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時間限定ビザンチン故障に対する
故障封じ込め自己安定リーダー選挙プロトコル

山内 由紀子†1 増 澤 利 光†2 Doina Bein†3

時間限定ビザンチン故障は有限回の任意の（悪意のある）振る舞いを行う．本論文
では，時間限定ビザンチン故障に対して故障封じ込めと自己安定の 2 つの性質を保
証するリーダー選挙プロトコルを提案する．はじめに，時間限定ビザンチン故障が挿
入する偽の情報が拡散する範囲を抑制する pumping という通信手法を提案する．提
案するリーダー選挙プロトコルは pumpingを用いてリーダー選挙を行うことにより，
故障の影響を受けるプロセスの数を時間限定ビザンチン故障の任意の振る舞いの回数
にのみ依存した数に抑える．
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In this paper, we propose a novel adaptive fault-containment method against
time-bounded Byzantine faults. A time-bounded Byzantine fault behaves cor-
rectly after it consumes a finite number of malicious actions. We propose a
self-stabilizing and fault-containing leader election protocol that is resilient to
time-bounded Byzantine faults. The proposed protocol is based on a novel in-
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1. Introduction

A distributed system consists of a collection of processes that communicate with each

other so that the entire system satisfies a given specification. Fault tolerance is one of

the main challenges in the design of distributed systems because a distributed system

is more prone to faults, such as memory crashes at processes and malicious users, as

the number of processes in the entire system increases.

A transient fault changes the memory contents at processes arbitrarily. A self-

stabilizing protocol3) promises that starting from any arbitrary initial configuration,

the system eventually satisfies its specification (i.e., convergence) and after that, it

never violates its specification. Though self-stabilization was originally designed for

autonomous adaptability against transient faults, many papers try to extend the target

fault model to the Byzantine fault that allows arbitrary (malicious) actions at faulty

processes4),5),7). The Byzantine fault model is generally classified as permanent faults.

In the context of self-stabilization, researchers have tried to contain the effect of per-

manent Byzantine faults to a constant distance from Byzantine faults, and make other

processes outside the distance achieve self-stabilization. However, Nesterenko et al.

showed that for global problems such as the leader election problem and the spanning

tree construction problem, it is impossible to contain the effect of permanent Byzantine

faults to a constant distance7).

We propose a weaker type of Byzantine fault model, called time-bounded Byzantine

fault (TB-Byzantine fault, for short) that consumes only a finite number of malicious

actions. It is obvious that a self-stabilizing protocol eventually satisfies its specifica-

tion after the finite number of malicious actions. We focus on the fault-containment

against TB-Byzantine faults and propose an adaptive containment method that guaran-

tees that the scale of perturbation caused by Byzantine faulty processes depends on the

number of malicious actions at Byzantine processes. We propose a self-stabilizing and

TB-Byzantine fault resilient fault-containing protocol for the leader election problem

which is one of the most important problems in design of distributed systems.

Related work. The difficulty in combining self-stabilization and Byzantine faults is

how to obtain and keep consensus among correct processes in the presence of Byzantine
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faults because Byzantine faulty processes take malicious actions during and after conver-

gence. For local problems, Nesterenko et al. proposed the notion of strict stabilization

that contains the effect of a Byzantine faulty process to a constant distance, called con-

tainment radius, and the remaining processes realize self-stabilization7). They proposed

a strict stabilizing vertex coloring protocol and a strict stabilizing dining philosophers

protocol. For global problems, Masuzawa et al. proposed the notion of strong sta-

bilization by relaxing the requirements of strict stabilization: permanent influence of

Byzantine processes is contained within a contamination radius and temporary influence

is allowed to spread over the entire network5). They proposed a strong stabilizing tree

orientation protocol5). However, these papers focus on permanent Byzantine faults.

It has been pointed out that traditional permanent Byzantine fault model is too ex-

treme and several weaker Byzantine fault models are proposed. One is Byzantine with

crash (for the dining philosopher problem6) and for the consensus problem8)), and the

other is Byzantine with recovery (for the consensus problem2) and the clock synchroniza-

tion problem1)). However, they do not focus on self-stabilization and fault-containment

against malicious actions.

Our contribution. In this paper, we first propose a novel bounded Byzantine fault

model, called time-bounded Byzantine fault. Then, we propose a global information dif-

fusion method pumping that contains the effect of TB-Byzantine processes in the sense

that the number of processes that receives fictitious information depends on the num-

ber of malicious actions at TB-Byzantine processes. Based on the pumping method,

we propose a self-stabilizing and fault-containing leader election protocol against TB-

Byzantine faults.

