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This paper explores applying impedance matching to
a robot to maximize the energy transfer, increasing the
efficiency of human robot interaction. In contrast with
previous work, the system proposed here is a task inde-
pendent system with no knowledge of the opposing link-
age, making the system more flexible. A simulator was
built to investigate the problem. It is controlled by a neu-
ral network using the dynamic hill climbing algorithm.
Several configurations were tested to isolate suitable con-
trol parameters. † ‡

1 Introduction
Recent years have seen the development of Cognitive
Developmental Robotics (CDR) as proposed in [1] and
Epigenetic Robotics, as proposed in [22], pushing the
idea of embodiment further, towards a more develop-
mentally based approach to robotics. Understanding
that the brain is not merely a computer that controls the
body, but a carefully balanced biological system, devel-
opmental robotics seeks to learn from the brain and from
the developmental cycle essential in living creatures to
build robots that can learn, based on the models found
in nature.

As robotics becomes more mature as a field, robots
will need to learn to operate outside of the current con-
trolled environments to which they are currently con-
fined, largely laboratories and factories. In these en-
vironments, the humans that the robots interact with
are, by and large, trained personnel used to the robot’s
quirks and idiosyncrasies. Outside of these controlled
environments, Human Robot Interaction becomes not
only much more likely but even essential when dealing
with naive subjects in uncontrolled environments. The
task of interacting with naive subjects in an unknown
environment can appear, at first, to be almost insur-
mountable, however human infants face similar obstacles
at birth and overcome them. One of the aims of CDR is
to build models for robots based on infants. It is hoped
that this may make it possible to create a new breed of
robots that can overcome these obstacles allowing for an
increased integration of robots into society.

Shared use environments have many disadvantages,
such as the more stringent safety requirements required
and the unpredictable nature of the agents with whom
the environment is shared, requiring the use of more
complex control. However shared use environments can
also have advantages. Physical Human Robot Interac-
tion (hereinafter referred to as Physical HRI), attempts
to allow robots to take advantage of the agents with
whom the environment is shared, allowing the humans
to assist the robot in performing a task and in instruct-
ing the robot how best to accomplish said task. One as-
pect of infants which greatly assists in their subsequent
motor learning is the structure of the human muscular
skeletal structure and the manner in which an infant’s
innate reflexes, as discussed in [17] and motor synergies
[2] contribute to, and even drive, motor learning. It is
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felt that the innate compliance of the system is essen-
tial in this learning. In an interaction with a caregiver,
even if the infant does not know what motion is to be
performed, it can still perform motions in coordination
with the caregiver because of it’s innate compliance.

In general, however, current robots do not have such
innate compliance, and it is difficult to implement good
compliance for a robot because it tends to be task de-
pendent and, in general, to require a priori knowledge
of the robots dynamics. These factors make it very diffi-
cult to implement a task independent evaluation system
based on compliance. However if robots are intended to
be used in a shared use environment, it is possible for
the robot to learn through interaction with the humans
in it’s environment, i.e. through Physical HRI. As hu-
mans use compliance to teach motions to other humans,
it is logical that learning through compliance could be
of assistance to robots.

Impedance matching, a concept from electrical sci-
ence can be applied to Physical HRI because the me-
chanical and electrical domains are equivalent. The con-
cept of impedance matching should allow a robot to
maximize the energy transfer in an interaction and as
such increase the efficiency of human robot interaction.
Previous work on the application of impedances to ro
bots mainly focused on using motions which were known
a priori to allow interaction with known linkages. In
contrast, the system proposed here is a task independent
system which has no knowledge of the linkage structure
of the opposing system. It is thought that such a sys-
tem is more flexible. In order to implement this system,
a physical simulator was implemented. The simulator
was designed such that the processing load can be split
across multiple machines and it features high quality vi-
sualizations. Control of the simulator is implemented
using a feed forward neural network using dynamic hill
climbing to learn the output weights. Several configura-
tions are tested to attempt to isolate the most suitable
control parameters.The related work section discusses
other work that deals with human robot interaction and
with work that deals with applications of impedance in
robotics as well as its biological basis. The methods sec-
tion describes the design of the simulator and the learn-
ing system used, particularly the learning rule used in
the neural network. The experiments section describes
the various experiments which were undertaken and the
results of those experiments.

