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As demand for high fidelity multimedia content has soared, content distri-
bution has emerged as a critical application. Large multimedia files require
effective content distribution services such as content distribution networks
(CDNs). A recent trend in CDN development is the use of peer-to-peer (P2P)
techniques. P2P-based CDNs have several advantages over conventional non-
P2P-based CDNs in scalability, fault resilience, and cost-effectiveness. Unfortu-
nately, P2P-based content distribution poses a crucial problem in that update
propagation is quite difficult to accomplish. This is because peers cannot ob-
tain a global view of replica locations on the network. There are still several
issues in conventional approaches to update propagation. They degrade the
scalability, the fault resilience, and the cost-effectiveness of P2P-based content
distribution, they also consume the network bandwidth, or take a long time.
In this paper, we propose the speculative update, which quickly propagates an
update to replicas with less bandwidth consumption in a pure P2P fashion. The
speculative update enables a fast update propagation on structured P2P-based
CDNs. Each server attempts to determine the directions in which there will
be replicas with a high probability and speculatively relays update messages in
those directions. Simulation results demonstrate that our mechanism quickly
propagates an update to replicas with less bandwidth consumption. The The
speculative update completes update propagation as fast as the simple gossip-
based update propagation even with up to 69% fewer messages per second.
Compared to the convergence-guaranteed random walk, the speculative update
completes an update propagation faster by up to 92%.

1. Introduction

As the demand for high fidelity multimedia content has soared, content distri-
bution has emerged as a critical application. Large multimedia files require effec-
tive content distribution services such as content distribution networks (CDNs).

†1 Department of Information and Computer Science, Keio University

Typical content distribution solutions enable clients to obtain a replica of content
from a dedicated server at the edge of the Internet. The best example of such
solutions is Akamai 1), which runs several tens of thousands of servers all over the
Internet. This solution provides several benefits, such as a short response time
for obtaining content and the load balancing of servers over the network.

A recent trend in CDN development is the use of peer-to-peer (P2P) tech-
niques. P2P-based CDNs 2)–8) have several advantages over conventional (non-
P2P-based) CDNs. First, P2P-based content distribution systems can easily scale
out to increase the number of servers, clients, or the variety of content. Second,
the decentralized architecture is resilient against a server failure. The entire sys-
tem keeps working regardless of several servers crashes because every server has a
homogeneous functionality and operates independently. Third, P2P-based CDNs
are cost-effective to construct. Conventional CDNs require a powerful dedicated
server responsible for edge server management, replica distribution, and client
query routing. On the other hand, P2P-based CDNs aggregate commodity PCs
to provide a scalable service.

While the P2P-based architecture provides the attractive features described
above, it is quite difficult to propagate updates to all replicas distributed over
the Internet, because no peer maintains every location of replica content. Con-
ventional approaches to the update propagation can be classified into three cat-
egories. First, in the centralized server approaches, used in Globule 9), a central-
ized server holds a map of the current replica locations, and propagates updates
to all replicas according to the map. This approach diminishes the scalability
and the fault-resilience of P2P-based systems because the centralized server may
become a bottleneck and brings a single point of failure. Second, the structured
overlay approaches 10)–12) construct structures, such as trees or distributed hash
tables (DHTs), to locate replicas. Although these approaches enable a server to
figure out replica locations without global information, it is expensive to build
and maintain complex structures solely for update propagation. Finally, gos-
sip protocols 13)–16) and random walks 17)–22) are suitable for large-scale, dynamic
P2P-based CDNs. They propagate update messages without any structures nor
global information. However, there are some issues with them. For example,
the gossip protocols inherently induce many redundant messages which consume
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139 A Strategy for Efficient Update Propagation on Peer-to-Peer Based Content Distribution Networks

the network bandwidth. Another example is that, to use the random walks,
the underlying overlay must be carefully designed because the overlay topology
significantly affects the duration and the coverage of the update propagation.

In this paper, we propose the speculative update; each server determines the
directions in which there will be replicas with a high probability and speculatively
relays update messages in those directions. The speculative update enables a
fast update propagation on structured P2P-based CDNs. This mechanism is
speculative in the sense that it is uncertain whether there are replicas in those
directions, but we hope there will be. The speculative update uses a short record
of the query directions (i.e., the directions from which queries come) to determine
the directions. By propagating the update messages towards the probable replica
locations, the speculative update accomplishes a quick propagation of updates;
replicas are updated in a timely fashion.

The speculative update has three advantages over the current approaches.
First, it maintains the scalability, the fault resilience, and the cost-effectiveness of
P2P-based content distribution; no dedicated server nor an additional structure
are needed to manage replicas. Second, the speculative update reduces the band-
width consumption compared to simple gossip protocols. Although the specula-
tive update also employs gossip-based update messages to keep up the coverage of
update propagation, it assigns these messages a small TTL unlike simple gossip
protocols. By combining the update message which is relayed in the determined
direction and gossip-based messages with a small TTL, the speculative update
efficiently propagates updates to replicas with less bandwidth consumption. Fi-
nally, the speculative update accelerates the update propagation by determining
the direction in which an update message should be relayed. The speculative
update completes an update propagation faster than the random walks.