2. Preliminary

2.1 System model

A system is represented by a graph G = (V, E) where the vertex set V =

{P0, P1, · · · , Pn−1} is the set of processes and the edge set E ⊆ V ×V is the set of bidi-

rectional communication links. Two processes Pi and Pj are neighboring if (Pi, Pj) ∈ E

(0 ≤ i, j ≤ n − 1). The distance between two processes is the length of the shortest

path between the two.

Each process Pi has a unique ID denoted by IDi and maintains a set of local vari-

ables. A subset of the local variables at each process is called the output variables. The

state of a process is an assignment of values to all its local variables. We adopt the state

reading model for communication among processes. Process Pi can read the values of

the local variables at its immediate neighbors, while Pi can change only the values of

its own local variables.

Each process Pi changes its state according to a protocol that consists of a finite set

of guarded actions of the form 〈label〉 : 〈guard〉 → 〈action〉. A guard is a Boolean ex-

pression involving the local variables of Pi and of its neighboring processes. An action

is a statement that changes the values of the local variables at Pi. A guard is enabled

if it is evaluated to true. A process with an enabled guard is called enabled.

A configuration of a system is an assignment of values to all local variables of all

processes. A schedule of a distributed system is an infinite sequence of sets of pro-

cesses. Let S = R1, R2, · · · be a schedule where Ri ⊆ V holds for each i (i ≥ 1). For a

process set R and two configurations σ and σ′, we denote σ
R−→ σ′ when σ changes to

σ′ by executing an action of each process in R simultaneously. An infinite sequence of

configurations E = σ0, σ1, · · · is called an execution from an initial configuration σ0 by

schedule S if σi
Ri+1

−−−→ σi+1 holds for each i ≥ 0. We say a process in Ri+1 is activated

in configuration σi.

We adopt the distributed daemon as a scheduler that allows any subset of processes

to execute actions simultaneously. If a selected process has no enabled guard then it

does not change its state. If a selected process has multiple enabled guards, then the

process executes the action corresponding to only one of the enabled guards.

A distributed daemon allows asynchronous executions. In an asynchronous execu-

tion, the time is measured by rounds. Let E = σ0, σ1, · · · be an asynchronous execution

by schedule S = R1, R2, · · · . The first round σ0, σ1, · · · , σj is the minimum prefix of E

such that
∪j

i=1
Ri = V . The second round and the latter rounds are defined recursively

by applying the definition of the first round to the remaining suffix E′ = σj , σj+1, · · ·
and S′ = Rj+1, Rj+2, · · · .

A Byzantine faulty process behaves arbitrarily and independently from the protocol.

A state change at a process is a malicious action if the state change does not conform
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to the protocol, otherwise a normal action. When a Byzantine process Pi is activated,

Pi consumes one normal action or one malicious action. If a Byzantine process does

not change its state by ignoring the behavior of the protocol when it is activated, Pi

consumes one malicious action.

A time-bounded Byzantine fault is a subclass of the Byzantine fault model such that

the number of malicious actions at each Byzantine faulty process is finite. An execution

E = σ0, σ1, · · · is (f, k)-faulty if the number of Byzantine processes in E is f and the

number of malicious actions at each Byzantine process is at most k. For an (f, k)-faulty

execution, a Byzantine process is called k-TB-Byzantine process. An (f, k)-faulty exe-

cution contains at most f · k malicious actions. An execution is correct if it contains no

malicious action.

2.2 Self-stabilization and fault-containment

Self-stabilization promises autonomous adaptability against any finite number of any

type of transient faults by considering the configuration obtained by the last fault as

the initial configuration. Hence, the stabilization in the presence of a bounded number

of malicious actions (i.e., TB-Byzantine processes) is clear. However, self-stabilization

guarantees nothing in the presence of malicious actions during and after convergence,

and even for a single malicious action in a legitimate configuration, the effect may

spread over the entire network.

A problem (task) T is defined by a validity predicate on output variables at all pro-

cesses. Intuitively, a configuration of a protocol is valid if it satisfies the validity pred-

icate of T . However, the protocol may have local variables other than the output

variables, and the values of these variables may introduce updates of output variables.

Hence, we define a legitimate configuration σ of a protocol PT as the one such that

any configuration (including σ itself) appearing in any correct execution starting from

σ satisfies the validity predicate of T . The set of legitimate configurations are denoted

by CL(PT ). (We omit P and T when they are clear.)

