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Node-perturbation learning (NP-learning) is a kind of statistical gradient de-
scent algorithm that estimates the gradient of an objective function through ap-
plication of a small perturbation to the outputs of the network. It can be applied
to problems where the objective function is not explicitly formulated, including
reinforcement learning. In this paper, we show that node-perturbation learning
can be formulated as on-line learning in a linear perceptron with noise, and we
can derive the differential equations of order parameters and the generalization
error in the same way as for the analysis of learning in a linear perceptron
through statistical mechanical methods. From analytical results, we show that
cross-talk noise, which originates in the error of the other outputs, increases
the generalization error as the output number increases.

1. Introduction

Learning in neural networks 1) can be formulated as optimization of an objective
function that quantifies the system’s performance. This is achieved by following
the gradient of the objective function with respect to the tunable parameters of
the system. This optimization is computed directly by calculating the gradient
explicitly and updating the parameters by a small step in the direction of the
locally greatest improvement. However, computing a direct gradient to follow
can be problematic. For instance, reinforcement learning has no explicit form of
objective function, so we cannot calculate the gradient.

A stochastic gradient-following method to estimate gradient information is pro-
posed for problems where a true gradient is not directly given. Node-perturbation
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learning (NP-learning) 2),3) is one of the stochastic learning algorithms. NP-
learning estimates the gradient of an objective function by using the change in
the objective function in response to a small perturbation. NP-learning can be
formulated as reinforcement learning with a scalar reward, and all the weight
vectors are updated by using the scalar reward while the gradient method uses
the reward vector. Hence, as well as being useful as a neural network learning
algorithm, NP-learning can be formulated as reinforcement learning 2),4) or it can
be used in a brain model 5),6).

On-line learning in a perceptron has been analyzed by many researchers using
statistical mechanics methods and the exact behavior of the system has been
depicted 7)–12). The network used in NP-learning has several outputs, each of
which is a learning agent. The agent is treated as a simple linear perceptron 3).
The objective function of NP-learning is the total error of the agents. The error
is distributed according to the quantity of noise added to each output. When the
output number is one, NP-learning is the same as on-line learning in a perceptron
using a gradient descent algorithm (linear perceptron learning). When the output
number is more than two, NP-learning can formulated as on-line learning in
a linear perceptron with noise (noisy linear perceptron learning) 13),14). As we
will show, NP-learning is a learning method similar to noisy linear perceptron
learning, but it has not yet been analyzed using statistical mechanics methods.

In this paper, we analyze NP-learning following the analysis of noisy linear
perceptron learning through a statistical mechanical method, and derive order
parameter equations which depict NP-learning behavior. We then derive the
generalization error using order parameters. From our results, we show that
the cross-talk noise, which originates in the error of the other outputs, affects the
learning performance in NP-learning and our analysis provides a new perspective
regarding the analysis of NP-learning.

2. Model

In this section, we formulate the teacher and student networks, and an
NP-learning algorithm employing a teacher-student formulation. We as-
sume the teacher and student networks receive N -dimensional input x(m) =
(x(m)

1 , . . . , x
(m)
N ) at the m-th learning iteration as shown in Fig. 1. Here, we
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Fig. 1 Network structure of teacher (left) and student (right) networks, both with the same
network structure. ξi represents a noise added to i-th student network output.

assume the existence of a teacher network vector w∗
k that produces desired out-

put, so the teacher output dk is a target of the student output yk. The learning
iteration m is ignored in the figure.