We applied the speculative update to ExaPeer 23), a P2P-based CDN, and
evaluated it on three synthetic networks simulating the Internet. Simulation
results demonstrate that the speculative update quickly propagates updates to
replicas while keeping the bandwidth consumption low. Although the speculative
update completes an update propagation as fast as a gossip protocol, it relays
up to 69% fewer messages per second than a gossip protocol. Compared to the
convergence-guaranteed random walk 24), the speculative update completes the

update propagation faster by up to 92%.
The rest of the paper is organized as follows. Section 2 clarifies issues involved

in the update propagation on P2P systems and discusses related work. Section 3
defines the system model to which the speculative update can be applied. Sec-
tion 4 explains the basic architecture of ExaPeer. Section 5 describes the design
of the speculative update and applies it to ExaPeer in a case study. In Sec-
tion 6, we evaluate the speculative update through several simulations. Finally,
Section 7 concludes the paper.

2. Problem Statement and Related Work

In this section, we discuss issues involved in the update propagation on P2P-
based CDNs. In P2P-based CDNs, the lack of global information about locations
of replicas makes it difficult to efficiently propagate updates. We introduce con-
ventional approaches to update propagation in P2P-based CDNs and clarify the
limitations of these approaches. Table 1 summarizes the classification of the
current approaches.

The centralized server approaches, which are used in popular CDNs, assign a
dedicated server to maintain a map of current replica locations and propagate
updates. Globule 9) takes the centralized server approach. Each content has
one master server responsible for the update propagation. The master server
maintains IP addresses of servers holding a replica. This method enables a server
to easily figure out where replicas are positioned, but has difficulty in coping with
a network growth. Though centralized server approaches allow P2P-based CDNs
to directly advertise an update to all replicas, they suffer from a poor scalability
and bring a single point of failure problem.

Table 1 Design alternatives for update propagation.

Scalability
Fault

resilience
Building

cost
Bandwidth

consumption
Dissemination

time
Centralized server × × × √ √ √ √
Structured overlay

√ √ √ × √ √ √ √
Gossip

√ √ √ √ √ √ × √
Random walk

√ √ √ √ √ √ √√ ×
Speculative update

√ √ √ √ √ √ √ √
√ √

good
√

moderate × bad
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The structured overlay approaches construct structures, such as distributed
hash tables (DHTs) or trees, to locate replicas. These approaches construct a
structure for update propagation completely or partially independent of the one
for content distribution. The update propagation structure enables P2P-based
CDNs to complete their update operations with a shorter convergence time and
less redundant update messages. However, the structured overlay approaches
make P2P-based CDNs more complex. They introduce additional development
and maintenance costs for the update propagation structure. In order to avoid
the degradation of P2P-based CDN’s scalability in terms of client growth and
resilience to server and network failures, the update propagation structure will
become complex as well as the content distribution structure. In particular, it
is difficult to make the update propagation structure deal with drastically rapid
demand fluctuations such as flash crowds 25). This is because in flash crowds,
P2P-based CDNs dynamically change the number and the location of replicas in
a short term, e.g., in several tens of seconds.

OceanStore 10) takes the structured overlay approach. OceanStore maintains
two tier replicas. A small durable primitive tier keeps the most up-to-date data.
Once the update is committed, the primitive tier multicasts the result of the
update down the dissemination tree based on Tapestry 26). However, the imple-
mentation of OceanStore is quite complex.

Li, et al. 11) proposed a locality-aware hierarchical structure. The DHT-based
upper layer is Chord-based 27) and consists of more reliable and powerful servers.
A replica server in the second layer attaches to a physically close server in the
upper layer. When an update occurs, an update tree is built dynamically upon
the upper layer to propagate the update. However, their approach introduces an
additional building cost of the update propagation mechanism.

The gossip-based approaches are much simpler; they flood update messages on
the network. Each server relays the update message to all the servers directly
connected to itself. Despite the fact that they do not require a particular struc-
ture to maintain replica locations, they propagate an update fully and quickly.
The gossip-based approaches are also scalable and resilient to failures because
there is no dedicated server unlike the centralized server approaches. However,
they inherently induce many redundant messages. Datta, et al. 28) proposed a

gossip-based update propagation for highly unreliable P2P systems. Based on
the number of duplicate messages received at a particular server, the server tunes
the probability to relay the update message in order to reduce the bandwidth
consumption. But the effectiveness of update propagation still depends on the
number of messages.