Definition1 (Self-stabilization) Protocol PT is self-stabilizing if the system even-

tually reaches a legitimate configuration of PT in any correct execution starting from

any configuration.

The convergence time is the maximum (worst) number of rounds that is necessary for

the system to reach a legitimate configuration in any correct execution starting from

any configuration.

We consider self-stabilization and fault-containment in the presence of malicious ac-

tions. As stated above, any self-stabilizing protocol eventually reaches a legitimate

configuration in any (f, k)-faulty execution if f and k are finite. However, malicious

actions during convergence may delay the convergence to a legitimate configuration.

Also, malicious actions after convergence (i.e., malicious actions in a legitimate con-

figuration) may perturb the system. To measure the disturbance and perturbation by

malicious actions, we introduce the disruption and the perturbation as follows. For

an (f, k)-faulty execution E = σ0, σ1, · · · , the disruption is the minimal prefix of E,

denoted by E′ = σ0, σ1, · · ·σj such that σj is a legitimate configuration. The disruption

of E represents the convergence in spite of or after malicious actions. If E starts from

a legitimate configuration σ0 immediately followed by at least one malicious action, we

define perturbation as follows. The perturbation of E is the minimal prefix of E, denoted

by E′ = σ0, σ1, · · ·σj (j ≥ 1) such that σj is a legitimate configuration. A disruption

(perturbation) is called (f ′, k′)-disruption ((f ′, k′)-perturbation, respectively) if it con-

tains malicious actions of f ′ processes and at most k′ malicious actions for each of the

TB-Byzantine processes. Hence, in an (f ′, k′)-disruption and an (f ′, k′)-perturbation,

there are at most f ′ · k′ malicious actions.

An (f, k)-faulty execution can contain an (f ′, k′)-disruption for f ′ ≤ f and k′ ≤ k′.

The (f ′, k′)-disruption time is the maximum (worst) number of rounds of any (f ′, k′)-

disruption. We note that when f ′ · k′ = 0, the execution is correct and the disruption

time is equal to the convergence time.

For an (f ′, k′)-perturbation E′, we say that a correct process is perturbed in E′ if

the process changes its output in E′. The (f ′, k′)-perturbation number is the maxi-

mum (worst) number of perturbed processes in any (f ′, k′)-perturbation. The (f ′, k′)-

perturbation time is the maximum (worst) number of rounds of any (f ′, k′)-perturbation.

Note that we define the perturbation number only with the output variables.

Definition2 (TB-Byzantine resilient fault-containment) A self-stabilizing

protocol P is TB-Byzantine resilient fault-containing if (f ′, k′)-perturbation number

depends on min{f ′ · k′, n} and/or (f ′ · k′)-perturbation time depends on min{f ′ · k′, n}.
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3. Proposed method

The leader election problem is to make all processes in the system recognize a single

process, called leader. The proposed leader election protocol is based on information

diffusion technique that is resilient to TB-Byzantine faults. Each process diffuses its ID

and stores received IDs, then chooses the minimum ID among the locally stored IDs.

For simplicity, we consider an oriented ring G = (V, E) of n processes. Each process

Pi in V has two neighbors Pi−1 mod n and Pi+1 mod n (i ∈ [0..n − 1])?1. Pi−1 (Pi+1) is

called the predecessor (the successor, respectively) of Pi. The output variable at each

process is the leader’s ID variable. Additionally, each process maintains a local table

to store the received IDs. To select the minimum ID among existing processes, it is

necessary that each process stores IDs of all existing processes and does not store any

fictitious IDs (i.e., IDs of non-existent processes).

An arbitrary initial configuration allows processes store initial fictitious IDs. To

achieve self-stabilization, each process should remove fictitious IDs and diffuse its ID

to all other processes. Each process Pi diffuses its ID and distance value (0 at Pi) and

each time the ID is forwarded by some process, the distance value is incremented. If a

fictitious ID `′ is stored at all processes, there exists at least one process Pj that has the

locally minimum distance value but IDj 6= `′. Otherwise, it is detected at least at one

process by each process comparing the list of locally stored IDs with the predecessor.

Then, by making this process invoke a removal action, this fictitious ID is removed from

the entire network.

A malicious action at each TB-Byzantine process can perturb the entire network in

two ways. First, a TB-Byzantine process can stop forwarding the smallest ID that

should be chosen as the leader’s ID. This may delay the convergence, however, because

the number of malicious actions at each TB-Byzantine process is finite, eventually all

IDs are forwarded and each process chooses the leader’s ID from a correct set of IDs.