The teacher networks shown in Fig. 1 have N inputs and M outputs, and are
identical to M linear perceptrons. Each student network has the same archi-
tecture as the teacher. w∗ denotes the weight matrix of teacher networks with
M × N elements. w(m) denotes the weight matrix of student networks with
M × N elements at the m-th learning iteration, the same as the teacher net-
works. We also assume that the elements x

(m)
i of independently drawn input

x(m) are uncorrelated random variables with zero mean and variance 1/N ; that
is, the i-th element of input is drawn from identical Gaussian distribution P (xi).
In this paper, the thermodynamic limit of N → ∞ is assumed. In the thermody-
namic limit, the law of large numbers and the central limit theorem can apply.
We can then depict the system behavior by using a small number of parameters.
Statistics of the inputs at the thermodynamic limit are as follows.〈

x
(m)
i

〉
= 0,

〈
(x(m)

i )2
〉

=
1
N

, ||x(m)|| = 1, (1)

where 〈·〉 denotes the average over possible inputs and || · || denotes the norm of
a vector.

M linear perceptrons are used as the teacher networks and are not subject to
learning. Thus, the weight vectors {w∗

k}, k = 1, . . . ,M are fixed in the learning
process. The output of the k-th teacher d

(m)
k for N -dimensional input x(m) at

the m-th learning iteration is

d
(m)
k =

N∑
i=1

w∗
ikx

(m)
i = w∗

k · x(m), (2)

where teacher weight vectors {w∗
k}, w∗

k = (w∗
1k, . . . , w∗

Nk) are N -dimensional
vectors, and each element w∗

ik, i = 1, . . . , N of teacher weight vectors w∗
k is

drawn from a probability distribution of zero mean and unit variance. Assuming
the thermodynamic limit of N → ∞, statistics of the k-th teacher weight vector
are

〈w∗
ik〉 = 0,

〈
(w∗

ik)2
〉

= 1, ||w∗
k|| =

√
N. (3)

The distribution of the k-th output of the teacher networks follows a Gaussian
distribution of zero mean and unit variance in the thermodynamic limit.

M linear perceptrons are used as student networks, and each student network
has the same architecture as the teacher network. For the sake of analysis, we
assume that each element of w

(0)
ik , which is the initial value of the k-th student

vector w
(m)
k , is drawn from a probability distribution of zero mean and unit

variance. The norm of the k-th initial student weight vector ||w(0)
ik || is

√
N in the

thermodynamic limit of N → ∞. Statistics of the k-th student weight vector are〈
w

(0)
ik

〉
= 0,

〈
(w(0)

ik )2
〉

= 1. (4)

The k-th student output y
(m)
k for the N -dimensional input x(m) at the m-th

learning iteration is

y
(m)
k =

N∑
i=1

w
(m)
ik x

(m)
i = w

(m)
k · x(m). (5)

Generally, the norm of student weight vector ||w(m)
k ||, w

(m)
k = (w(m)

1k , . . . , w
(m)
Nk )

changes as the time step proceeds. Therefore, the ratio l
(m)
k of the norm to

√
N

is considered and is called the length of student weight vector w
(m)
k . The norm

at the m-th iteration is l
(m)
k

√
N , and the order of l

(m)
k is O(1).

||w(m)
k || = l

(m)
k

√
N. (6)

The distribution of the k-th output of student P (yk) follows a Gaussian distri-
bution of zero mean and l2k variance in the thermodynamic limit of N → ∞.
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Next, we formulate the learning algorithm of the NP-learning. We fol-
low Werfel’s formulations of the learning 3). For the possible inputs {x}, we
want to train the student network to produce desired outputs y = d. Here,
d = (d1, . . . , dM ) and y = (y1, . . . , yM ). We employ the squared error as an error
function. The squared error is defined by

E =
1
2
||d − y||2 =

1
2

M∑
k=1

(dk − yk)2. (7)

We train the student network within the framework of on-line learning. That is,
input xm given in each learning step is used to update a student weight vector
according to the learning algorithm and is not used in the future learning. NP-
learning is a stochastic learning, and a random noise vector ξ is added directly
to the student network outputs y to perturb the error function E to estimate the
gradient (see Fig. 1). Perturbed squared error ENP is defined by

ENP =
1
2
||d − (y + ξ)||2 =

1
2

M∑
k=1

(dk − (yk + ξk))2. (8)

If addition of the noise vector ξ lowers the error, the student weight vectors
are adjusted in the direction of the noise vector. Here, each element ξk of the
noise vector ξ is drawn from Gaussian distribution of zero mean and σ2 variance.
Werfel, et al. proposed the learning equation 3) as follows:

w
(m+1)
k = w

(m)
k − η

σ2
(E(m)

NP − E(m))ξ(m)
k x(m). (9)

Here, E
(m)
NP − E(m) is the difference between the error with and without noise.

