もっとも敏感な *k***-CNF**

天 野 - 幸^{†1}

論理関数 $f:\{0,1\}^n \to \{0,1\}$ の感受度とは,一様分布に従って選ばれる入力 x に対する, $f(x) \neq f(x^i)$ を満たす添え字 i の個数の期待値である.ここで x^i は x の i ビット目を反転して得られる系列を表す.各節のリテラルの個数が k 個以下に制限された CNF 式を k-CNF 式と呼ぶ.本発表では,k-CNF 式で表現可能な任意の論理関数の感受度が k 以下であることを示す.k 変数パリティ関数の感受度は k であるから,この上界はタイトである.証明等の詳細については,文献 1) を参照されたい.

Tight Bounds on the Average Sensitivity of k-CNF

KAZUYUKI AMANO^{†1}

The average sensitivity of a Boolean function is the expectation, given a uniformly random input, of the number of input bits which when flipped change the output of the function. A k-CNF formula is a formula in conjunctive normal form (CNF) containing only clauses of length at most k. In this talk, we show that every Boolean function represented by a k-CNF has average sensitivity at most k. This bound is tight since the parity function on k variables has average sensitivity k. This work has appeared in 1).

参考文献

1) Kazuyuki Amano, Tight Bounds on the Average Sensitivity of k-CNF, Theory of Computing (http://theoryofcomputing.org), Vol. 7, Article 4, pp. 45-48 (2011)

Depertment of Computer Science, Gunma University

^{†1} 群馬大学 大学院工学研究科