Secondly, a TB-Byzantine process can diffuse fictitious IDs. If one of the fictitious

IDs is smaller than any IDs of existing processes, all processes choose the ID. Our basic

?1 For the rest of the paper, we omit modn and Pi means Pi mod n.

strategy to tolerate TB-Byzantine faults is to exhaust TB-Byzantines by making them

consume malicious actions to perturb other processes. We introduce a mechanism called

pumping that makes each process keep on changing its state to push an ID further and

further. More specifically, each process should change its state h times in order to

diffuse an ID to all process at distance at most h.

To elect a correct leader, each process should generate at least n waves to diffuse

its ID to all other processes. We also use this pumping method to remove fictitious

IDs because removing locally stored IDs can introduce global perturbation. Consider a

protocol that allows each process to discard a locally stored ID if its predecessor does

not store the same ID. Let an ID ` be locally stored at all processes. If one process

Pi removes ID `, then its successor Pi+1 removes `. After that, Pi+2 removes `. This

behavior becomes global and starts a removal wave that spreads fast over the entire

system.

Finally, after all ID diffusions are finished, the locally stored minimum ID is selected

at each process.

In the following, we fist show the pumping protocol PUMP in Section 3.1 and the

proposed leader election protocol PLE in Section 3.2.

3.1 Pumping protocol PUMP
Process Pi is called source for the diffusion of IDi and process Pi−1 is called tail.

Processes Pi+1, Pi+2, · · · , Pi−2 are called forwarders. The pumping mechanism for each

Pi is implemented with a sequence of waves that consists of a tuple of IDi and a TTL

value. The source process repeatedly generates waves with incrementing the TTL by

one. (The initial wave has TTL of one.) Hence, Pi has to generate a sequence of h

waves with incrementing the TTL values to diffuse IDi to process Pi+h. Forwarders

forward a wave with decrementing the TTL value until the TTL value reaches zero.

The diffusion is finished when a wave reaches the tail Pi−1 and the acknowledgment

wave is forwarded from Pi−1 to Pi through all the forwarders.

The pumping protocol called PUMP is shown as Protocol 3.1. For the diffusion

of ID `, the source, the forwarders, and the tail is defined by the three predicates

IsSource(`), IsForwarder(`), and IsTail(`). We assume that during an execution of

PUMP, IsSource(`) (IsTail(`)) continuously holds at the source (tail, respectively)
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Protocol 3.1 PUMP(Ti, IsSourcei(`), IsForwarderi(`), IsTaili(`)) at Pi for ID `

Parameters at Pi

Local variable

Ci(`): the counter value of entry (`, Ci(`)) in Ti

Output at Pi

Ci(`) in Ti.

Predicates at Pi

IsSourcei (`): Boolean predicate that takes true if Pi is the source for ID `, otherwise false.

IsForwarderi (`): Boolean predicate that takes true if Pi is a forwarder for ID `,

otherwise false.

IsTaili (`): Boolean predicate that takes true if Pi is the tail for `, otherwise false.

CntInconsi(`) = (Ci(`) ≥ 0) ∧ (Ci+1(`) ≥ 0) ∧ ¬(1 ≤ Ci(`) − Ci+1(`) ≤ 2)

AckInconsi(`) = (Ci−1(`) = φ) ∧ {(Ci(`) 6= φ) ∨ (Ci(`) = undef)}

Actions at process Pi

S1 IsSourcei (`) ∧ [CntInconsi(`) ∨ (Ci(`) = ⊥) ∨ (Ci(`) = undef)∨
∨(Ci+1(`) = ⊥) ∨ (Ci+1(`) = undef)] ∨ {(Ci(`) = φ) ∧ (Ci+1(`) 6= φ)}]

−→ create((`, 1), Ti) //reset pumping

S2 IsSourcei (`) ∧ (Ci(`) = 0) −→ create((`, 1), Ti) //restart waves

S3 IsSourcei (`) ∧ (Ci(`) ≥ 0) ∧ (Ci+1(`) ≥ 0) ∧ (Ci(`) − Ci+1(`) = 1)

−→ increment(Ci(`), Ti) //generate a new wave by incrementing TTL

S4 IsSourcei (`) ∧ (Ci(`) > 0) ∧ (Ci+1(`) = φ)

−→ ack(Ci(`), Ti) // receipt of acknowledgment

S5 IsForwarderi (`) ∧ (Ci−1(`) = 1) ∧ (Ci(`) 6= 0)