Note that the difference E
(m)
NP − E(m) is assigned for each output y

(m)
k from the

independence of noise ξ
(m)
k for each output. In this paper, Eq. (9) is used as the

learning equation. η denotes the learning rate.
Next, we will show the relation between NP-learning and on-line learning in a

perceptron using the gradient descent algorithm. On-line learning in a perceptron
using the gradient descent algorithm is referred to as linear perceptron learning
for simplicity. From Eq. (7), E with M = 1 is identical to the output error of the
linear perceptron (student). Keeping this in mind, we get the next equation by
substituting Eqs. (7) and (8) into Eq. (9).

wm+1
1 = w

(m)
1 − η

σ2
(E(m)

NP − E(m))ξ(m)
1 x(m)

= w
(m)
1 +

η

2σ2

(
2(ξ(m)

1 )2(d(m)
1 − y

(m)
1 ) + (ξ(m)

1 )3
)

x(m) (10)

Here, if we assume |ξ(m)
1 | � 1, the term (ξ(m)

1 )3 is negligible and Eq. (10) becomes
equivalent to the learning equation of linear perceptron learning. Thus, NP-
learning with M = 1 can be considered linear perceptron learning.

On the other hand, from Eq. (7), E with M ≥ 2 becomes the sum of all the
students’ output errors, and the error for each student is not given. Considering
this, we get the next equation by substituting Eqs. (7) and (8) into Eq. (9):

w
(m+1)
k = w

(m)
k − η

σ2
(E(m)

NP − E(m))ξ(m)
k x(m)

= w
(m)
k +

η

2σ2

[
M∑

k′=1

2ξ
(m)
k′ (d(m)

k′ − y
(m)
k′ ) − (ξ(m)

k′ )2
]

ξ
(m)
k x(m)

= w
(m)
k +

η

2σ2

[
2(ξ(m)

k )2(d(m)
k − y

(m)
k ) − (ξ(m)

k )3

+
M∑

k′ �=k

2ξ
(m)
k ξ

(m)
k′ (d(m)

k′ − y
(m)
k′ ) − ξ

(m)
k (ξ(m)

k′ )2
]
x(m). (11)

If we assumed |ξ(m)
k | � 1, the terms of (ξ(m)

k )3 and ξ
(m)
k (ξ(m)

k′ )2 become negligible.
Then, from the viewpoint of signal-to-noise (S/N) analysis, the first term within
the square brackets of Eq. (11) can be considered the signal because it relates to
the k-th output which we observe. The third term within the brackets of the
equation is the sum of all outputs except for the k-th output, and is a random
variable not correlated to the k-th output error. The third term is thus considered
the noise added to the output. Therefore, NP-learning with M ≥ 2 is considered
linear perceptron learning with noise 13). Consequently, we analyze NP-learning
through the same method as for linear perceptron learning with noise. (For an
analysis of linear perceptron learning with noise, see the Appendix.)

3. Theory

In this paper, we consider the thermodynamic limit of N → ∞ to analyze the
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dynamics of the generalization error of the present system through statistical
mechanics. In the following paragraphs, the iteration number m is omitted to
simplify the notation of equations.

As pointed out, we will discuss learning based on on-line learning. In on-line
learning, the input x is not used after the learning and the weight vector wk

is statistically independent of a new learning input. The squared error is then
defined using the outputs of the teachers and those of students as given in Eqs. (2)
and (5), respectively. The generalization error εg is given by the squared error
E averaged over the possible input x drawn from a Gaussian distribution P (x)
of zero mean and 1/N variance.