Random walks are particularly attractive in P2P-based CDNs. Although ran-
dom walks do not require the structure to maintain the state of replica locations
like the gossip-based approaches, they can propagate an update with less band-
width consumption than the gossip-based approaches. Zhong, et al. 24) proposed
the convergence-guaranteed random walk. A walker randomly chooses a next
hop based on the Metropolis-Hastings algorithm so that the walker’s probability
distribution of visiting each node converges on an application-desired one. As
a result, the convergence-guaranteed random walk effectively propagates an up-
date to desired node with a few walkers. The speculative update is inspired by
their approach. While the convergence-guaranteed random walk has advanced
conventional random walks, it depends on the number of initial walkers and the
overlay topology. At worst, it may take a long time to converge on the desired
server visitation distribution.

The goal of our proposal called the speculative update is to overcome the short-
ages of the above conventional approaches. The speculative update should be
attractive in P2P-based CDNs; it should not degrade the features of P2P-based
CDNs such as the high scalability, the high resilience, and the low cost. The
speculative update employs gossip messages to reduce the costs of building an ad-
ditional structured overlay, although the dissemination time is slightly increased
compared with structured overlay approaches. By leveraging the structure of
P2P-based CDNs which is used for content distribution, the speculative update
enables a faster update propagation than random walks and consume less band-
width than gossip-based approaches.

3. System Model

In this section we discuss the system model on which the speculative update
can be embodied. The speculative update is a methodology of propagating up-
dates, and the key idea behind it is to infer the direction in which there will
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be replicas. We believe this methodology can be embodied on P2P-based CDNs
with the following two properties. The concrete implementation is dependent on
the details of the underlying P2P-based CDNs and must be carefully developed
for each P2P-based CDN.
• The CDN uses a structured P2P overlay to distribute replicas.
• Each server maintains a local state, which can be used as a criteria to position

replicas. More precisely, each server can be located through virtual positions
defined on the overlay network.

Recent P2P-based CDNs often have these properties. First, P2P-based replica-
tion systems often use metrics to position replicas on the servers close to clients.
For example, in CoralCDN 4) which is a P2P-based CDN, each server monitors
the number of relayed queries for each content. Then, a CoralCDN server caches
the content if the number of relayed queries exceeds a threshold.

Second, recent P2P-based CDNs often use a structured overlay so that a client
always locates an original content or a replica of the content. In structured net-
works, the overlay topology is tightly controlled and the content is placed at
precisely specified locations. These systems enable a client query to be efficiently
routed to the node hosting the desired content or the replica. Note that un-
structured P2P-based CDNs are currently out of the scope of the speculative
update.

4. ExaPeer

Before explaining our mechanism, we summarize the ExaPeer 23) architecture.
In the following section, we explain the case study using ExaPeer to demonstrate
the effectiveness of the speculative update. ExaPeer is a P2P-based CDN, which
dynamically repositions replicas on the basis of demand fluctuations.

4.1 Basic Architecture
ExaPeer constructs an overlay network using Content Addressable Network

(CAN) 29), which is a DHT, and Global Network Positioning (GNP) 30), which is
a network coordinate system. GNP models the Internet as a d-dimensional space
and assigns a d-dimensional coordinate to each server so that the Euclidean dis-
tance between any pair of coordinates approximates the round-trip-time (RTT)
between the servers. CAN assigns each server a virtual d-dimensional coordinate

and divides the d-dimensional space into zones. To construct a topologically-
aware overlay network, ExaPeer uses coordinates calculated with GNP when
CAN assigns each server a virtual coordinate. ExaPeer also allocates one server
to each zone so that the server’s coordinate is contained in the zone. CAN gen-
erates a key from content and maps the key to a point (P ) in the coordinates
space. Then CAN stores the content in the server that is responsible for the zone
within which P lies.

A client obtains content from ExaPeer on the basis of the CAN protocol. A
query for content is relayed through intermediate servers to the origin server
which maintains a zone containing the coordinates corresponding to the content.
If a server on the path hosts a replica of the content, it provides the replica to
the client instead of an origin server.

4.2 Replica Placement
ExaPeer dynamically repositions replicas on the basis of demand fluctuations in

a P2P fashion. Since ExaPeer relays a query so that the query gets closer to the
final destination, a server that relays a query from one direction to another can
figure out that there is a high-demand area in the direction from which the query
comes. If there are many queries for content from one direction, a server provides
a replica of the content. In ExaPeer, a server monitors the degree of Access Path
Convergence (APC degree) which indicates the number of transferred queries to
determine whether to host a replica. Figure 1 illustrates ExaPeer mechanism in
2-dimensional space, in which server A is selected as the origin server. An APC
degree on the server Q is three. Then, ExaPeer puts a replica on Q to deal with

Fig. 1 Structure of ExaPeer in a 2-dimensional space.
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the demand of clients X,Y , and Z.