−→ create((`, 0), Ti) // become a head of a wave

S6 IsForwarderi (`) ∧ [{(Ci−1(`) ≥ 0) ∧ (Ci(`) ≥ 0) ∧ (Ci+1(`) ≥ 0)∧
(Ci−1(`) − Ci(`) = 2) ∧ (Ci(`) − Ci+1(`) = 1)} ∨ {(Ci−1(`) = 2) ∧ (Ci(`) = 0)}]

−→ increment(Ci(`), Ti) //forward a wave

S7 IsForwarderi (`) ∧ [CntInconsi(`) ∨ AckInconsi(`)∨
{(Ci(`) = 0) ∧ (Ci+1(`) = φ)} ∨ {(Ci(`) > 1) ∧ (Ci+1(`) = undef)}]

−→ reset(Ci(`), Ti) // generate reset signal

S8 IsForwarderi (`) ∧ (Ci(`) 6= 0) ∧ (Ci(`) 6= 1) ∧ (Ci+1(`) = ⊥)

−→ create((`, ⊥), Ti) // forward reset signal

S9 IsForwarderi (`) ∧ (Ci−1(`) > 0) ∧ (Ci(`) > 0) ∧ (Ci+1(`) = φ)

(1 ≤ Ci−1(`) − Ci(`) ≤ 2)

−→ ack(Ci(`), Ti) //forward acknowledgment

S10 IsTaili (`) ∧ Ci−1(`) = 1 ∧ Ci(`) 6= φ −→ create((`, φ), Ti) // become a head

S11 IsTaili (`) ∧ [CntInconsi(`) ∨ AckInconsi(`) ∨ {(Ci−1(`) = ⊥) ∧ (Ci(`) 6= ⊥)}
−→ ack(Ci(`), Ti) //generate reset signal

process.

PUMP has four parameters: Ti is a local table at Pi to store the received wave,

and there are three predicates IsSourcei(`), IsForwarderi(`), and IsTaili(`) to define

the source, the forwarders, and the tail for ID `. We later show how we define these

predicates when we use PUMP in PLE .

Each entry of Ti is in the form of (`, c) where ` is an ID and c is the counter (i.e.,

TTL) of the latest wave?1. For any entry (`, c) ∈ Ti, the second element is denoted by

Ci(`), i.e., for (`, c) ∈ Ti, Ci(`) returns c. The counter value Ci(`) returns either a nat-

ural number, ⊥, φ or undef. The value ⊥ is a reset signal, and φ is an acknowledgment

signal. If Ti does not have an entry with ID `, Ci(`) returns undef. The output variable

of PUMP for ID ` at process Pi is Ci(`).

There are five operations for each entry in Ti: create, increment, reset, ack and com-

parison. Operation create((`, c), Ti) creates an entry (`, c) if Ti does not have an entry

with ID `, otherwise it sets the value of Ci(`) to c. Operation increment(Ci(`), Ti)

increments the value of Ci(`) if Ci(`) is in Ti. Operation reset(Ci(`), Ti) assigns ⊥ to

Ci(`) if Ci(`) is in Ti. Operation ack(Ci(`), Ti) assigns φ to Ci(`) if Ci(`) is in Ti.

The comparison operation on the value of Ci(`) is also possible as long as Ci(`) takes

an integer. When Ci(`) takes an integer and compared with an integer, it returns the

result, otherwise, false. We say the counter value Ci(`) at Pi is consistent if and only

if Ci(`) − Ci+1(`) = 1 or 2 holds, otherwise inconsistent. A sequence of consistent

processes starting from a source process is carrying waves and the head of the wave is

the farthest process whose TTL value is 0.

A source process Ps starts pumping with a wave (`, 1) (S1 or S2). A wave (`, j) gen-

erated at Ps is forwarded through Ps+1, Ps+2, · · · , Ps+j (s + j ≤ t) by each forwarder

decrementing the TTL of the wave (S5 and S6). Ps continues to generate waves with

incrementing TTL values (S3). When a wave reaches the tail process Pt, Pt gener-

ates an acknowledgement signal (S11), and the acknowledgment wave is returned to Ps

through forwarders (S9), and received by Ps (S4). When a forwarder or the tail finds

inconsistency among the counter values at its predecessor or successor, it generates a

reset signal (S7 or S11), and the reset signal is returned to Ps through forwarders (S8).

When Ps receives a reset wave, it restarts pumping with a wave (`, 1).