2 Related Work
In [5] discusses the various methods available to allow
robots to learn skills through interaction with a human
caregiver, variously referred to as “Human Robot Inter-
action”, “Robot Programming by Demonstration” and
“Human in the Loop Control”. In the interactions de-
scribed in the paper a user demonstrates a motion for
the robot and then assists the robot in executing the de-
sired motion. The authors in [3] describe the underlying
model for such interactions, taking the example of the
primate motor cortex to allow robots to learn tasks by
imitating the humans with whom they interact. This
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research applies the ideas of mirror neurons in order to
allow the agent to learn how to imitate.

In [6] the authors investigate tactile interaction with
a robot in order to directly correct the robot’s move-
ments. This has the advantage of being a much more
intuitive system than is usually used to generate robot
motions, namely a graphical user interface. The research
attempts to solve the difficulty that arises in the ambigu-
ous nature of touch by deriving a protocol that general-
izes the intuitive gestures of a number of test subjects.

The authors in [11] undertake an analysis of Physical
HRI in order to allow for human robot interaction in a
shared use environment, using the CB2 robot. The au-
thors [10] subsequently expanded on this, investigating
the behavior of the robot in tasks which require close
physical contact with an actively controlled robot. This
research stresses the importance of flexible, compliant
joints in a shared use environment and the dangers which
such an environment can have. Again, in [10] focused
on using machine learning techniques to allow the robot
to learn how to interact with a human partner. The ef-
ficiency of the system is evaluated using an interaction
where a human helps the robot to stand.

The Partner Ballroom Dance Robot (PBDR) robot,
developed by Kosuge et. al [12], is designed to allow hu-
mans to interact with a robot which dances. The robot
has a force sensor to allow it to determine the applied
force, but the system is designed solely for the desired
task, namely ballroom dancing, and all of its postures
have been specifically designed for the execution of that
task. The nature of the interaction lends itself well to
accomplishing the goal, however it seems unlikely that
it could be extended far beyond the ritualized nature of
a formalized dancing style.

The importance of impedance in the central nervous
system is shown in [4]. The authors prove that the brain
uses selective control of the mechanical impedances to
generate forces to stabilize agains unstable movements.
This was shown by the comparison of human subjects
moving a manipulator with no force applied versus mov-
ing the manipulator through a dynamic force field. After
a brief training period, the subjects to exhibit no signif-
icant difference between the two trajectories, as they
had learned to compensate for the motion of the dy-
namic field. In [20], the authors build upon previous
work[4] to analyze the uses of these impedances in a re-
dundant muscle system, such as the human arm, and
how these impedances allow for the selection between
different muscle groups to accomplish different tasks.

Applying impedance to robotic motion has been re-
searched to various degrees in previous work. The au-
thors in [14] proposed an impedance matching method
for serial link manipulators which modeled the dynam-
ics of the manipulators and calculated the correct com-
pliance for a given task. The work presented is based
on earlier work by the authors, [13] which describes
a method expressing the manipulator performance of
a linkage by means of its dynamic manipulability its
manipulating force, together referred to as the inertia
matching ellipsoid. The authors [14] expanded upon
this earlier work by moving from an inertia matching
ellipsoid to an imped
ance matching ellipsoid. The impedance matching el-
lipsoid is seen as an expression of the efficiency of the
transfer of energy from the actuators to the load on the
system. The authors present several numerical examples
illustrating their system.

