C-20

CCD スキャナで取り込んだじん肺写真に対する ランダムツリーを用いた型分類 Categorization of Pneumoconiosis Radiographs Using Random Trees Obtained with a CCD Scanner

中村 宗広† 阿部 孝司† 南 昌秀‡ 井口信和† Munehiro Nakamura Koji Abe Masahide Minami Nobukazu Iguchi

1.まえがき

じん肺の診断結果は熟練された医師間でも異なること が多く,計算機によりじん肺を症状レベル別に分類し, 医師の診断を支援する方法の確立が求められている.従 来手法では,テクスチャ解析による方法[1][2]から個々の 粒状影を抽出する方法[3][4]に発展したが,粒状影の抽出 精度が完全ではなく,かつ,胸部 X 線写真を鮮明に画像 化するスキャナが高価で臨床の現場では実用化に至って ない.本稿では,ILO と厚生労働省のそれぞれが提供して いるじん肺標準写真と健常の写真を市販 CCD スキャナで 画像化し,ランダムツリーにより症状レベル別に型分類 することを提案する.

2. じん肺画像(けい肺)の型分類

じん肺の症状であるけい肺の診断基準は,粒状影の数 とサイズによって0型(健常)と1~4型(異常)の5段 階に分類され,型が上がるにつれ重度になる.4型は目視 で明確に判別できるため,本研究では0~3型までを対象 とする.

図1に示すように、ドラムスキャナを用いた場合と比較 して、CCDスキャナで取り込んだ胸部X線像は肋骨影や 粒状影が不鮮明となる.この画像に対して、粒状影を抽 出する方法[3][4]や画像品質の影響を大きく受けるテクス チャ解析による方法[1][2]の適用は困難であり、この画像 の特徴に着目した別の手法が必要である.

CCD スキャナで取り込んだ画像を目視観察すると、粒状 影は0型には無く、1型では肋骨影内部(以下,肋骨)に 少数、2型では肋骨に多数と肋間に少数ある、3型では、 肋骨と肋間に多数の粒状影がある.また、粒状影は肺の 内側ほど不鮮明であることがわかる.

‡ 東京大学大学院、	Grad. School of the	University of Tokyo
------------	---------------------	---------------------

3.提案手法

じん肺を症状レベル別に分類するために,以下の1)~5) の手順でじん肺画像の異常度を定量的に求める.まず, 前処理として,医師がタブレットPC上で胸部X線像(原 画像)に10本の肋骨縁を描く(図2).ただし,患者 によって鎖骨影に重なることがある最も上の肋骨縁は使 用しない.この画像において,画素値255を閾値とし2値 化し,ラベリングを行い上位9個の面積を残し,肋骨縁の みの画像を作成する.

1) 原画像の濃度ヒストグラムを伸張化する.

2) 原画像に選択的局所平均法を2回適用する.

3) 原画像にマスクサイズ 9×9 の移動平均を適用後,原画像と肋骨縁のみの画像を重ね合わせる.

4) 各肋骨縁において最も外側の画素を用いてベジェ曲線 を作成する.ベジェ曲線を肺の内側に1ピクセルずつ平行 方向にずらす走査をベジェ曲線と2つの肋骨縁の交点のう ち一方が途切れるまで続け,肋骨領域 R_m(m:1~4)と肋 間領域 Imを設定する (図 2).R_mにおいて,肺の最も 外側のベジェ曲線上の中点を c|m, 1|, c|m, 1|から上方向と 下方向の肋骨縁までベジェ曲線に沿って1ピクセルずつ走 査したときの走査数を drmR[m, 1], c|m, 1|から上方向と下 方向の走査における j 番目の濃度をそれぞれ u[m, 1, j]およ び l[m, 1, j]とする. c|m, 1]からベジェ曲線を肺の最も内側 のベジェ曲線上の中点まで水平方向に1ピクセルずつずら したときの走査数を $lengthR_m$, これらの総和 L_R とし, c|m, 1|および u[m, k, j]と l[m, k, j]の k をベジェ曲線上の k 番目の 走査点として,各肋骨 Rmの異常度 Abn(Rm)と肋骨全体に おける異常度 Abn_Rをそれぞれ以下の式で定義する.