5. Speculative Update

5.1 Overview
The speculative update accelerates the update propagation by determining the

direction in which there might be replicas by exploiting the server’s local state
used for replica repositioning. In recent P2P-based CDNs, a server estimates
the benefit of hosting a replica to determine whether to host the replica. For
estimation, a server monitors the local state which represents the popularity of
a content (e.g., the number of relayed queries). If the local state of a server is
likely to host a replica, we can infer that the server would be in the direction in
which many replicas are positioned.

Once a server determines the direction where replicas are positioned, it sends
out a speculative message in that direction. A speculative message is relayed in
the determined direction and it advertises an update to the replicas on the path of
the message. To efficiently advertise an update, the speculative update generates
gossip-based update messages with a small TTL, called complementary messages,
when a speculative message reaches a replica. P2P-based CDNs tend to position
several replicas on the servers close to each other on the overlay for some reasons,
e.g, load balancing of the servers. Thus, we can infer that other replicas would
be positioned around a replica. Complementary messages advertise an update to
those replicas efficiently in a few hops.

Figure 2 illustrates how the speculative update propagates update messages.
The pseudo code of the speculative update is shown in Appendix. First, the origin
server sends out a speculative message to server A and complementary messages
to its neighbors. Then, a speculative message reaches server B hosting a replica
(Fig. 2 (1)). B also attempts to determine the direction in which an update
message should be relayed and sends another speculative message to server C

(Fig. 2 (2). See the pseudo code from line 7 to 16 in Appendix A.1). At the same
time, B sends out complementary messages to its neighbors (Fig. 2 (3). See the
pseudo code from line 4 to line 6 in Appendix A.1). One of the complementary
messages reaches server D, which hosts a replica.

The churn tolerance of the speculative update depends on the one of the struc-

Fig. 2 Overview of the speculative update.

tured overlay on which a CDN is built. Each server joins and leaves the CDN
following the protocol of the CDN’s structure such as CAN 29) and Chord 27). For
example, when a node joins or leaves CAN, to avoid redundancy it affects only
few other nodes. The number of neighbors the node maintains is independent of
the total number of nodes on the overlay. Thus, for a d-dimensional space, the
churn affects only O(d) nodes. In the case of Chord, a node joining or leaving
an N -node Chord network uses O(log2 N) messages to re-establish its finger ta-
bles 27). The speculative update achieves about the same churn tolerance as the
CDN’s structure.

In the following section, we demonstrate how the speculative update generates
a speculative message and a complementary message by using a case study. As
described in Section 3, the implementation of the speculative update is depen-
dent on the underlying CDN because the mechanism to position replicas differs
from CDN to CDN. In this case study, we use ExaPeer described in Section 4.
Although we are challenging to apply the speculative update to other P2P-based
CDNs, it is included in the future work of this paper.

5.2 Speculative Message
5.2.1 Basic Mechanism
To determine the direction in which a speculative message should be relayed,

the speculative update first calculates a primitive vector. A primitive vector
roughly represents the direction of replica locations. A primitive vector is a
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simple vector sum calculated by a server using the local state, that is the APC
degree in ExaPeer, of the neighbor servers. In popular P2P-based CDNs, a
client query often chooses different access paths even if the same client requests
the same content. This is because the routing protocol has some flexibility to
avoid relaying a query to a failed server or a hot spot server. Therefore, some
queries reach the servers which are slightly far from the clients. The speculative
update takes a cue from these queries for calculating a primitive vector; it roughly
determines that replicas are positioned in a direction if a query is relayed from
that direction.

In ExaPeer, a primitive vector P of server i is calculated by the function:

Pi =
∑

j

αjxij , s.t. | αjxij | = dj

where dj is the APC degree of the neighbor server j and xij is a directional
vector from server i to server j. Figure 3 illustrates an example to calculate a
primitive vector in ExaPeer. In Fig. 3, the APC degrees of servers K, L, M and
N are 2, 0, 0, 1, respectively, and the directional vectors from the server A are
(0, 1), (−1, 0), (0,−1) and (1, 0), respectively. Thus, the primitive vector on the
server A is set to PA = (1, 2).

Based on a primitive vector, the speculative update calculates a target vector. A
target vector denotes the direction of replica locations on the basis of a primitive
vector, but it is more accurate than a primitive vector. Once a server calculates

Fig. 3 Example of a primitive vector in ExaPeer.

a target vector, it also calculates an ID so that a speculative message, whose
destination is the calculated ID, is relayed in the direction of a target vector on
the CDN.

There are two key ideas to calculate a target vector. First, a server ignores the
neighbor servers whose directional vector is the opposite direction of a primitive
vector. This operation roughly adjusts a target vector in the direction of which
more replicas are positioned. Second, a server applies a converting function to the
values representing the local states of the neighbors, which results in reversing the
order of input values. In P2P-based CDNs, almost all client queries in an area are
served by the replicas closest to the clients. On the other hand, a few remaining
queries take a roundabout route to avoid the replicas for some reasons. Thus, we
can infer that an actual direction in which many replicas are positioned is between
the vectors representing the directions from where the remaining queries come.