In [18] the authors explore the applicability of us-
ing a pneumatic system in robotic physiotherapy. They
find the use of a pneumatic system to be advantageous
because it has a good power to weight ratio and is back-

Figure 1: Impedance Matching

drivable. The system presented in the paper uses a PID
controller to control the system and the system is cali-
brated by human testing. The system is, as such, inca-
pable of learning and will be suitable only for the desig-
nated task.

3 Methods
In contrast with previous research, the aim of this re-
search is to implement a task independent, compliant
learning system. In order to implement such a system,
it was felt that the use of impedance matching, a con-
cept borrowed from electrical science, would be bene-
ficial. In impedance matching the energy transfer be-
tween two circuits can be maximized if the impedance
of the two circuits is matched, i.e. the better matched
the impedances are, the more efficient the energy trans-
fer is. The electrical and mechanical domains can be
seen as equivalent as shown in Fig. 1, where the Volt-
age (V) is equivalent to the Force(F), the Current (I) is
equivalent to the Displacement (S), the Resistance (R) is
equivalent to the Elasticity (L), the Capacitance (C) is
equivalent to the Damping (C) and the Inductance(L) is
equivalent to the Mass (M). By using impedance match-
ing to distribute compliance throughout all of the joints
being actuated at a given time, it should be possible to
maximize the energy transfer between the teacher and
the learner, increasing the efficiency of the interaction.
In this research it is thought that impedance matching
in a linkage can be obtained by maximizing the elas-
tic energy of the linkage. For this to be accomplished,
the system must learn the function which describes the
linkage energy and then find its maximum.

Implementation of the learning is done by means of
a fully connected feed forward neural network. The net-
work features bias nodes in the input and hidden layers.
The activations of the neural network are hyperbolic
tangent functions, scaled in the range 0 ≤ φ(v) ≤ 1.
The hyperbolic tangent function was chosen over the
sigmoid function as it is believed that the hyperbolic
tangent function is more linear. An illustration of the
neural network can be seen in Fig. 2.

In Physical HRI, the relationship takes the form of
a teacher and a learner. The user, taking the role of
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Figure 2: Neural Network

the teacher, performs a movement in conjunction with
the robot, taking the role of the learner. In this system
the aim is to develop a flexible task independent system.
As such the robot can assume no a prioriknowledge of
the user who it is interacting with. This implies that
all of the impedances must be learned and the learning
cannot make be trained by the use of a gradient. Nor-
mally in learning problems when there is supervisory
data available it is customary to use the back propaga-
tion algorithm [19] as the learning rule. Unfortunately
the absence of supervisory data requires the use of a
different algorithm.

Dynamic Hill Climbing, described in [23] and [9] is
a flexible algorithm that combines concepts from hill
climbing and from genetic algorithms to solve the prob-
lem of optimization. It uses a dynamic co-ordinate frame,
which facilitates the finding of ridges that would be in-
credibly difficult to locate using a standard co-ordinate
frame. It uses two loops, an outer loop which selects
areas in which to search and an inner loop which uses
a set of 2n vectors to traverse the search space, where
n is the number of dimensions of the search space. The
sizes of the vectors are incremented or decremented by
a factor of two depending on their success. In Fig 5, an
example of DHC applied to a spherical function can be
seen. The spherical function is one of the five functions
described in [8] as test functions for genetic algorithms:

f1(�x) =
N�

i=1

x
2
i

In order to test the combination of a feed-forward
neural network and DHC, the learning method was ap-
plied to a functional approximation benchmark. The
target function was defined as follows:

f(x) = sin(2x) + 2exp(−16x2). (1)

The area of the function in −1.0 ≤ x ≤ 1.0 was used
to approximate the value. Fig. 3 shows the results of
the approximation with 5 hidden neurons. It can be
seen that the output of the neural network accurately
approximates the target function. This indicates that

Figure 3: Neural Network Convergence

Figure 4: Neural Network Output

DHC is sufficient to optimize the neural network pa-
rameters. The other prospective problem in employing
DHC for neural network optimization is the calculation
cost. To compare, back propagation needs only O(W )
calculations where W indicates the number of weights.
Methods based on numerical derivation with parameter
perturbation, however, take on the order of O(W 2) cal-
culations to optimize a neural network, indicating that
DHC is far slower than back propagation. Fig. 3 shows
the convergence of the network. This graph shows that
the mean squared error of the functional approximation
converges quickly. As such DHC is considered adequate
for the problem at hand.