$Abn(R_m) = \left[\frac{1}{LengthR_m} \sum_{k=1}^{lengthR_m} \left\{\frac{1}{dmR[m,k]} \sum_{j=1}^{dmR[k]} u[m,k,j] - l[m,k,j] ^2\right\}\right]^{1/2}$
$Abn_{R} = \left[\frac{1}{L_{R}}\sum_{m=1}^{4}\sum_{k=1}^{lengthR_{m}}\left\{\frac{1}{dmR[m,k]}\sum_{j=1}^{dmR[m,k]} u[m,k,j]-l[m,k,j] ^{2}\right\}\right]^{1/2}$
In

肋骨縁の描画画像 走査領域図 2 肋骨と肋間に分割した走査領域の設定

同様に,任意の肋間Imの異常度Abn(Im)と肋間全体における異常度Abniをそれぞれ以下の式で定義する.

$$Abn(I_{m}) = \left[\frac{1}{LengthI_{m}}\sum_{k=1}^{lengthI_{m}} \left\{\frac{1}{drmI[m,k]}\sum_{j=1}^{drmI[k]} |u[m,k,j] - l[m,k,j]|^{2}\right\}\right]^{\frac{1}{2}}$$
$$Abn_{I} = \left[\frac{1}{L_{I}}\sum_{m=1}^{4}\sum_{k=1}^{lengthI_{m}} \left\{\frac{1}{drmI[m,k]}\sum_{j=1}^{drmI[m,k]} |u[m,k,j] - l[m,k,j]|^{2}\right\}\right]^{\frac{1}{2}}$$

5) *Abn_R* と *Abn_I* の 2 つの特徴量を用いて, ランダムツリ -[5]により肺画像を 0 型と 1,2,3 型 (1-3), および, 0,1 型 (0-1) と 2,3 型 (2-3) の 2 通りに型分類する. ランダ ムツリーは予想精度が高く過学習しないという利点があ る.本研究では,肋骨と肋間のそれぞれにおける総合的 な異常度を評価するため, *Abn*(*R_m*)と *Abn*(*I_m*)は型分類に用 いる特徴量に含めない.

4. 実験結果

まず, CCD スキャナ(EPSON GT-X750)で取り込んだ 67枚の胸部 X線画像(右肺,8bit 白黒濃淡,300dpi)に対 して Abn_Rと Abn_Iを算出した結果を表1に示す.表1にお いて mean は平均,STD は標準偏差を示す.画像の内訳は ILO のじん肺標準写真13枚(0型2枚,1型3枚,2型3 枚,3型5枚),厚生労働省のじん肺標準写真9枚(0型3 枚,1型4枚,2型1枚,3型1枚),医師から提供された 胸部 X線写真45枚(0型)である.表1から,型が上が るにつれて異常度は上昇していることがわかる.

次に,提案手法によりじん肺写真の型分類を行った. このとき,実験データを有効に活用するために,学習デ ータを2枚選択し,残りの65枚をテストデータとし平均 認識率を求める動作を交差法[6]によって繰り返した.ラ ンダムツリーの主なパラメータである決定木の数と決定 木のサイズは,どちらも50とした.0型と1,2,3型(1-3) 型の分類結果を表2に示し,0,1型(0-1)と2,3型(2-3) の分類結果を表3に示す.また,比較のためにニューラル ネットワーク(NN)と線形判別分析(LDA)を用いた分 類結果も示した.分類結果は,表2表3ともにF値で示し た.0-1型と2-3型の分類において,3種類の分類手法の中 でランダムツリー(RT)による分類結果が最も良好であ った.