With these two operations, in ExaPeer, the target vector T of server i is cal-
culated by the function:

Ti =
∑

j,Pi·xij>0

βjxij , s.t. | βjxij | = f(dj)

f(dj) = (max(dk) + min(dk)) − dj (k = 0, 1, · · · , N)
where N is the number of neighbors such that Pi · xij > 0. Figure 4 illustrates
an example to calculate the target vector in ExaPeer in a 2-dimensional space.
Since the primitive vector of server A is (1, 2), the APC degrees of L and M are

Fig. 4 Example of a target vector in ExaPeer.
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ignored. The APC degrees of K and N are then converted to 1 and 2, respectively.
As a result, the target vector of A is set to TA = (2, 1). A speculative message
is relayed on the basis of the protocol of the overlay, which is CAN in ExaPeer,
and advertises an update to replicas on the path of the message. The speculative
message whose target vector is TA reaches server Q and advertises an update to
the replica of Q.

In case of a 3-dimensional ExaPeer, used in the evaluation in Section 6, a target
vector is calculated similarly. Let the coordinate of A be (0, 0, 0). Suppose that
the neighbors of A are K, L, M , N , O, and P and their coordinates are (0, 1, 0),
(−1, 0, 0), (0,−1, 0), (1, 0, 0), (0, 0, 1), and (0, 0,−1), respectively. The directional
vector of the neighbor is the same as its coordinate. If the APC degree of the
neighbors K,L,M,N,O, and P are 1, 0, 0, 1, 2, and 0, respectively, the primitive
vector of server A is (1, 1, 2) and L, M and P are ignored. Among the neighbors
K, N , and O, the maximum APC degree is 2 and the minimum is 1. As a result,
the target vector T is calculated as follows:

T = (3 − 1)

⎛
⎜⎝

1
0
0

⎞
⎟⎠ + (3 − 1)

⎛
⎜⎝

0
1
0

⎞
⎟⎠ + (3 − 2)

⎛
⎜⎝

0
0
1

⎞
⎟⎠ =

⎛
⎜⎝

2
2
1

⎞
⎟⎠

The basic mechanism of a speculative message almost correctly calculates the
direction in which replicas are positioned. However, in some situations, a server
calculates an incorrect target vector. In the next section, we explain how to
improve the basic mechanism of a speculative message.

5.2.2 Solution for Incorrect Backtracking
A speculative message sometimes goes back to replicas on which a speculative

message has already passed. Figure 5 illustrates an example of this situation.
Server B calculates the target vector in the direction of server A and sets a new
destination of a speculative message on the basis of the target vector. Then, the
speculative message backtracks in the direction where there are updated replicas.

To prevent a speculative message from inappropriately backtracking, when a
server calculates a primitive vector, it ignores the local state of the neighbors to
calculate a primitive vector if their replicas have been updated already. When
a server asks its neighbors about their local states, the neighbor replies with 0

Fig. 5 Example of messages going backward. A new speculative message sometimes goes back
to the areas where a speculative message has already passed. The number in each circle
indicates the local state value used by the speculative update.

as its local state if it has already been updated. (See the pseudo code from line
2 to 8 in Appendix A.3). In Fig. 5, B calculates a primitive vector without A.
Then, a primitive vector of B heads in the opposite direction of A with a high
probability. In Fig. 5, a speculative message is correctly sent out to C and reaches
another high-demand area.

5.2.3 Solution for Looping
To solve this problem, a server relays a speculative message without any mod-

ification even if that server has a replica (See line 3 of the pseudo code in Ap-
pendix A.1). After having relayed the speculative message to its destination,
a server with a replica sends out another speculative message heading towards
the direction of the new target vector it recalculates (from line 7 to 16 in Ap-
pendix A.1). In the case of Fig. 6, in addition to sending a new speculative
message to C, the server B relays the speculative message sent by an origin
server to the server D. As a result, the speculative message can reach the repli-
cas within another area. Although this solution slightly increases the number of
speculative messages, the coverage of update propagation to replicas significantly
improves.

5.3 Complementary Message
The speculative update employs the complementary message to improve the

coverage of update propagation to replicas. When a server with a replica receives
a speculative message, it sends out complementary messages with a unique mes-
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Fig. 6 Example of looping. The speculative message is relayed between A, B and C. Thus,
it cannot reach replicas within another area . The number in each circle indicates the
local state value used by the speculative update.

sage ID to its neighbors (See the pseudo code from line 4 to 6 in Appendix A.1).
A complementary message advertises an update like a speculative message. Un-
like a speculative message, however, it is relayed on the basis of the typical gossip
protocols; when a server receives a complementary message, it relays the mes-
sage to all neighbors except the one that delivered the incoming complementary
message. When a server with a replica receives a complementary message, it
relays the complementary message and sends out a speculative message (See the
pseudo code in Appendix A.2). To reduce unnecessary transfers, a server receiv-
ing a complementary message with the same message ID as one it has received
before, avoids relaying the message to any neighbors.

