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Abstract 

 Biological systems are often made up of many well-

organized elements, some examples are swarm behavior or 

cell differentiation over the developing process of animals. 

On the other hand, it is difficult to develop a multi-robot 

system like a biological system which could be flexible 

and adaptable to environmental changes. Recently, it is 

suggested that fluctuations within biological systems play 

an important role in order to achieve such flexibility and 

adaptability. In this report, we propose a new control 

method for dynamic task assignment of multi-robot 

cooperation inspired by the adaptability of a biological 

system and we apply our proposed method in a cleaning 

task within a dynamic environment. 

 

1. Introduction 

Dynamic task assignment is an essential requirement for 

multi-robot system operation. Traditionally, task 

assignments were considered in a centralized way. A 

controller gathers all the relevant information such as the 

position of all robots and objects, and allocates tasks to 

every robot [1, 2]. The weakness of this approach is that 

the accuracy of global information is not always possible 

to obtain, and such system is often hard to maintain 

because any failures to the controller will paralyze the 

entire organization. Hence, increasing attention has been 

paid to the study of distributed multi-robot systems which 

have no centralized control. There are many approaches, in 

which the robots coordinate their actions through 

deliberate communications and negotiations [3, 4, and 5]. 

Such approaches are primarily used in systems consisting 

of a relatively small number of robots (i.e., fewer than 10), 

due to scaling issues. Task assignment through intentional 

coordination remains the preferred approach because it is 

better understood, easier to be designed and implemented. 

However as the number of robots increases, the 

complexity of the design of intentional approaches 

increases due to the demands in communication bandwidth 

and computational abilities of individual robots. 

 Hence new approach without deliberate 

communications and negotiations is necessary for task 

assignment of multi-robot system. Although the modelling 

and control of the system becomes harder as the number of 

robots increases or its environment becomes more 

complex, each robot have to change its behavior according 

to its situation. In order to adapt to environment changes, 

robots need an enormous amount of behavior rules for 

every single situation the robot could face, because robots 

cannot operate within a situation they have not already 

considered. Therefore, it is difficult to design control rules 

for multi-robot systems which operate in real 

environments. Especially when there are a large number of 

robots within an environment that changes frequently. The 

learning process of such control rules is difficult due to the 

fact that there is a large number of an unfamiliar situation 

in which the robot has no previous experience. In order to 

overcome these problems we tried to get some hints from 

the nature. 

 Biological systems are well known for their potential to 

adapt to a new, unknown, and noisy environment. The 

mechanism of such flexible adaptation is investigated 

especially in molecular biology, and the importance of the 

biological fluctuation is made clear [6]. The fluctuation in 

molecular biology is actually a noise due to the heat 

fluctuation, which is unavoidable and unpredictable. While 

in conventional control for robot systems, such noise is 

removed to the maximum extent, it is now suggested 

believed that biological systems do not remove the noise 

but rather make use of it in order to adapt to the 

environment. 

 In this study, we propose a novel control method for 

such a multi–robot system, inspired by the biological 

fluctuation called the “attractor selection model” [7]. In 

the future, robots are expected to work in complex and 

unstructured environments like our daily lives. The 

attractor selection model is the simplest model of the 

biological fluctuation, which can realize the adaptation to 

various environments without any knowledge of the 

environment model. Therefore our control method is 

expected to handle a multi-robot system in a dynamic 

environment without modelling it. We apply the proposed 

method to the dynamic task assignment of a group of 

robots and we show the availability of the proposed 

method. 

 
2. Biological Fluctuation 

Kashiwagi et al. built a mathematical model of the 

adaptation mechanism of bacteria-based on a biological 

fluctuation [7]. This model is called the “attractor selection 
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model” and is the simplest model of animals’ control 

mechanism utilizing noises. Since this mechanism works 

flexibly and robustly without the model of the  target, we 

propose a task assignment mechanism based on this 

attractor selection model. 

1) Attractor selection model: The attractor selection 

model can be represented by the Langevin equation as: 

 

 

                                                   (1)   

                           

where x,  x  and   are the state, the time constant and the 

noise, respectively. (This formulation (1) is not the only 

way to implement our method, but it is convenient in order 

to explain the behavior of the attractor selection model.) 

)(xu is a potential function which has several attractors 

(local minima), as depicted in Fig.1(a). Each attractor 

corresponds to candidate solution which would be suitable 

in some situation, and is designed in advance (genetically-

determined). In the attractor selection model, an attractor 

which is suited to the environment is searched for utilizing 

noises. 

 

 A  is a variable called “activity”, which indicates the 

fitness of the state x to the environment, and controls the 

behavior of the attractor selection model. That is, )(xu
becomes dominant in (1) when the activity is large, and 

the state transition becomes more probabilistic. The 

activity is designed to be large (small) when the state x is 

suited (not suited) to the environment. If the activity 

becomes small (large) in the right (left) area of the Fig.1(a), 

the potential function is effectively modified as depicted in 

Fig.1(b). As a result, the state of the system is entrained 

into an attractor which is suited to the environment where 

the activity becomes large. Otherwise the activity remains 

to be small and a suitable attractor is searched for by a 

random walk. 

  The attractor selection model is a method for 

searching local optima with respect to an unknown 

potential function utilizing noises. This method finds local 

optima by adaptively adjusting the effect of noises 

according to the change of activity. Fig. 2 shows the block 

diagram of this method. 