PUMP guarantees fictitious diffusion containment property, i.e., in any (f, k)-

perturbation, any fictitious ID injected by a TB-Byzantine process Pj is forwarded

?1 For simplicity, we assume each entry in Ti has a unique ID value. Hence, for any ` if (`, c) in

Ti, no entry (`, c′) with c 6= c′ exists in Ti. This is a data structure consistency problem and a

solution for it can be easily implemented and applied to Ti. We do not address this problem in

the paper.
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to at most k processes, Pj , Pj+1, · · · , Pj+k. The pumping mechanism makes each for-

warder forward a wave with TTL of c only after it forwards a wave with TTL of (c−1).

Hence, a source process has to start with a wave with TTL 0 when it starts to diffuse its

ID. This property forces a TB-Byzantine process to consume malicious actions during

diffusion of fictitious IDs and in any k-TB-Byzantine process can diffuse fictitious IDs

to at most k correct processes.

A configuration is legitimate for PUMP for ID `, if the following predicate

LPPUMP(`) holds at any process Pi in V :

LPPUMP(`) ≡
∀i : s ≤ i ≤ t s.t. IsSources(`) = true and IsTailt(`) = true : Ci(`) = φ

3.2 Leader election protocol PLE
The proposed leader election protocol PLE uses PUMP to diffuse IDs and to remove

fictitious IDs. The leader election protocol PLE is shown in Protocol 3.2.

Each process Pi maintains the output variable LID i and two tables of received waves:

the diffusion table DfTi and the removal table RmTi . The diffusion table DfTi is used

to diffuse IDs of processes and the removal table RmTi is used to remove IDs. PLE ex-

ecutes PUMP for these two tables concurrently. A wave diffused with diffusion tables

is called a diffusion wave and a wave diffused with removal tables is called a removal

wave. A source for diffusing an ID (removal of an ID) is called diffusion source (removal

source, respectively). We add an remove operation remove(`, DfTi) (remove(`, RmTi))

on each entry of DfT (RmT , respectively) that removes the entry with ID `.

To remove the initial fictitious IDs, an ID is diffused with the distance from the

source. Each entry of DfTi is a triple (`,DDi(`),DCi(`)) where DDi(`) is the distance

value and DCi(`) is the counter value for ID `. The value of DDi(`) takes (i − j) for

Pj where IDj = `. We replace the create operation and increment operation defined in

Section 3.1 as follows: Operation create((`, c), Ti) is replaced with create((`, c),DfTi)

that

• When c is 1 or ⊥, creates an entry (`, 0, c) in DfTi .

• When c is 0 or φ, creates an entry (`,DDi−1 (`) + 1, c) in DfTi .

Operation increment(Ci(`)) is replaced with increment(DCi(`)) that increments

DCi(`) by one and changes the value DDi(`) to DDi−1 (`) + 1.

Protocol 3.2 PLE at Pi

Local variables at Pi

LIDi: leader’s ID

DDi(`): the distance value of entry of ID ` in DfTi

DCi(`): the counter value of entry of ID ` in DfTi

RCi(`): the counter value of entry of ID ` in RmTi

Output variable at Pi

LIDi

Predicates at Pi

IsDSi(`) ≡ ` = IDi

IsDFi(`) ≡ ` 6= IDi ∧ IDi+1 6= ` ∧ (`, DDi−1(`), DCi−1(`)) ∈ DfTi−1

IsDT(`) ≡ IDi+1 = `

IsRSi(`) ≡ {DCi−1(`) = undef ∧ (`, DDi−1(`), DCi(`)) ∈ DfTi ∧ ` 6= IDi}∨
{` 6= IDi(`, DDi−1(`), DCi−1(`)) ∈ DfTi−1 ∧ (`, DDi(`), DCi(`)) ∈ DfTi∧
(`, DDi+1(`), DCi+1(`)) ∈ DfTi+1 ∧ DDi (`) < DDi−1 (`)∧
DDi (`) < DDi+1 (`)}

IsRFi(`) ≡ (`, DDi−1(`), DCi−1(`)) ∈ DfTi−1 ∧ (`, DDi(`), DCi(`)) ∈ DfTi∧
(`, DDi+1(`), DCi+1(`)) ∈ DfTi+1

IsRT(`) ≡ {(`, DDi(`), DCi(`)) ∈ DfTi ∧ DCi+1(`) = undef}∨
{ (`, DDi−1(`), DCi−1(`)) ∈ DfTi−1 ∧ (`, DDi(`), DCi(`)) ∈ DfTi∧
(`, DDi+1(`), DCi+1(`)) ∈ DfTi+1 ∧ (RCi−1(`) = 0)}