There are two important roles of a complementary message. First, it advertises
an update to all replicas around an updated server which is updated with a
speculative message. A speculative message quickly advertises an update to the
replicas distant from an origin server. However, it is not good at advertising an
update to all nearby replicas. A complementary message enables the speculative
update to propagate an update to not only distant replicas but also all nearby
ones.

Second, a complementary message accelerates the speculative update at the
beginning of the update propagation process. In structured P2P-based CDNs,
an origin server receives client queries from all directions on the logical space of
the overlay. Thus, it is difficult for an origin server to send a speculative message

with high accuracy. A complementary message can reach replicas missed by a
speculative message from an origin server. Moreover, the servers which received
the complementary message sends out more accurate speculative messages, be-
cause they receive client queries in limited directions due to the query routing
protocol of the P2P-based CDN.

To limit bandwidth consumption, the speculative update assigns a complemen-
tary message a lower dissemination priority. The speculative update significantly
reduces the TTL of a complementary message. Unlike the typical gossip proto-
cols, these are realistic settings. This is because all a complementary message
needs to do is to advertise an update to nearby replicas, while the typical gossip
protocols have to propagate messages to all participants.

6. Evaluation

In this section, we demonstrate that the speculative update enables an efficient
update propagation with several simulations. We compare the speculative update
with the simple gossip-based update propagation and convergence-guaranteed
random walks 24). We apply the speculative update to ExaPeer 23), which is
implemented on Overlay Weaver 31). Overlay Weaver is a toolkit that enables to
easily construct a large-scale overlay network and to emulate its behavior.

6.1 Evaluation Methodology
To evaluate the effectiveness of the speculative update, we measured four key

metrics as follows.
• The time for update propagation, which shows the time it takes for replicas

to be updated.
• Success rate of update propagation, which is the ratio of replicas that have

received an update message.
• The ratio of queries which reach an updated replica. This measurement con-

firms queries from the clients in high-demand area reach an updated content
in a short time.

• The number of relayed messages, which shows the overhead caused by an
update propagation. The fewer update propagation messages are relayed,
the lower overhead an update propagation induces.

To confirm the behavior of the speculative update, we used three data sets of
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Internet measurement data to emulate the network latency. These data sets are
used to calculate GNP coordinates. The following data sets are often used for
evaluation purposes.
• King : The data set provided by the p2psim project 32). It contains latency

measurements between a set of 2,048 DNS servers.
• Meridian: The data set used by the Meridian project 33). It contains pair-

wise RTT measurements between 2,500 DNS servers whose IP addresses are
unique, spanning 6.25 million node pairs. The data were collected on May
5–13, 2004. We selected about 2,200 nodes with unique GNP coordinates.

• PlanetLab: We used latency measurements from 105 PlanetLab 34) nodes
between September 4–22, 2008.

In the following experiments, we construct ExaPeer with a 3-dimensional GNP
in a cube space, 5,000 on each side. To generate a high, localized demand area,
we built client clusters on each topology. Every 300 milliseconds one client sends
a query for content. 98% of the queries are sent from the clients selected by the
following scheme and 2% of the queries are sent from randomly selected clients.
Clients sending 98% of queries in the King, the Meridian and the PlanetLab data
sets, are selected in a spherical space whose center coordinates are (90, 90, 90),
(90, 90, 90), and (0,−2000, 3000), and radii are 80, 100, and 1,500, respectively.

In this simulation, the server whose coordinate is the closest to a point
(−5000,−5000,−5000) is selected as an origin server. ExaPeer placed replicas
on about thirty servers with the King data set, sixty servers with the Meridian
data set, and ten servers with the PlanetLab data set. For the simulation, we
set the TTL of a complementary message to 7 hops with the King data set and
3 hops with the Meridian data set. In this simulation, we also demonstrate that
the coverage of simple gossip-based update propagation degrades if we simply
set a TTL to the gossip messages. To do that, we conducted the simulation of
the simple gossip-based update propagation with limited TTL as well as that
without any TTL. We set this TTL to 10 hops in the simulation with the King
and the Meridian data sets.

As for the convergence-guaranteed random walk, multiple independent random
walkers can be used to clarify the difference caused by the number of update
messages. It is expected that k independent random walkers after T steps tend

to cover nearly an equal number of nodes as one random walker after k · T

steps 24). Thus, the origin server initiates 500 walkers. For the simulation with
the PlanetLab data set, because there are very few servers compared with the
other two data sets, we set the TTL of complementary messages to 2 hops. For
the same reason, the convergence-guaranteed random walk initiates 6 walkers.
In the same way as the simulations with the King and the Meridian data sets,
we also conducted the simulations of the simple gossip-based update propagation
with and without a limited TTL. We set the TTL of the simple gossip-based
update messages to 3 hops.