εg =
∫

dxP (x)E

=
∫

dxP (x)
1
2
||d − y||2

=
∫

dxP (x)
1
2

(
M∑

k=1

(
N∑

i=1

w∗
ikxi −

N∑
i=1

wikxi

))2

. (12)

This calculation is the N -dimensional Gaussian integral with x. We employ
coordinate transformation from x to {dk} and {yk}, k = 1, . . . , M . Note that the
distribution of the output of the student P (yk) follows a Gaussian distribution of
zero mean and l2k variance in the thermodynamic limit of N → ∞. For the same
reason, the output distribution for teacher P (dk) follows a Gaussian distribution
of zero mean and unit variance in the thermodynamic limit. At the limit of
N → ∞, the distribution P (dk, yk) of the k-th teacher output dk and the k-th
student output yk is 11)

P (dk, yk) =
1

2π
√|Σk|

exp
[
− (dk yk)Σ−1

k (dk yk)T

2

]
, (13)

Σk =

(
1 rk

rk l2k

)
. (14)

Here, T denotes the transpose of a vector and rk = Rklk. Rk is the overlap
between the teacher weight vector w∗

k and the student weight vector wk. Overlap
Rk is defined as

Rk =
w∗

k · wk

||w∗
k||||wk|| =

w∗
k · wk

Nlk
. (15)

Hence, by using this coordinate transformation, the generalization error in
Eq. (12) can be rewritten as

εg(t) =
∫ M∏

k=1

ddkdykP (d,y)
1
2

M∑
k=1

(dk − yk)2

=
1
2

M∑
k=1

(1 − 2rk(t) + l2k(t)) (16)

Here, t = m/N . Consequently, we calculate the dynamics of the generalization
error by substituting the time step value of lk(t) and rk(t) into Eq. (16).

Next, we derive the differential equations of order parameters lk and rk by
following analysis of linear perceptron learning with noise 13),14). (For an analysis
of linear perceptron learning with noise, see the Appendix.) For the sake of
convenience, we write the overlap as rk. From Eqs. (38) and (41) in the appendix,
the differential equations of two order parameters of the k-th student l2k and the
overlap rk are given by the equations

dl2k
dt

= 2η 〈fkyk〉 + η2
〈
f2

k

〉
, (17)

drk

dt
= η 〈fkdk〉 , (18)

where 〈·〉 denotes the average over possible inputs and perturbation noises, and

fk =
1

2σ2

[
2ξ2

k(dk − yk) − ξ3
k +

M∑
k′ �=k

(
2ξkξk′(dk′ − yk′) − ξkξ2

k′
)]

. (19)

The averages in Eqs. (17) and (18) are calculated as

〈fkyk〉 =
1

2σ2

〈
2ξ2

k (dk − yk)yk − ξ3yk +
M∑

k′ �=k

2ξkξk′(dk′ − yk′)yk − ξkξ2
k′yk

〉

= rk − l2k, (20)

〈
f2

k

〉
=

1
4σ4

〈(
2ξ2

k(dk − yk) − ξ3
k +

M∑
k′ �=k

(
2ξkξk′(dk′ − yk′) − ξkξ2

k′

))2〉

IPSJ Transactions on Mathematical Modeling and Its Applications Vol. 4 No. 1 72–81 (Jan. 2011) c© 2011 Information Processing Society of Japan



76 Statistical Mechanics of On-line Node-perturbation Learning

= 3(1 − 2rk + l2k) +
M∑

k′ �=k

(1 − 2rk′ + l2k′) +
1
4
(M + 2)(M + 4)σ2, (21)

〈fkdk〉 =
1

2σ2

〈
2ξ2

k(dk − yk)dk − (ξk)3dk +
M∑

k′ �=k

2ξkξk′(dk′ − yk′)dk − ξkξ2
k′dk

〉

= 1 − rk. (22)

