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あらまし 本稿では，重回帰分析法を用いたサイドチャネル攻撃の高精度化について述べる．提案
手法は，波形中から有用なサイドチャネル情報を含む箇所を効率的に取得するため，従来手法で
は困難な SN比が非常に小さいサイドチャネル信号を取り扱う場合に有効である．また，従来のテ
ンプレート攻撃や Stochasticモデル攻撃と比較して，プロファイリングに要する波形数を削減す
ることが可能である．本稿では，サイドチャネル攻撃標準評価ボード SASEBOに実装した AES
回路を対象とした実験により，提案手法の有効性を評価する．特に，鍵推定率及びプロファイリ
ング精度の向上について考察する．
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Abstract This paper presents an improved side-channel attack using multivariate regression
analysis. The proposed method can acquire waveform points including significant side-channel
information in an effective way, which makes it possible to handle waveform signals with lower
S/N (signal-to-noise ratio) as compared with conventional methods. Our method also reduces
the number of waveforms for profiling with the conventional template and stochastic model
attacks. We demonstrate the performance of our method through some experiments using the
side-channel attack standard evaluation board. In particular, we examine the key extraction
rate and the profiling efficiency.



1 Introduction

A number of side-channel attacks on crypto-
graphic device have been published since Kocher’s
paper [1]. Among these attacks, Template At-
tack [2] and Stochastic Model Attack with pro-
filing phase [3], that are known as profiling at-
tack, have been introduced as a class of the
most efficient attacks. Many works have been
done to different cryptographic devices and al-
gorithms using profiling attacks [4]– [6].

On the other hand, such attacks have some
issues to be considered. First, we have to de-
termine interesting points: the points contain-
ing data-dependent variations. Second, we need
a large number of side-channel information (i.e.
waveforms) to be acquired to build an appro-
priate noise model of physical leakage.

If we choose inadequate interesting points
including non-data dependent points, the ac-
curacy of the attack would be decreased due
to the wrong noise model built in the profiling
phase. In the case of side-channel data with
low S/N ratio, we need more traces for the pro-
filing phase. Many papers discussed the two is-
sues for conventional profiling attacks [4], [7],
[5], [6].

Addressing the two issues, this paper pro-
poses a new type of improved profiling attacks
using multivariate regression analysis. Our anal-
ysis method can acquire the significant points
of waveforms to improve profiling phase. Even
if non-data dependent points are selected as
the interesting points, the adverse effects for
the following key extraction step can be min-
imized. As a result, our method has achieved
the highest efficiency compared with conven-
tional CPA (Correlation Power Analysis) and
profiling attacks. In our experiments, we have
applied our method to four types of side-channel
information with different S/N ratios which
are measured from different locations [8].

2 Conventional Methods

This section describes conventional two profil-
ing attacks: Template Attack and Stochastic
Model Attack. The attacks utilize a reference
device equivalent to a target device to be at-

tacked. We assume that the reference device
can be fully controlled to determine the char-
acteristics of the target device. The attacks
consist of two phases: (i) profiling phase to
learn about the device and (ii) key extraction
phase to detect the secret key. The two phases
for each profiling attack are briefly explained
in the following.

2.1 Template Attack

Assume that a power trace is represented as a
vector t = (t1, t2, · · · , tT ), where T denotes the
length of time instants. The profiling phase,
collects a large number of power traces with
different a plaintext di and a key kj given as

di ∈ {d1, d2, · · · , dD}, (1)
kj ∈ {k1, k2, · · · , kK}, (2)

where D and K denote the number of plain-
texts and key candidates, respectively. Then,
we estimate a mean vector and a covariance
matrix of the multivariate normal distribution
from the power traces with (di, kj). The pair of
the mean vector m and the covariance C is re-
ferred as template, hdi,kj

= (m, C)di,kj
. Given

the power trace t, and a template hdi,kj =
(m, C)di,kj , the key extraction phase computes
the probability density function of the multi-
variate normal distribution as follows :

q = t−m, (3)

p(t; (m, C)di,kj ) =
exp

(
−1

2q
′
C−1q

)
√

(2π)T det(C)
,(4)

where det(C) denotes the determinant of C.
We get the probabilities for every templates (
p(t; (m,C)d1,k1), · · · , p(t; (m, C)dD,kK

) ). We
estimate the correct key kck using the maxi-
mum likelihood principle with the probabili-
ties as follows :

kck = argmax
kj∈k∗

p(t; hdi,kj ), (5)

where k∗ is all possible key candidates.

2.2 Stochastic Model Attack

Assume that a power trace at time t with a
plaintext di and a key k is represented as It(di, k).