While a sizable majority of robots use servo motor
systems, which are not backdrivable due to the fact that
small motions which occur at the effector are largely lost
to the friction forces within the motor, it is necessary to
use either a robot which features direct drive motors
or to use a pneumatic robot, such as CB2. Pneumatic
motors have a high degree of non-linearity, making them
difficult to work with. As such it was decided that it
would be best to initially simulate the robot and to then
move to a pneumatic air robot after proof of concept in
the simulator. In the development the simulator, several
important design decisions had to be made.

It was decided early on that it would be advanta-
geous to include the use of a 3D modeling program in
the simulator pipeline. The use of a 3D modeling pro-
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Figure 5: DHC applied to a spherical function

Figure 6: Screenshot of simulator

gram to create meshes for use in a physics simulator has
many advantages. Defining the models in the code is a
laborious, time consuming process and effectively lim-
its the complexity of the models used to compounds of
primitive objects. In a 3D modeling program however,
it is possibly to render high quality meshes on par with
those used in the latest video games, which improves
both the realism and the visual appeal of the simula-
tion.

Blender1 is thought to be the best choice of 3D mod-
eling program for several reasons. Blender, an open
source 3D graphics application was investigated to as-
certain its suitability as a basis for a physics simula-
tor. Blender is a mature modeling tool, in develop-
ment since 1998. Blender is a multipurpose application
which enables 3D modeling, animation, texturing and
several other features. There are many other 3D mod-
eling programs available, such as 3DSMax and Maya,
however these programs are proprietary software, with
prohibitively expensive licenses. Blender was also ini-
tially a proprietary shareware program, but since 2002
has been distributed under the GNU General Public Li-
cense. Development of Blender is largely overseen by the
Blender Foundation, a not for profit organization based
in the Netherlands.

Additionally, because it is open source, and it is pos-

1http://www.blender.org

Figure 7: Simulator Design

sible to script it with Python, export and import scripts
can be easily written which allow Blender to both im-
port models built in other 3D modeling programs and to
export models to any filetype the user wishes to use. Re-
cent versions of Blender also support Collada.2 Collada
is an open standard, interchange file format, which al-
lows whole scenes to be stored in an xml file which can be
passed between different programs. Simulator support
of Collada would allow users to quickly and easily rear-
range scenes or create new scene in a 3D environment,
which could then be easily loaded into the simulator. A
screenshot of the simulator can be seen in Fig. 6.

One of the major strengths of simulation over work-
ing directly with a robot is the ability to run multiple
simulations in parallel on different machines. With this
in mind, and paying attention to good software engi-
neering practices, it was felt that designing the simu-
lator to be composed of a number of modules which
could be run concurrently on the same machine or dis-
tributed throughout several machines throughout a net-
work would be the best design. As such the different
aspects of the simulator were divided along functional
lines, as can be seen in Fig. 7.

1. Main Module The main module loads the initial
simulation configuration from a file. This file con-
tains a list of all of the objects in the simulation,
their locations, rotations, graphical properties and
physical properties (mass, dimensions etc.) as well
as a list of all of the constraints between these
objects and the constraint properties (constraint
type, initial angle etc.). The configuration file
serves to maximize the reusability and flexibility
of the simulator, as all that is in order to add ad-
ditional objects to the simulator or to adjust the
properties of the current objects one must simply
edit the configuration file. It is envisaged that this
configuration file could, in the future, be replaced
with a Collada parser to increase its flexibility still
further.
The simulation then initializes the other local mod-
ules: the physics module, the graphics module,
the listener module, the update module and the
network module. The modules are initialized us-
ing the values from the configuration file. After it
completes the initialization procedures, the main
module executes the simulation until instructed to
finish.