Here, we have used
〈
x2

k

〉
= 1/N ,

〈
d2

k

〉
= 1,

〈
y2

k

〉
= l2k,

〈
ξ2
k

〉
= σ2,

〈
ξ4
k

〉
= 3σ4,〈

ξ6
k

〉
= 15σ6 and 〈ξk〉 =

〈
ξ3
k

〉
=
〈
ξ5
k

〉
= 0 since these variables obey zero mean

Gaussian distributions. The cross-talk noise, which originates in the error of the
other outputs, appears in Eq. (21) from the average of the second-order cross-talk
noise

〈
ξ2
kξ2

k′
〉
, while the average of the first-order, the cross-talk noise 〈ξkξk′〉, is

eliminated from Eqs. (20) and (22). By substituting Eqs. (20)–(22) into Eqs. (17)
and (18), we get the following differential equations.

dl2k
dt

= 2η(rk − l2k) + η2

[
3(1 − 2rk + l2k)

+
M∑

k′ �=k

(1 − 2rk′ + l2k′) +
1
4
(M + 2)(M + 4)σ2

]
, (23)

drk

dt
= η(1 − rk), (24)

Here, k′ 	= k. From the above results, we found that the effect of cross-talk noise
appears in l2k but not in rk.

4. Results

In this section, we discuss the dynamics of the order parameters and their
asymptotic properties, and then derive the analytical solution of generalization
error. Finally, we discuss the validity of analytical results by comparison with
simulation results.

For the sake of simplicity, the initial weight vectors of the teachers and students
are homogeneously correlated, so we assume l

(0)
k = l(0) and r

(0)
k = r(0). From the

symmetry of the evolution equation for updating the weight vector,

l
(t)
k = l(t), r

(t)
k = r(t), (25)

are obtained. Substituting Eq. (25) into Eqs. (23) and (24), we get

dl2

dt
= 2η(r − l2) + η2

[
(M + 2)(1 − 2r + l2) +

1
4
(M + 2)(M + 4)σ2

]
, (26)

dr

dt
= η(1 − r). (27)

Here, Eqs. (26) and (27) form closed differential equations. Equation (27) can be
solved analytically.

r(t) = 1 − (1 − r(0))e−ηt. (28)

By substituting Eq. (28) into Eq. (26), l(t) is also solved analytically:

(l(t))2 =

(
1 +

(M + 2)(M + 4)ησ2

4(2 − (M + 2)η)

)
− 2

(
1 − r(0)

)
e−ηt

+

(
1− 2r(0) + (l(0))2 − (M + 2)(M + 4)ησ2

4(2− (M + 2)η)

)
e−η(2−(M+2)η)t, (29)

where (l(0))2 is the initial value of (l(t))2. From Eq. (29), cross-talk noise appears
on (l(t))2 and it makes (l(t))2 larger as output number M increases.

Next, we derive an analytical solution of the generalization error. By substi-
tuting Eq. (25) into Eq. (16), we get

ε(t)
g =

∫ M∏
k=1

ddkdykP (d,y)
1
2

M∑
k=1

(dk − yk)2 =
M

2
(1 − 2r(t) + (l(t))2). (30)

By substituting Eqs. (29) and (28) into Eq. (30), we can rewrite the generalization
error of NP-learning:

ε(t)
g =

M

2

[
ησ2(M + 2)(M + 4)

4(2 − (M + 2)η)

+
(
1 − 2r(0) + (l(0))2 − ησ2(M + 2)(M + 4)

4(2 − (M + 2)η)

)
e−η(2−(M+2)η)t

]
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Fig. 2 Learning time dependence of the student length.

=
ησ2M(M + 2)(M + 4)

8(2 − (M + 2)η)

+

(
ε(0)
g − ησ2M(M + 2)(M + 4)

8(2 − (M + 2)η)

)
e−η(2−(M+2)η)t. (31)

From Eqs. (31) and (29), we therefore show that (l(t))2 becomes larger due to
cross-talk noise from other outputs, and so the generalization error worsens as
output number M increases. Moreover, the convergence condition of NP-learning
of 0 < η < 2/(M + 2) is given by Eq. (31). This condition can be rewritten as

M <
2(1 − η)

η
. (32)

Consequently, we calculate the asymptotic value of the generalization error by
substituting t → ∞ into Eq. (31).