Stochastic model attack assumes that the power
trace can be written as the sum of a determin-
istic part and a random part as follows :

It(di, k) = ht(di, k) + Rt, (6)

where ht(di, k) denotes the deterministic part
of the power trace as far it depending on di

and k, and Rt denotes a random part that
does not depend on di and k. The profil-
ing phase is divided into two steps in order
to approximate the two parts. In the first
step, we generate the profile of the determin-
istic part ĥt(di, k) using N1 traces. After hav-
ing determined the approximators ĥt(di, k), we
use a different set of N2 power traces to es-
timate the distribution of the random part.
In order to approximate the distribution, we
first calculate the T -dimensional random vec-
tor R = (R1, R2, · · · , RT ) as follows :

Rt = It(di, k)− ĥt(di, k), (7)

where t = 1, 2, · · · , T . We assume that the
random vector is normally distributed with a
covariance matrix C, which is computed as fol-
lows :

Ci,j = E(RiRj)− E(Ri)E(Rj), (8)

where 1 ≤ i, j ≤ T , and E(X) denotes the
expected value of the variable X.

The key extraction phase obtains another
set of N3 new power traces from the target
device corresponding to known plaintext di ∈
{d1, d2, · · · , dN3} and an estimated key kck. Us-
ing the power traces, a noise vector zi is firstly
computed as follows :

zi = It(di, kck)− ĥt(di, kj), (9)

where kj ∈ {k1, k2, · · · , kK}, and K denotes
the number of key candidates. This vector has
a multivariate normal distribution with a co-
variance matrix C. We can compute the fol-
lowing probabilities :

p
(
zi; ĥt(di, kj)

)
=

exp
(
−1

2z
′
iC

−1zi

)
√

(2π)T det(C)
. (10)

If kck is a correct key, the probability density
function p(zi; ĥt(di, kck)) is assumed to have

the highest probability. The maximum likeli-
hood principle is applied to extract a correct
key kck using all the measured N3 traces as
follows :

kck = argmax
kj∈k∗

ΠN3
i=1p

(
zi; ĥt(di, kj)

)
. (11)

3 Proposed Method

In this section, we first introduce multivari-
ate regression model, and then show our pro-
posed method applied for attacking crypto-
graphic hardware implementations.

3.1 Multivariate Regression Model

Given N observations of P independent (ex-
planatory) variables and a dependent (response)
variable as follows.

Observation 1 : (x1,1, x1,2, · · · , x1,P , y1)
Observation 2 : (x2,1, x2,2, · · · , x2,P , y2)

...
Observation N : (xN,1, xN,2, · · · , xN,P , yN )

Here, xi,j and yi denote the j-th independent
variable and the dependent variable for the i-
th observation, respectively. Let β0, β1, · · · , βP

denotes P +1 unknown parameters (regression
coefficients), then the multivariate regression
model can be written as follows :

yi = β0+β1xi,1+β2xi,2+· · ·+βP xi,P +εi, (12)

where εi denotes the i-th residual part that is
independent and normally distributed.

Let β̂0, β̂1, · · · , β̂P denotes the estimators of
the parameters β0, β1, · · · , βP . For the i-th ob-
servation, the predicted value ŷi is

ŷi = β̂0 + β̂1xi,1 + β̂2xi,2 + · · ·+ β̂P xi,P . (13)

Therefore, the i-th residual is computed as
εi = yi − ŷi. The least squares chooses the
values of the parameters that make the sum
of the squared residuals

∑N
i=1 ε2i as small as

possible.



3.2 Side-channel Attack Based on Mul-
tivariate Regression Model

Our method applies the above multivariate re-
gression model to profiling attacks.

3.2.1 Profiling Phase

The profiling phase defines independent and
dependent variables to build a multivariate re-
gression model.
Define independent variable: We consider
all the encryption/decryption computations to
define the independent variable as a Hamming
distance value. For example, we derive a 128-
bit Hamming distance value from the 16 S-
box computations in AES even though we es-
timate each subkey corresponding to one S-
box. We referred to this value as a simu-
lated value. Let vl

di,k
denotes a Hamming dis-

tance value of the l-th S-box in a N plaintext
di(∈ {d1, d2, · · · , dN}) and a key k. The sim-
ulated value si can be computed as follows :

si =
16∑

l=1

vl
di,k

(14)

Define dependent variables: We refer to
the power trace corresponding to a plaintext
di as ti = {ti,1, ti,2, · · · , ti,T }, where T denotes
the length of the time instants. The traces are
defined as the dependent variables. We select
some time instants from the T -dimensional trace
ti in order to reduce the computational time
and improve the classification rate because the
time instants are not always correlated to the
Hamming distance value. For the selection
of time instants, we calculate a squared Pear-
son correlation between si and ti,t considering
both negative and positive correlation as fol-
lows :

ρ2
t = corr(si, ti,t)2, (15)

where corr(X, Y ) denotes the Pearson correla-
tion value between the variables X and Y . An
adversary select the M(< T ) instants having
the highest ρ2

t . We denote these time instants
as M interesting points.
Multivariate Regression Model: We com-
pute the regression coefficients using multivari-
ate regression analysis, and then generate the

following fitted regression model,

ŝi = β̂0 + β̂1ti,1 + · · ·+ β̂M ti,M , (16)

where is the estimated value of si.