2. Physics Module: The physics module contains func-
tions for initializing the physical world, helper func-
tions for creating physical objects in that world,
as specified by the configuration file parsed by the

2http;//www.collada.org
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(a) Links (b) Joints

Figure 8: Arm Structure

main module and functions to update the proper-
ties of physical objects as each simulation step is
executed.

3. Graphics Module: The graphics module contains
functions for loading and texturing the meshes used
to visualize the physical simulation and creates
lights and cameras, necessary for the visualization.
It also contains functions for moving the meshes
as instructed by the update module. The graphics
module can be disabled at compile time to enable
users to run the simulation without graphical vi-
sualization, which is very useful for running simu-
lations remotely.

4. Listener Module: The listener module allows users
to move around the simulator visualization as one
would control most 3D video games. This allows
for visual debugging and increases the intuitive-
ness of the simulation. If the graphics module is
disabled, the listener module is also disabled.

5. Network Module: The network module allows the
control module, implemented in a separate pro-
gram to communicate with the main simulator. It
updates the parameters of the simulation as in-
structed by the command module and logs infor-
mation about the simulation to the control mod-
ule.

6. Update Module: The update module contains func-
tions allowing the parameters of the simulation
to be updated, as well as functions for synchro-
nizing the physical simulation with its graphical
rendering. The use of an update module greatly
simplifies the implementation of the simulator, as
the vast majority of the variables which need to
be shared between classes are kept in the update
module, reducing the likelihood of corrupting the
data and simplifying the interactions between the
classes.

7. Control Module; The control module is designed
to allow fast efficient communication with the sim-
ulator from another process, which may be run-
ning on a separate machine. This allows for the
simulation to easily be run in parallel on multiple
machines all of which can be co-ordinated from a
single machine. Additionally the communication
over a socket allows for greater flexibility in the
implementation as the control module, which is
separate to the main simulation, can be written
in an interpreted language whereas the main sim-
ulator, because of the large number of numerical

Link Length Mass
S0 3
L0 6 1
L1 6 1
L2 3 1

(a) Link Configuration

Paramters

Joint Angular Range Joins

J0 −π

2
≤ θ0 ≤ π

2
(S0, L0)

J1 −π

2
≤ θ1 ≤ π

2
(L0, L1)

J2 −π

2
≤ θ2 ≤ π

2
(L1, L2)

(b) Joint Configuration Parameters

Figure 9: Configuration Parameters

calculations required,needs to be written in a com-
piled language.

4 Experiments and Discussion

The first obstacle in implementing the basic linkage (a
render of which can be seen in Fig. 6 and a diagram
in Fig. 8 ) is the difficulty in implementing soft joints
in a physical simulation. The parameters of the linkage
can be seen in Fig 9a and 9b. Both Bullet Physics, the
physics engine used, and ODE, another similar physics
engine, require joints to be controlled using angular ve-
locity which is applied as motors. Unfortunately the
documentation for both physics engines is very poor and
as such the parameters required considerable tweaking.
Bullet also features soft bodies. A brief investigation
into the feasibility of implementing the desired func-
tionality through the use of soft bodies was conducted,
however the poor documentation and unintuitive API
precluded their use in the simulator. A brief description
of soft bodies is included in the Appendices.

In order to implement joints which can be controlled
it was deemed necessary to implement a PID controller.
In a PID controller, or Proportional / Integrative / Deriva-
tive controller, the system calculates the difference be-
tween the target value and the actual value, known as
the error, and attempts to minimize this error by adjust-
ing the values of the control parameters, kp, ki and kd
which represent the proportional, integrative and deriva-
tive parameters respectively. This allows the simulator
control program to specify an angle which the simulator
will then attempt to reach by moving the arm according
to the parameter values. The parameters are coefficients
that multiply the error, the sum of errors and the rate
of change of the error to calculate a corrective action.

