TSim-Queries of Si. B returns
σ∗ to A.

After receiving σ∗, A outputs i′. B obtains (m∗, v∗,⊥,M∗) in H-List and
outputs C = v∗1/lαi

. Otherwise, B outputs a random element of G.
The above simulation is perfectly indistinguishable from the real attack unless

the following events happen:
• The simulation aborts in DSign-Queries or TSim-Queries. This happens

with the probability at most (qH +qΣS
+qΣT

)(qΣS
+qΣT

)2−k+(qG+qΥ)(qΣS
+

qΣT
)2−4k through the entire simulation.

• The valid signature of m, (QA, QBC , l), was generated without querying
(m,ul) to H oracle, and was queried to Γ or Υ oracle. Since H(m,ul) is uni-
formly distributed, this happens with the probability at most (qΓ + qΥ)2−k

through the entire simulation.
The signature σ∗ provides A no information about i if (m∗, v∗,⊥,M∗) was not
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queried to H-Queries. ch∗ is given by random oracle and does not depend on any
secret keys. So ch∗ also does not give any information of Si to A. Therefore, in
this case A succeeds with the probability 1/2

Thus, we obtain the following probability:

ε′ ≥ ε

2
− qΓ + qΥ

2k
− (qH + qΣS

+ qΣT
)(qΣS

+ qΣT
)

2k
− (qG + qΥ)(qΣS

+ qΣT
)

24k
.

�
4.4.3 Source Hiding
We will show that PDVS satisfies SH.
Theorem 3 (Source Hiding) In the PDVS scheme we propose, the follow-

ing expression holds.

Advsh
PDV S,A(k) = 0.

Proof. We prove the following fact. Given public keys of PA, PA′ , PB, PB′ and
PC , secret keys of a, a′, b, b′ and c, arbitrary message m∗, and signature for m∗,
(Q∗

A, Q∗
BC , l∗, ch∗), A can not distinguish by which procedure of DSign or TSim

(Q∗
A, Q∗

BC , l∗, ch∗) is generated.
For N ∈ G in DSign and N ′ ∈ G in TSim, there exists n, n′ ∈ Z∗

q such that
N = nP , N ′ = n′P .

Using this arbitrary n and n′, we prove that QA, QBC , Q′
A and Q′

BC have
the same distribution. Since r in DSign and r′ in TSim are random values in
{1, . . . , q − 1}, QBC = rP and Q′

A = r′P have the uniform distribution on the
set {P, . . . , (q − 1)P}.

Let f(r) := a−1{n − r(b + c)}, then QA = a−1(N − rPBC) describes QA =
f(r) · P . Since f(r) is bijective, f(r) has the uniform distribution on the set
{1, . . . , q − 1}. So QA has the uniform distribution on the set {P, . . . , (q − 1)P}.
Similarly, let f ′(r′) := (b+ c)−1(n′− r · a), then Q′

BC = a−1(N − r′PA) describes
Q′

BC = f ′(r′) ·P . Since f ′(r′) is bijective, f ′(r′) has the uniform distribution on
the set {1, . . . , q−1}. So Q′

BC has the uniform distribution on the set {P, . . . , (q−
1)P}. Therefore QA, QBC , Q′

A and Q′
BC have the same distribution. Moreover

values of QA, QBC , Q′
A and Q′

BC depend on a random values r or r′. Hence, it
is not distinguished whether a triple Q∗

A, Q∗
BC , l∗ is generated by DSign or TSim.

Besides, ch∗ = G(m∗, Q∗
A, Q∗

BC , l∗, a′PB′) = G(m∗, Q∗
A, Q∗

BC , l∗, b′PA′), so it is

also not distinguished whether ch∗ is generated by DSign or TSim.
Therefore even if the values of all secret keys a, a′, b, b′ and c are revealed, it is

not distinguished whether a signature is generated by DSign or TSim procedures.
�

4.4.4 Non-coincidental Property
We will show that PDVS satisfies NCP.
We consider the probability that σ = σ′ where σ ← DSign(m,SKs,PKv), σ′ ←

TSim(m,SKv ,SKp,PKs) in the random oracle model. We represent an original
signature as σ = (QA, QBC , l) and a dummy signature as σ′ = (Q′

A, Q′
BC , l′).

We also denote that r ∈ Z
∗
q is a random string the signer selects and r′ ∈ Z

∗
q

is a random string the verifier selects. Pr[σ = σ′] = Pr[l = l′] · Pr[QA, QBC =
Q′

A, Q′
BC |l = l′] = (q − 1)−2. Hence, Pr[σ = σ′] is negligible.

5. Conclusions

In this paper, we proposed the concept and definitions of the PDVS that allows
a verifier to delegate some computational cost of the verification to the proxy.
We defined new security requirements for the PDVS, and proposed a concrete
PDVS scheme. Finally we proved that our PDVS scheme satisfies all security
requirements for the PDVS under CDH and GBDH assumptions.
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