To clarify the essential difference between the mechanisms, we assume that
the network condition is ideal in that the latency between servers is negligible.
Due to the simulation environment, a server sends gossip-based messages to the
neighbor servers one by one at regular intervals of 500 milliseconds. In a similar
way, a server relays random walkers and speculative messages at regular intervals
of 500 milliseconds.

6.2 Speculation Efficiency
Figure 7 shows the time for update propagation of each mechanism. In Fig. 7,

the x-axis shows the elapsed time from the update initiation, and the y-axis
shows the ratio of replicas which received an update message. The error bars
show the maximum and the minimum of the observed values during the simula-
tion. The result of the simulation with the King data set is shown in Fig. 7 (a).
The speculative update completed an update propagation 9% faster than the
simple gossip-based update propagation without any TTL and 82% faster than
the convergence-guaranteed random walk.

With the Meridian data set shown in Fig. 7 (b), the speculative update com-
pleted the update propagation as fast as the simple gossip-based update propaga-
tion. The difference between the time for update propagation of the speculative
update and that of the simple gossip-based update propagation is 5 seconds.
Compared to the convergence-guaranteed random walk, the speculative update
completed an update propagation 92% faster.

The simulation result with the PlanetLab data set is shown in Fig. 7 (c). Com-
pared to the convergence-guaranteed random walk, the speculative update com-
pleted an update propagation 86% faster. We conducted a simulation with the
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(a) King (b) Meridian (c) PlanetLab

Fig. 7 The time for update propagation. The speculative update completed an update propagation as fast as the simple gossip-
based update propagation and faster than the convergence guaranteed random walk. The speculative update also propagated
the update to all the replicas.

random walk producing more walkers, but the update propagation time did not
improve so much. Since the simple gossip-based update propagation induces
more messages than the speculative update, it completed an update propaga-
tion faster than the speculative update. However, as shown in Fig. 7 (a) and
Fig. 7 (b), the speculative update achieves as fast an update propagation as the
simple gossip-based update propagation when the number of servers increases.

For all data sets, the convergence-guaranteed random walk takes the longest
time to complete an update propagation. This is because the convergence time
of the random walk is affected by the overlay topology and the number of nodes.
In particular, the convergence time becomes larger if the diameter of the over-
lay structure is large 24). Since CAN topology, which is the basic structure of
ExaPeer, is a tori-like structure and tends to have a large diameter, the conver-
gence time became larger.

Figure 7 also shows that the speculative update enables the update propagation
to all replicas even if we assign complementary messages a small TTL. The
speculative update advertised an update to all the replicas, while the simple
gossip-based update propagation with a limited TTL could not. The simple

gossip-based update propagation with TTL = 10 hops propagated an update to
67% of the replicas with the King data set and 98% of the replicas with the
Meridian data set. Similarly, the simple gossip-based update propagation with
a TTL = 3 reached 90% of the replicas with the PlanetLab data set. This is
because the speculative update uses the gossip protocol to propagate an update
to the nearby replicas to assist a speculative message. For the speculative update
to advertise the update to all replicas, complementary messages’ TTL must be
carefully set according to the network size. We carefully selected the TTL in the
simulation.

6.3 Ratio of Queries which Reach an Updated Replica
Figure 8 shows the ratio of queries which reach an updated replica. The x-axis

shows the elapsed time from the update initiation, and the y-axis shows the ratio
of client queries which reach an updated replica in a high-demand area. The
error bars show the maximum and minimum values throughout the simulations.

The speculative update enables a rapid update propagation to popular replicas
as the simple gossip-based update propagation. In the simulation with the King
data set, the speculative update enabled the queries from clients in a high-demand
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(a) King (b) Meridian (c) PlanetLab

Fig. 8 The ratio of queries which reach an updated replica. The speculative update propagated an update to popular replicas as
fast as the simple gossip-based update propagation and faster than the convergence-guaranteed random walk.

area to reach an updated replica as fast as the simple gossip-based update propa-
gation and 86% faster than the convergence-guaranteed random walk. Similarly,
in the simulation with the Meridian data set, the speculative update and the sim-
ple gossip-based update propagation made the time for the queries to reach an
updated replica shorter than the convergence-guaranteed random walk by 88%.

In the case of the simulation with the PlanetLab data set, the speculative
update made the time for the queries to reach an updated replica 84% shorter
than the convergence-guaranteed random walk with 6 walkers. Compared with
the simple gossip-based update propagation without any TTL, the speculative
update took 42% longer time than the simple gossip-based update propagation.
Since there are fewer servers in the PlanetLab data set, the simple gossip-based
update propagation without TTL reached all servers within a few hops. Although
the speculative update took more 7 seconds to complete update propagation, the
bandwidth consumption is reduced by 45% compared to the simple gossip-based
update propagation as shown in Section 6.4.