Initially it was thought that the impedance would
correspond to the parameters of the PID controller. To
test this hypothesis, the simulator was configured with a
simple linkage. A spring connects the end effector of the
arm to a body which describes a lemniscate trajectory
while the arm attempts to follow a random interpolated
trajectory. The system control can be seen in Fig. 10.
The target angles generated by the signal generator and
the impedances generated by the neural network are fed
into the simulator which executes for 360 steps, which
is one full revolution of the lemniscate pattern. The
error between the target angle and the actual angle is
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Figure 10: Control Diagram for Initial Experiment

Figure 11: Experiment 1: kp

recorded for each step, and the average elastic energy of
the system is calculated.

Several different values of the parameters were tested.
A graph of the system’s behavior with just the propor-
tional parameter can be seen in Fig. 11 and of the be-
havior of the system using all three PID parameters were
tested, as can be seen in Fig. 12. On first impressions
both graphs look promising, as the behavior of the sys-
tem is similar, and the elastic energy appears to converge
quite quickly. The relationship between the joints ex-
presses itself as expected, the most proximal joint leads
middle joint, which in turn leads the most distal joint.
However the average energy reveals a flaw in the exper-
imental design. The body which was used to implement
the endpoint of the spring was static, in effect an im-
movable object, as such the energy of the system was
not finite. The complications with this configuration
led to the design of a second configuration.

The second configuration, attempted to overcome
the issues encountered in the first configuration by ap-
plying a force directly to the end effector to ensure the
force was finite. The force was generated using a bench-
mark test. During experimentation with this configura-
tion it was discovered that the PID controller parame-
ters would not yield the impedances. Simulations were
run with a wide variety of different parameters how-
ever the linkage failed to learn the desired impedances.
At this point re-examination of the API led to the hy-
pothesis that perhaps rather than the PID parameters,
if the maximum impulse of the motor were learned it
would possible to implement impedance matching. Sev-
eral simulations were run with the arm maintaining a
fixed posture while the force was applied to its end ef-

Figure 12: Experiment 2:kp, ki and kd

fector. However the setup of the learning system meant
that because the simulator ran for a number of steps and
yielded an average elastic energy to the neural network,
in this configuration the error became constant.

A third configuration was also briefly investigated.
A screenshot of this linkage in the simulator can be seen
in Fig. 13. In this configuration, two arms were con-
nected together to allow for a direct implementation of
the teacher/learner relationship. However because of the
way in which physical simulations are constructed, such
a linkage is incredible difficult to configure. If the max-
imum impulse values are set too high, the simulation
error increases to the point where the objects vibrate
constantly, if the maximum impulse is set too low, the
linkage is not able to move. The range of available mo-
tion to such a linkage is very low, meaning that in or-
der to generate meaningful results, much effort would
need to put into tweaking the parameters to the correct
ranges.

5 Conclusions and Future Work
From the related work, it can be seen that impedance is
important for biological systems and impedance match-
ing has been applied to robots. These interactions have,
for the most part, been in limited interactions which are
largely task dependent and require a priori knowledge of
the dynamics. The system proposed in this work is task
independent and requires no knowledge of the robot’s
dynamics.

Issues with the way in which constraints are imple-
mented in physical simulation is thought to be a large
part of the reason that the experiments performed did
not yield conclusive results. Poor simulator documen-
tation was a contributing factor to many of the issues
which arose during the course of the experimentation.
Additionally it is thought that by redesigning the control
module of the simulator to move to a fully online system,
allowing the individual elastic energies to be fed into the
neural network, rather than the average of a number of
trials the simulation would yield useful results because
the periodic nature of the applied force averages out
over the course of the simulation run. Both the PID pa-
rameters and the maximum impulses were investigated
separately to determine whether they corresponded to
the impedance of the system, as neither yielded conclu-
sive results it may be possible that a combination of the
two factors together would operate as the impedance of
the system.