3.2.2 Key Extraction Phase

The key extraction phase measures N power
traces from the target device corresponding
to N plaintexts {d1, d2, · · · , dN} and an esti-
mated key kck. We utilize the regression model
in Eq. (16) to calculate the ŝi. To extract se-
cret key, the Pearson correlation value between
the predicted simulated value ŝi and the Ham-
ming distance value vdi,kj for each key candi-
date kj ∈ {k1, k2, · · · , kK} of a S-Box is calcu-
lated. The correct key kck can be estimated as
follows :

kck = argmax
kj∈k∗

corr(ŝi, vdi,kj ). (17)

4 Experimental Analysis

In this section, we demonstrate the performance
of the proposed attack in comparison with those
of conventional attacks. The Side-channel At-
tack Standard Evaluation Board (SASEBO)
[9] was used for both the target and the refer-
ence devices. Four sets of side-channel wave-
forms (i.e., power and EM waveforms) with
different S/N ratios were measured from an
FPGA implementation of the 128-bit AES (Ad-
vanced Encryption Standard) on the board.
The measurement waveforms were (i) the volt-
age drop across a resistor (power), (ii) the cur-
rent on the attacked power cable (power ca-
ble), (iii) the current on the communication
cable (RS232C cable), and (iv) the magnetic
field around the power cable (antenna). The
more details on the measurement conditions
are described [8].

Figure 1 shows the proposed result using
the four waveform sets, where the classifica-
tion rate indicates the number of s-boxes that
we could distinguish a correct key from all pos-
sible key candidates. If all the subkeys were
obtained, the classification rate is 100. For
comparison, the figure also shows the results
of conventional attacks using the same sets of
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Figure 1: Experimental results of the proposed method with four types of waveforms: (a) voltage
drop across a resistor (power) (b) current on an attached power cable (c) current on an attached
communication cable (d) magnetic field around the power cable

waveforms. For the conventional profiling at-
tacks and the proposed attack, 20,000 traces
and 5 interesting points are used in the profil-
ing phase and other 10,000 traces are used in
key extraction phase. As a result, our method
has the most least number of traces to estimate
all the subkeys of AES in the measurements (i)
and (ii). Even though the final classification
rates of the measurements (iii) and (iv) are not
100 within the 10,000 traces, the rate of our
method were higher than those of conventional
attacks.

Figure 2 shows the average values of clas-
sification rates for the proposed method and
the stochastic model attack, where the hori-
zontal axis is the number of traces used in the
profiling phase and the number of interesting
points are fixed to 5 points. We clearly find
that our method has the higher rate for all
the waveform types than the stochastic model
attack though the stochastic model attack is
known as the most powerful attack which has
the highest profiling efficiency and classifica-
tion rate among the conventional profiling at-
tacks [5]. This result indicates that our method
can be more efficient than the stochastic model
attack in the case that the number of crypto-
graphic operations on the reference device is
severely limited.

Figure 3 shows the average of classification
rates associated with the number of interesting
points, where the number of traces for profil-
ing is 20,000. The result shows that the av-

erages of classification rates for the stochas-
tic model attack decrease when non-data de-
pendent time instants are included in the in-
teresting points as shown in Figs. 3 (a) and
(b). In the proposed method, on the other
hand, the classification rates do not decrease
even though the number of (non-data depen-
dent) time instants increases since such irrele-
vant time instants have a less significant effect
on the regression model. This means that the
proposed method takes less effort to determine
the time instants in order to extract all keys
successfully.

5 Conclusion

This paper proposed an improved side-channel
attack using multivariate regression analysis.
The experimental result showed that the pro-
posed method has a significant advantage for
the number of side-channel traces required to
disclose secret keys as compared with the con-
ventional attacks. We also confirmed that the
profiling efficiency of the proposed method is
higher than that of the stochastic model attack
and the noise distribution can be successfully
profiled even though the measured signals have
significantly low S/N ratios.
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Figure 2: Average classification rate of the proposed method associated with the number of
traces for profiling: (a) voltage drop across a resistor (power) (b) current on an attached power
cable (c) current on an attached communication cable (d) magnetic field around the power cable
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Figure 3: Average classification rate of the proposed method associated with the number of
interesting points: (a) voltage drop across a resistor (power) (b) current on an attached power
cable (c) current on an attached communication cable (d) magnetic field around the power cable
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