Actions at process Pi

S1 true −→
∀` execute PUMP(DfTi , IsDSi(`), IsDFi(`), IsDTi(`)) // Diffusion wave

S2 ∃` 6= IDi : DCi−1(`) = undef ∧ (`, DDi(`), DCi(`)) ∈ DfTi ∧ DCi+1(`) = undef

−→ remove(`, DfTi ); remove(`, RmTi ) // Discarding locally

S3 ¬{∃` 6= IDi : DCi−1(`) = undef ∧ (`, DDi(`), DCi(`)) ∈ DfTi ∧ DCi+1(`) = undef}
−→ ∀` 6= IDi execute PUMP(RmTi , IsRSi(`), IsRFi(`), IsRTi(`)) // Removal wave

S4 ∃` 6= IDi : RCi−1(`) = φ ∧ RCi(`) = φ ∧ RCi+1(`) = undef −→
remove(`, DfTi ); remove(`, RmTi) // Discarding fictitious IDs

S5 ∀(`, DDi(`), DCi(`)) ∈ DfTi : DCi(`) = φ −→
LIDi = min{`|(`, DDi(`), DCi(`)) ∈ DfTi} // Selecting leader’s ID

An entry in RmTi is a tuple denoted by (`,RCi(`)).

In PLE , each process Pi executes PUMP in S1 for diffusing IDi and also in S3 for

removal waves. The source, forwarder, and the tail for diffusion waves are defined by

the three predicates IsDS i(`), IsDF i(`), and IsDT i(`). IsDS i(`) is evaluated to true

if IDi = ` holds, i.e., Pi is the source of IDi. IsDT i(`) is evaluated to true at Pi−1.

Figure 1 shows an example of ID diffusion on a ring of six processes P0, P1, · · · , P5.

Processes concurrently diffuse their IDs downstream.

The source, forwarder, and the tail for removing waves are defined by the three

predicates IsRS i(`), IsRF i(`), and IsRT i(`). Process Pi is the source for removal of ID

` 6= IDi when it finds it stores (`, DD(i)(`), DCi(`)) while its predecessor does not store
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Tail Source(ID0, 0, 0)(ID0, 0, 1)(ID0, 0, 2) (ID0, 1, 0)(ID0, 1, 1)(ID0, 0, 5) (ID0, 2, 0) (ID0, 1, 4) (ID0, 2, 3)(ID0, 5, 0)

P2P0 P1Time P5 P3P4
P0
P3

P1P5
P2P4

ID0 = 8 ID1 = 34
ID2 = 3

ID5 = 21
ID4 = 14 ID3 = 9

(8, 0, 2) (34, 0, 3)

(9, 0, 3)(14, 0, 4)
(21, 0, 2)

(3, 0, 5)
(a) Diffusion waves generated at process P0 (b) Concurrent diffusion waves

図 1 Diffusion waves on a ring of six processes in PLE

(`, DDi−1(`), DCi−1(`)) or when it finds its distant value is locally minimal. Process Pi

becomes the tail for removal of ID ` when it stores (`, DDi(`), DCi(`)) while DCi+1(`)

is undef at its successor Pi+1 or its successor is a source of a removal wave. After the

diffusion of removal waves for ID ` is finished, ID ` is removed by the execution of S4

at the tail, each forwarder, and the source. When the fictitious ID is stored locally, it

is removed by the execution of S2.

The leader’s ID variable is changed by the execution of S5 only when the diffusions

of IDs are finished.

A configuration is legitimate for PLE , if the following predicate LPPLE holds at any

process Pi in V :

LPPLE ≡ {LID i = min{ID`|P` ∈ V )}} ∧ {∀Pj ∈ V : DCi(IDj) = φ} ∧
{∀(`, DDi(`), DCi(`)) ∈ DfTi : ∃Pj ∈ V : IDj = `}a

4. Correctness proof

We present the sketch of the correctness proofs and performance evaluation of PUMP
and PLE . PUMP guarantees self-stabilization and fictitious diffusion containment for

a given ID `. Based on these properties of PUMP, PLE guarantees self-stabilization

and TB-Byzantine resilient fault-containment.

We first show self-stabilization of PUMP. In the following, we focus on executions

of PUMP for an ID `, the source process Ps, and the tail process Pt for `.