 2) Robot control using the attractor selection model: 

The aim of this research is to develop a task assignment 

control method for a system which is hard to be modeled 

due to its complexity or unknown disturbances within the 

environment. Robot’s task assignment process can be 

regarded as a minimization problem of a potential function 

which indicates the achievement of the task. Fig 3 

represents the potential function of this study. 

  

 In this research, we employ a Gaussian mixture model 

(2) as the potential function: 

 

  (2) 

 

where N denotes the number of Gaussians, and im  is the 

mixture rate of the i-th Gaussian. );( ii aaG  is a Gaussian 

whose center is ia  and the width is   respectively, and defined 

as   
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In this case, the center of each Gaussian becomes an 

attractor. The behavior of this system is such that the state 

x approaches to the nearest attractor like a point mass with 

a gravitational pulls from many objects (attractors). 

 3) Activity Design: In the attractor selection model, the 

activity controls the behavior of the system. Therefore the 

system behaves as follows: If the current output task is 

suited to achieve the desired target situation, the state of 

the attractor selection model is entrained into an attractor 

and alters little. Therefore the desired task would be 

repeated. Otherwise, the state x changes by a random walk 

and a new desired task control signal is searched for. This 

can be achieved if the activity is set up such that the 

  A
dx

xdu
xx

)(.

 

(a) Potential Function          (b) Effective Landscape 

Fig. 1.  Attractor selection model 

 

  

 

Fig. 2. Block Diagram 

 

Fig. 3. Potential Function 
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activity becomes large (small) when the current task is 

suited (not suited). In this study, we employed these 

equations in order to control the activity behavior: 

 

                        (4) 

                        (5) 

 

where g(t) indicates the current entropy level of the dust 

distribution inside the environment, and G(t) is the entropy 

average value until time t. The activity becomes larger 

when there are fewer dusts within the environment, while 

the activity becomes smaller otherwise. 

 

3. Simulation Experiments 

To verify our proposed method, we conducted simulation 

of cleaning tasks for a multi-robot system using the 

attractor selection model, as shown in Figure 4, 5, and 6. 

The environment was designed as a rectangular area of 

8m×8m with a trash can at the centre, and a dump area at 

the upper corner. We built three different versions of the 

environment in order to perform our experiments with an 

increasing level of complexity. Fig.4 shows the simplest 

case where two rooms are placed inside the simulation 

area, while Fig.5 and Fig.6 show a three and four room 

configuration. Robots are designed as circles of diameter 

0.45m that can move inside the simulation area and detect 

the dust appeared in the environment. Three kinds of 

action mode, “Sweeping dust” (Circle), “Taking dust into 

the trash can” (Square), and “Dumping the dust after 

carrying it to the dump area” (Triangle), are set as basic 

action modes for each robot in order to achieve the 

cleaning tasks.  

In addition we gave more realism to our simulation 

environment introducing dynamical objects in the shape of 

doors. This gave us the opportunity to see the performance 

of the attractor selection model against changing situations. 

Doors open or close a certain amount of times every 1000 

time units (frequency value), this feature converts the 

environment into a constantly changing area. Frequency 

values are predefined at the beginning of each simulation. 

We also took into account the possibility of robot 

breakdown, implementing a case for every simulation 

configuration where a pair of robots stops working during 

the process. Finally in order to compare the performance 

of the attractor selection model we implemented a standard 

task assignment method called the role fixed model, where 

each task was assigned to two robots at the beginning of 

the simulation process, and will not be changed. 

We conducted simulation experiments over the three 

different environments, starting with 6 six robots, and 

using the following configurations: 

Case 1: No dynamic objects were used. (Plain form) 

Case 2: Doors were initialized with frequency 2. 

Case 3: Doors were initialized with frequency 5. 

Case 4: Doors were initialized with frequency 10. 

Case 5: Doors were initialized with frequency 15. 

The value of parameters used for the simulation 

experiments is described as follows. The range of 

detection for dust in the environment is 0.5m, and range of 

detection for dust in the trash can is 1m. The robot velocity 

and rotational speed were 1.0km/h and 30deg/s  

respectively. Ten trials were conducted for each 

experimental condition, and typical results are shown as 

 

Fig. 4. Environment 1 

 

 

Fig. 5. Environment 2 

 

 

Fig. 6. Environment 3 

 



 

 

follows. 

Fig.7 represents the results for the simplest environment 

of our simulation, where the role fixed model has a better 

performance than the attractor selection model in both 

conditions (with and without robot breakdown). On the 

other hand Fig.8 and Fig.9 represents the results for both 

second and third environment respectively, where the 

previous tendency continues until it reaches a complex 

point (4th case Fig.8,  2nd case Fig.9), where the role fixed 

model cannot cope with the complexity of the environment 

and reduces its performances drastically, while at the same 

time the attractor selection model issues a better 

performance.  

4. Conclusion and Future Work 
From Fig. 7-9, the attractor selection model seems to be 

better than the role fixed model within relatively complex 

situations. The finish time using the role fixed model 

increases as the environment becomes more complex. On 

the other hand, the finish time value using the attractor 

selection model is saturated. From these observations we 

can state that the attractor selection model improves its 

performance as the environment gets more dynamic and 

complex, and consequently the attractor selection model 

adapts itself to the environment better than the role fixed 

model. In addition the attractor selection model can handle 

robot breakdowns and hardware failures within complex 

situations where the other method just reduces its 

performance drastically. 
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Fig.7. Performances within the environment 1 

 

Fig.8. Performances within the environment 2 

 

Fig.9. Performances within the environment 3 
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