ε(∞)
g =

ησ2M(M + 2)(M + 4)
(8(2 − (M + 2)η)

. (33)

The asymptotic value of the generalization error is vanished in the limit η → 0.
Next, we compare the analytical results with those of computer simulation to

examine the validity of analysis. We show results for the student length (l(t))2

(Fig. 2), the overlap r(t) = R(t)l(t) (Fig. 3) and the generalization error ε
(t)
g

(Fig. 4). We set the output unit number M = 2, 5, or 8; set the standard de-
viation σ = 0.2; and set the learning rate η = 0.1. The results were obtained

Fig. 3 Learning time dependence of overlap between teacher and student.

Fig. 4 Learning time dependence of the generalization error.

through computer simulation with N = 1,000 and each point obtained through
averaging over 50 trials. Each element of the teacher and initial student weight
vectors was independently drawn from the distribution of N(0, 1), and the ele-
ment of input is drawn from N(0, 1/N). In the figures, the theoretical results for
M = 2 are shown by a dotted line, the results for M = 5 are shown by a dashed
line, and the results for M = 8 are shown by a solid line. The simulation results
for M = 2 are represented by “+×”, those for M = 5 by “×”, and those for M = 8
by “+”. The horizontal axis of each figure is normalized time t = m/N , where
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m is the number of learning iterations.
Figure 2 shows the learning time dependence for student length l2. The vertical

axis is the student length. As shown, the analytical results agreed with those of
the computer simulations, confirming the validity of the theoretical assumptions.
The student length becomes longer as the output number M increases, and this
result supports the analytical observations.

Figure 3 shows the time dependence of overlap between the teacher and student
r = Rl. The vertical axis is the overlap r. As shown, the analytical results again
agreed with those of the computer simulations. Moreover, the overlap between
teacher and student does not depend on output number M , and this supports
the analytical observations.

Figure 4 shows time dependence of the generalization error. The vertical axis
is the generalization error εg. As shown, analytical results agreed with those of
the computer simulations. The generalization error becomes larger as the output
number M increases, and this phenomenon is due to the M dependence of l2.
This result supports the analytical observations. The above results show the
validity of the analytical solutions.

5. Discussion

In the present paper, we derived the generalization error by using a statistical
mechanics method. On the other hand, Werfel, et al. 3) derived the discrete evo-
lution equation of the squared error as a learning curve by averaging the squared
error over the possible inputs. These two methods use different techniques, so it
is useful to clarify the relation between the methods.

For comparison, we re-formulate Werfel’s formulation of the norm of the in-
put ||x|| as O(1), while it was originally formulated as O(

√
N), and re-derive

Werfel’s learning curve by following their analysis. (The derivation is shown in
the Appendix.)〈

E(m)
〉

=
ησ2(M + 2)(M + 4)M

8 (2 − (M + 2)η)

+
(

E(0) − ησ2(M + 2)(M + 4)M
8 (2 − (M + 2)η)

)
e−η(2−η(N+2)) m

N . (34)

If we substitute t = m/N and E(0) = ε
(0)
g , Eq. (34) becomes identical to Eq. (31).

Next, we compare results obtained through the statistical mechanics method
with those of Werfel, et al. 3). From the statistical mechanics results, Eq. (29)
shows that cross-talk noise is the cause of the longer student length as output
number M increases. Equation (28) shows that the overlap r remains constant
when output number M changes. Therefore, as we have shown, when the output
number M becomes larger, the cross-talk noise from other outputs will increase
the student vector length and the generalization error will become larger. Our
result describes the deterministic behavior of the system while Werfel’s result is
just an average of the squared error. Moreover, statistical mechanical analysis
can treat the case of nonlinear output functions through statistical mechanical
methods while Werfel’s analysis method cannot. On the other hand, when the
input number is finite, we cannot analyze the system because we assume an infi-
nite number N in the statistical mechanical method. The previous study 3) also
showed that the generalization error becomes larger for a larger output number
M , and their approach enables analysis of the case of finite input number N .
However, it cannot show the cause of the larger generalization error for a larger
output number M . The previous studies cannot analyze the case using nonlinear
output functions.