6.4 Number of Relayed Messages
To evaluate the overhead of the speculative update, we measured the number

of relayed messages per second on the network. Figure 9 (a) shows the result
with the King data set, Fig. 9 (b) shows the result with the Meridian data set and
Fig. 9 (c) shows the result with the PlanetLab data set, respectively. With the
speculative update, servers relayed fewer messages during an update propagation
than the simple gossip-based update propagation. In the case of the simulation
with the simple gossip-based update propagation, the relayed messages rapidly
increased because each server propagates update messages to all its neighbors. On
the other hand, in the simulation with the speculative update, the largest number
of relayed messages per second was smaller than that of the simple gossip-based
update propagation without any TTL by 31% with the King data set, by 69%
with the Meridian data set and by 45% with the PlanetLab data set, respectively.

We also compared the cumulative number of message creation. What we mean
by message creation is the number of times that a server creates a new update
message heading towards a new target. The speculative update reduced the
cumulative number of message creation compared with the simple gossip-based
update propagation without any TTL by 5% with King data set, by 55% with the
Meridian data set, and 26% with the PlanetLab data set, respectively. In partic-
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(a) King (b) Meridian (c) PlanetLab

Fig. 9 # of relayed messages per second. The speculative update induced fewer messages than the simple gossip-based update propagation.

ular, with the simple gossip-based update propagation, the number of message
creation rapidly increased. The reason for these results is that a speculative mes-
sage enables complementary messages to reach more replicas with a small TTL.
Once a speculative message reaches a replica, the speculative update causes a
server with a replica to start propagating an update with complementary mes-
sages. The complementary message generates an increase of relayed messages,
but it helps the P2P-based CDNs to propagate an update quickly.

In the simulation with the convergence-guaranteed random walk, the number of
relayed messages converged to a constant value because only the origin server cre-
ated update messages. With the King and the PlanetLab data sets, the number
of relayed messages with the convergence-guaranteed random walk was smaller
than that with the speculative update. These results represent a property of
the convergence-guaranteed random walk in that it limits the bandwidth con-
sumption. However, as we mentioned in Section 6.2, the convergence-guaranteed
random walk takes longer to complete update propagation due to the dependence
on the network topology. With the Meridian data set, the speculative update
induces 22% fewer messages than the convergence-guaranteed random walk, be-
cause the speculative update uses complementary messages with a limited TTL.

7. Conclusion

In this paper, we have proposed the speculative update, which is a novel up-
date propagation mechanism for structured P2P-based CDNs. By leveraging the
characteristics of P2P-based CDNs, the speculative update determines the di-
rection in which many replicas are positioned and rapidly propagates an update
in that direction. The speculative update improves the coverage of an update
propagation by sending complementary messages based on the gossip protocol.
Simulation results demonstrate that the speculative update propagates an up-
date to all replicas up to 92% faster than the convergence-guaranteed random
walk and require up to 69% less network bandwidth than the simple gossip-based
update propagation. For future work, we plan to evaluate the speculative update
on the real Internet. We also plan to evaluate it on other P2P-based CDNs.
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Appendix

The pseudo-code of the speculative update is shown below.
A.1 Speculative Message Handler
// At server i1

if i receives a speculative message from k then2

Relay the speculative message to the message’s destination3

for all neighbor j such that j != k do4

Send a complementary message to j5

end for6

if server i has a replica then7

// Create a new speculative message8

for all neighbor j do9

Send request(C, V ) to j to ask j’s local state sj10

// C denotes the name of updated content11

// V denotes the version number of the content12

// In ExaPeer, sj is the APC degree of j13

end for14

Calculate direction Di15

// In ExaPeer, calculate a primitive vector and a target vector16

Send the new speculative message toward Di17

// In ExaPeer, calculate an ID which denotes the direction of the target vector on18

// CAN. The new speculative message whose destination is the calculated ID19

// is relayed in the direction of the target vector.20

end if21

end if22

A.2 Complementary Message Handler
// At server i1

if i receives a complementary message from k then2

for all neighbor j such that j != k do3

Relay the complementary message to j4

end for5

if i has a replica then6

// Create a new speculative message7

for all neighbor j do8

Send request(C, V ) to j to ask j’s local state sj9

// In ExaPeer, sj is the APC degree of j10

end for11

Calculate direction Di12

// In ExaPeer, calculate a primitive vector and a target vector13

Send the speculative message toward Di14

// In ExaPeer, calculate an ID which denotes the direction of the target vector on15

// CAN. The speculative message whose destination is the calculated ID is16

// relayed in the direction of the target vector.17

end if18

end if19

A.3 Reply about Local State
// At server j1

if j gets request(C, V ) which asks its local state then2

// Compare V with j’s version V ′3

if V ≤ V ′ then4

// j is already updated5

return 06

else7

return sj8

end if9

end if10
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