During the convergence, there are three types of waves, diffusion waves, reset waves,

and acknowledgment waves. Until the system reaches a legitimate configuration, at least

one of the three waves is forwarded in every round. Hence, after the first 2(t − s) − 1

rounds, Ps receives no more reset signal. Then, the source process keeps on generating

waves and eventually the diffusion is completed. Because the forwarding of waves is

pipelined, it takes all the diffusion waves to be forwarded at most 2(t− s)− 1 rounds in

a correct execution. After that, the acknowledgment signal is forwarded from the tail

to the source through forwarders.

Theorem1 PUMP is self-stabilizing and for diffusion from Ps to Pt, the conver-

gence time is 5(t − s) − 2 rounds.

The propagation of reset signal and acknowledgment signal is implemented with fast

waves that are forwarded immediately to the neighbors. On the other hand, the diffu-

sion of IDs is implemented with slow waves that the source should keep on generating

waves with incrementing the TTL value and the forwarders allow these waves to prop-

agate in the FIFO order. To diffuse a fictitious ID to k′ processes, a TB-Byzantine

process should generate a sequence of waves with TTL values of 1, 2, · · · , k′. It requires

k′ malicious action at the TB-Byzantine process. Hence, a k′-TB-Byzantine process

diffuses fictitious IDs to at most k′ correct processes.

Theorem2 PUMP has the property of fictitious diffusion containment.

Then, we show the self-stabilization and TB-Byzantine resilient fault-containment of

PLE . PUMP does not remove fictitious IDs after it is propagated to a small number

of perturbed processes. By using PUMP for diffusion waves and removal waves, PLE
achieves self-stabilization and fault-containment for the leader election problem.

For an existing process Pi, the diffusion source does not change during any execution.

Hence, until the diffusion of IDi is completed, PUMP continuously generates waves

for IDi and IDs of existing processes are eventually stored at diffusion tables at all

processes by the execution of PUMP.
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For each fictitious ID, the source process for removal are fixed in the first n rounds.

We consider a maximum sequence of processes Ps′ , Ps′+1, · · · , Pt′ where each process

stores an entry for ` in its diffusion table. Maximality means, Ps′−1 and Pt′+1 do not

store an entry for ` in their diffusion tables or Ps′−1 = Pt′ . After the first n rounds,

we have at least one removal source for `. If all processes stores ` in its diffusion table,

there exists at least one process Pj that has the locally minimum distance value for `

but IDj 6= `, otherwise, there exists at least one process whose predecessor does not

store the entry for ` in its diffusion table. In both cases, the removal sources and tails

are fixed in the first n rounds. After that, PUMP guarantees that eventually removal

waves are completed and all processes remove the entry for ` by the execution of S3.

Consequently, all fictitious IDs are eventually removed. And the leader ID is selected

from a correct list of locally stored IDs at each process.

Theorem3 PLE is self-stabilizing.

Process Pi is perturbed when the process changes LIDi since the output variable of

PLE is LIDi. PLE allows each process to change its LID only when all diffusion waves

are locally completed. Hence, to make a correct process change its LID, it is necessary

that at least two TB-Byzantine processes cooperate to finish the diffusion or removal

using PUMP. Consequently, from Theorem 2, at most (f ′ − 1)k′ processes change

their LID values during (f ′, k′)-perturbation.

After the final malicious action in the perturbation, PLE diffuses IDs of existing pro-

cesses and removes fictitious IDs. All these correcting actions progress concurrently,

however, S5 allows each process to change its LID value only after all the diffusion is

completed locally. Hence, for any (f ′, k′)-perturbation, the number of perturbed pro-

cesses is at most min{(f ′−1)k′, n}. After the last malicious action, the diffusion source

of a removed ID starts diffusion of its ID with a wave of TTL 1 and the perturbation

time depends on the convergence time of PLE .

Theorem4 PLE is TB-Byzantine resilient fault-containing and the (f ′, k′)-

perturbation number is min{f ′ ·k′, n}. The (f ′, k′)-perturbation time is (min{f ′ ·k′, n}+

1)(5n − 2) rounds.

5. Conclusion

In this paper, we introduced a novel fault model called TB-Byzantine fault and pro-

posed an adaptive fault-containment method against TB-Byzantine faults for the leader

election problem. Though the perturbation number of the proposed protocol is bounded

by the number of malicious actions during a perturbation, the time complexity depends

on the number of processes in the entire system. Our future work is to develop a more

efficient self-stabilizing and fault-containing technique against TB-Byzantine faults.
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