6. Conclusion

We have analyzed node perturbation learning (NP-learning) using a statisti-
cal mechanical method within the framework of on-line learning. NP-learning
is a kind of stochastic gradient method and it can be widely used in machine
learning. We formulated NP-learning by using the teacher-student formulation,
and we assumed the thermodynamic limit of N → ∞. We showed that NP-
learning can be formulated as noisy perceptron learning, and then derived the
differential equations of order parameters that depict the learning process. The
order parameters of NP-learning are the length of the student weight vector lk
and the overlap between teacher and student Rk. We derived these differential
equations using a statistical mechanics method and solved them analytically. We
then derived dynamics of the generalization error using these order parameters.
Consequently, we showed that when the output number M becomes larger, the
cross-talk noise from other outputs increases the student vector length and the
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generalization error becomes larger. We also showed that the effect of cross-talk
noise for larger number of outputs can be canceled out by decreasing the learning
rate η. Our future work will include the analysis of NP-learning with a non-linear
output function.
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Appendix

A.1 Analysis of Linear Perceptron Learning with Noise
In linear perceptron learning with noise, noise ξ(m) is added on the teacher

output or student output in the learning process. The learning equation is

w(m+1) = w(m) + η(d(m) − y(m) − ξ(m))x(m) = w(m) + ηf (m)x(m). (35)

Here, the noise ξm is drawn from N(0, σ2).
First, we derive the differential equation of student length l. We can rewrite

Eq. (6) as w · w = Nl2k, and we square both sides of Eq. (35).

N(l(m+1))2 = N(l(m))2 + 2ηf (m)y(m) + η2(f (m))2. (36)

Note that x and w are random variables, so the equation becomes a random
recurrence formula. We formulate the size of input ||x|| as O(1) and the size of
student weight vector ||w|| as O(

√
N), so the length of the weight vector has a

self-averaging property. Equation (36) is then rewritten as

N(l(m+1))2 = N(l(m))2 + 2η 〈fy〉 + η2
〈
f2
〉
. (37)

Here, 〈·〉 denotes the average over possible inputs. Next, we rewrite m as m = Nt,
and represent the learning process using continuous time t in the thermodynamic
limit of N → ∞. At the limit, Eq. (37) becomes a differential equation, so we
put l(m) → l, l(m+1) → l + dlk, 1/N → dt, and then obtain the deterministic
differential equation of lk:

N (l + dl)2 = Nl2 + 2η 〈fy〉 + η2
〈
f2
〉
,

dl2

dt
= 2η 〈fy〉 + η2

〈
f2
〉
. (38)

Here, time t is omitted from functions l, y, and f for the sake of simplicity.
Next, we derive the differential equation of R that is the second order parameter

of the system. R is the direction cosine (overlap) between teacher weight vector
w∗ and student weigh vector w defined as

R ≡ w∗ · w
||w∗||||w|| =

w∗ · w
Nl

. (39)

The differential equation of overlap R is derived by calculating the product of w∗
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and Eq. (35), and we then obtain the term of the equation using the distribution
of P (d, y). We then get

Nr(m+1) = Nr(m) + η 〈fd〉 . (40)

Here, we write overlap between the teacher weight vector and the student weight
vector as r and r = Rl for the sake of convenience. The overlap R also has
a self-averaging in the thermodynamic limit, and the deterministic differential
equation of r is then obtained through a calculation similar to that used for l.

dr

dt
= η 〈fd〉 . (41)

Here, time t is omitted from functions r, d, and f for the sake of simplicity. 〈·〉
denote the average over the possible inputs.