The problems which arose with the experiments per-
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Figure 13: Simulator Screenshot of Two Linkage Simu-
lation

formed are perhaps a sign that because of the nature of
the experiments, this problem may not be suitable for
simulation. This is thought because the joints used in
the simulation require torques to be applied and the met-
ric that was being investigated may be a component of
that torque. The simulator itself is robust, flexible and
can be applied to many tasks because of the distributed
design in combination and the use of Blender to create
meshes. The use of the Bullet Physics engine allows
for future expansion to GPGPU programming and Ogre
provides high quality visualizations. With the addition
of a Collada parser, the simulator has the potential to
become a very useful platform for simulation of robotics
in many areas.

One avenue worth exploring it to implement the sys-
tem on an arm with pneumatic air actuators as mov-
ing to a real robot would remove a large number of
the problems encountered during the experimentation
phase. It is expected that other issues would arise dur-
ing the implementation on a real robot, especially given
the high nonlinearity of air actuators. If the system
could be shown to work on such an arm, then it would
seem that a logical extension would be to implement
the impedance matching system on a robot with com-
pliant joints. Robots featuring pneumatic air actuators
or direct drive motors would be ideal for implement-
ing such a system because of their inherent compliance.
One such robot is CB2. CB2 is a pneumatic air actuator
based robot with 52 degrees of freedom. Implementing
an impedance matching system on CB2 would also al-
low for comparison in the effects of impedance matching
with the methods use in the uprising experiments per-
formed in [11]. There are many advantages in applying
the proposed system to a full real robot, the compli-
ance makes the robot much less susceptible to damage,
as well as make interactions safer for humans in shared
use environments. Additionally, no known learning sys-
tem can be applied to a real robot in long term learning
without limiting the kinds of physical interactions pos-
sible. The use of a robot will allow for the learning
system to be used in real Physical Human Robot In-
teractions, something which is not possible within the
confines of the simulator. This approach is considered
promising, as while the simulator is useful for testing
the basic premise of the hypothesis, a simulation is by
its very nature a simplified abstraction of the real world,
so testing the hypothesis on a real robot in conditions of
genuine physical human robot interaction is a far better
test of the hypothesis.

Another possible extension to this work is to investi-
gate the possibility of combining an impedance matching
system with the idea of freeing and fixing investigated
in [16] and [15]. In this work, the possibility of teaching
movements to a robot by first freezing all of the joints ex-
cept the most proximal joint and then freeing the joints
one at a time from the most proximal to the most dis-
tal. In this manner the robot learns how to perform a
motion in a rough approximate manner and with the
addition of more distal joints slowly learns to perform
the motion in ever more precise approximations. This
approach has been observed by humans acquiring new
skills, such as infants learning to walk or people learning
to ski. It is thought that it would be possible to aug-
ment the freezing and fixing with impedance matching
and apply it to Physical HRI in order to allow for more
intelligent interactions between humans and robots.

It would also be interesting to explore combining re-
flexes with a compliant learning system. Motor learning
in infants has long been know to be heavily dependent
on primitive reflexes [17], which have in recent years
been seen to be motor synergies with very high initial
activations [21]. It is thought that by combining a sim-
ple reflex with the compliant linkage, it should constrain
the search space allowing for faster learning of motions.
In order to investigate this it would be useful to add
a simple effector with a grasp reflex, similar to the pal-
mar grasp reflex exhibited by human infants. This grasp
effector could be used in conjunction with a compliant
joint to get the linkage to grasp objects. Additionally
it is thought likely that the use of compliance would
allow the arm to grasp soft objects as well as rigid ob-
jects. The work reported in [20] shows the importance
of impedance matching in a redundant muscular system.
It is thought that investigating possible relationships be-
tween impedance in the muscular system in conjunction
with the work shown in [7] about the construction of be-
haviors using muscle synergies could lead to interesting
results.
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