表 4 に 0 型であると誤判定された 1 型の画像 1 枚 (Err1)と 2-3 型であると判断された 1 型の画像 1 枚 (Err2)の $Abn(R_m)$ と $Abn(I_m)$ を示す.表1に示す1型の画 像における異常度の平均と比べて,Err1の異常度が低くなっているのがわかる.図 3(a)に Err1の画像を示す.この 画像において肋骨影はほとんど目視できない.図 3(b)は, 図 3(a)において,肋骨縁が描画されている箇所を拡大した ものであるが,このようにじん肺写真のスキャンにおい て肋骨影や粒状影が抽出されず肋骨縁のみが手動で描画 される場合,実際の型よりも異常度が低く算出された. また, Abn_R において, $|u[m, k, j] - l[m, k, j]^2$ で求まる全値

表1 異常度の算出結果

category level	Abn _I	Abn_R		
0 (45 images)	8.5 (mean) 4.4 (STD)	7.1 (mean) 2.5 (STD)		
1 (7 images)	16.4 (mean) 4.2 (STD)	14.7 (mean) 5.1 (STD)		
2 (4 images)	20.6 (mean) 7.7 (STD)	20.1 (mean) 3.1 (STD)		
3 (6 images)	25.4 (mean) 6.2 (STD)	21.7 (mean) 3.6 (STD)		

表2 0型と1-3型の分類におけるF値

型分類	0	1-3
RT	91.9%	77.8%
NN	92.9%	80.0%
LDA	92.9%	80.0%

表3 0-1 型と2-3 型の分類における F 値

型分類	0-1	2-3
RT	96.4%	83.3%
NN	95.0%	74.9%
LDA	95.6%	73.7%

表4	型分類に失敗	した画像の	異常度	Abn(x))
----	--------	-------	-----	--------	---

Abn(x)								
x	R_1	R_1	R_1	R_1	I_1	I_1	I_1	I_1
Err1	11.1	9.8	7.2	8.3	6.2	7.1	7.4	7.6
Err2	11.3	10.5	13.5	30.5	17.6	25.8	19.0	19.3

図3 Err0(表4)の画像

の標準偏差について, Err2の画像における標準偏差と3型 の全画像における標準偏差の平均はそれぞれ414.6と 213.6 であった.このように,描画された肋骨縁と実際の 肋骨縁とのずれが大きい場合,異常度の算出結果が実際 の型よりも高くなると示唆される.

5. むすび

本稿では,ILO と厚生省のそれぞれのじん肺標準写真と 健常の写真を画像化し,ランダムツリーにより症状別に 型分類する方法を提案した.異常度の信頼性は描画され る肋骨縁の精度に依存すると考えられるため,今後は肋 骨縁の描画マニュアルの作成,もしくは簡易かつ正確に 肋骨縁を描画するためのインタフェースを作成し,型分 類の精度を高めることを検討する.

参考文献

[1] R. P. Kruger and W. B. Thompson: Computer Diagnosis of Pneumoconiosis, Trans. on Systems. Man and Cybernetics, Vol. SMC-4, No.1, pp.40–49 (1974).

[2] 小畑秀文, 渡辺敏博: 2次元自己回帰モデルに基づくテ クスチャ識別,信学論 A, Vol.71, No.2, pp.512-518 (1988).

[3] 陳旋,長谷川純一,鳥脇純一郎:じん肺 X 線写真の定量 診断のための粒状影の識別,信学論 D-II, Vol.72, No.6, pp.944–953 (1989).

[4] 小畑秀文,久保淳,岡田守弘:等濃度線処理による X 線写真中のじん肺陰影抽出と自動診断への応用,信学論, vol.J76-D-II, No.2, pp.261-267 (1993).

[5] Leo, Breiman: Random forests, Machine Learning, Vol.45, pp.5–32 (2001).

[6] F. Mosteller: A k-Sample Slippage Test for an Extreme Population, The Annals of Mathematical Statistics, Vol.19, No.1, pp.58–65 (1948).