The three averages in Eqs. (38) and (41) are calculated as

〈f · y〉 = 〈(d − y − ξ)y〉 = 〈dy〉 − 〈(y)2
〉− 〈ξy〉 = r − l2, (42)〈

f2
〉

=
〈
(d − y − ξ)2

〉
=
〈
(d)2

〉
+
〈
(y)2

〉
+
〈
(ξ)2

〉− 2 〈dy〉 + 2 〈yξ〉 − 2 〈dξ〉
= 1 − 2r + l2 + σ2, (43)

〈f · d〉 = 〈(d − y − ξ)d〉 =
〈
(d)2

〉− 〈yd〉 − 〈ξd〉 = 1 − r. (44)

As a result, differential equations of the order parameters are give as

dl

dt
= 2η(r − l2) + η2(1 − 2r + l2 + σ2), (45)

dr

dt
= η(1 − r). (46)

A.2 Derivation of Learning Curve of NP-learning
To compare statistical mechanics results with that of Werfel’s, we change the

formulation of norm of input ||x|| from O(
√

N) to O(1), and derive the learning
curve of NP-learning by following the derivation of Werfel, et al. 3). We rewrite
Eq. (7) as

E =
1
2
||d − y||2 =

1
2
||(w∗ − w) · x||2 =

1
2
||W · x||2. (47)

The learning curve shows the behavior of the squared error between the teacher

outputs and those of the students. We calculate an ensemble of averages of the
squared error 〈E〉 by expanding Eq. (7).

〈
E(m)

〉
=

1
2

〈
||W (m) · x(m)||2

〉
=

1
2

〈
N∑

i=1

(
M∑

k=1

W
(m)
ik x

(m)
k

)2〉

=
1
2

N∑
i=1

⎡
⎣
〈

M∑
k=1

W
(m)
ik xm

k

∑
n�=k

W
(m)
in x(m)

n

〉
+

〈
M∑

k=1

(
W

(m)
ik

)2 (
x

(m)
k

)2
〉⎤
⎦

=
1
2

N∑
i=1

M∑
k=1

〈(
W

(m)
ik

)2
〉

1
N

. (48)

Here, we assume that an input element xi is drawn from a probabilistic distri-
bution with zero mean and 1

N variance. To calculate Eq. (48), we need to obtain
the time evolution of the ensemble average of the square of student weight vector〈(

W
(m)
ik

)2
〉

. The square of the weight vector of one-step update W
(1)
ik is given

by Eq. (9) as follows;(
W

(1)
ij

)2

=
(
W

(0)
ij + ΔW

(0)
ij

)2

=
(
W

(0)
ij − η

σ2

(
E

(0)
NP − E(0)

)
ξ
(0)
i x

(0)
j

)2

.

(49)

By substituting Eqs. (7) and (8) into Eq. (49) and then averaging the term over
the possible input, we get〈(

W
(1)
ij

)2
〉

=
〈(

W
(0)
ij

)2
〉(

1 − 2η

N

)
+

η2

N2

〈(
W

(0)
ij

)2
〉

(MN + 2N + 2M + 4)

+
η2σ2

4N
(M + 2)(M + 4). (50)

Here, we have used
〈
x2

i

〉
= 1/N ,

〈
ξ2
〉

= σ2,
〈
ξ4
〉

= 3σ4,
〈
ξ6
〉

= 15σ6,
〈
ξ3
〉

=〈
ξ5
〉

= 0. Applying Eq. (50) for the m-th iteration, summing up for i and j, and
then substituting them into Eq. (48), we get the learning equation as〈

E(t)
〉

=
ησ2(M + 2)(M + 4)M

8 (2 − (M + 2)η)

+
(

E(0) − ησ2(M + 2)(M + 4)M
8 (2 − (M + 2)η)

)
e−η(2−η(N+2))t. (51)
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Here, time t is defined as t = m/N , and the ensemble average of the squared
error at t is

〈
E(t)

〉
, and that of the squared error at t = 0 is E(0).
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