Vol.2010-OS-115 No.4

ooopooooooDoo 2010/8/3

IPSJSIG Technical Report

Ooooooobooobooood PHPOODDDOOO

ooooft
ooooft

ooofl
ooooft

0000000000000 0000000 sSQLOOOUO0DOO0OO0DOoO0nD Web
gooooooooooooooooOoooooooboboOoOoooOoboOoDOOoOoon
0000o0o0o0ooU0o0ooUooooooooOooDoOoO DTP(Dynamic Taint
Propagatond OO0 0 000O0O0ODTPOOOOOOODOOOOOOOODOODOO
gooooooooooobooooooooooooooooobooOog " oo oo
oo0oooOo0oooOooooooooo bTPOOOOOOOOOOOCOOOO0OO
go0o0o0ooooooOoo0o0o0oooooooooobooO0o00oo0ooooooonoo
ooooooooooooo

O00O00O0O0lead/stored 0 0000000000000 O0OO0OOODODOODOO
0000000000000 0000 SWIFTOOOOOOOoOOSwWIFTOOOOO0O
gooooo0o0ooooOoo0o0ooooOOoO0oO00oooObO0O DTPOODOOOOOODDO
OD0oooooosSwIFTOOOOOO0OO00o0O0O0000O00O0DOo00O000O0

O00O0OOSWIFTO WebDO OOOOOOODOOOODOOOOOODDOOOOO
PHPOOOOOOOOOOOOOOOOOOOODOOOOODOOOOOOOOODOO
OO0 WebOOOODOODOODOODODOOODOOODOOODOODOODOOOOOODOO

Implementation and Evaluation of String-Wise Information Flow
Tracking to PHP

HirROSHI Tol,™ RYoTA SHIOYA, ™t MASAHIRO GOSHIMATL
and SHuIcH! Sakal 1

Nowadays, security of web applications faces a threat of script injection attacks, such as
Cross-site scripting(XSS), or SQL injection. DTP (Dynamic Taint Propagation) and DIFT
(Dynamic Information Flow Tracking) have been established as powerful techniques to de-
tect script injection attacks. However, current DTP/DIFT systems still suffer from trade-off
between false positives and negatives, because these systems propagate taint from source to
destination operands.

So Li et al. propose String-Wise Information Flow Tracking, SWIFT. SWIFT traces
memory access of a program execution, detects string access and distinguishes string oper-

ations from other memory access, and propagates taint information under string operations.
This makes SWIFT provide a better accuracy on detection of script injection attacks than
current DTP/DIFT systems. Since SWIFT concentrates on address traces of a target pro-
gram, it can be implemented both on interpreters of script languages and on processors.

In this paper, We implemented SWIFT to PHP, executed typical string operations and
made injection attacks to some real-world web applications with known vulnerabilities. As
a result, SWIFT on PHP shows a high precision in our experiments.

1. Introduction

Increase in web applications leads to increase in security incidents. The internet has become
the primary conduit for attack activities, and vulnerabilities of web applications are getting more
attentions. The attackers exploit diversified security vulnerabilities to accomplish a wide variety
of malicious tasks, such as steal of secret or personal information, making a profit, or just for fun.

In the past, most predominant attacks are ones to applications in binary code on the client, as
represented bpuffer overflowattacks. This kind of attacks, however, has been subsided. It is
possibly because most of them can be preventedXpit

Instead of them, the most serious attacks in recent yearscaif injection attackdo web
servers, such adirectory traversal,Remote File InclusioifRFI), Cross-site scriptindXS$§, or
SQL injection. CVE reported vulnerabilities to script injection attacks have been increased sharply
in recent year®. This is probably due to proliferation of low-grade applications written by inex-
perienced developers, and ease of exploitation of the vulnerabilities.

DTP (Dynamic Taint Propagation) ardIFT (Dynamic Information low Tracking) are pro-
posed to prevent these attacks. The idea behind DTP and DIFT is to tag data from untrusted
sources aginted, propagate taint information and check tainted data.

Though DTP/DIFT are considered to have potential to root out script injection attacks, current
systems still suffer from tradeoff between false positives and negatives.

So li et al. proposed a technique nant&iting-Wise Information Flow Tracking , SWIFT.

They introduce a completely different approach from conventional systems. SWIFT observes the
memory access of the target program, detects string access from address trace, distinguish string

1100000000000000000
GraduateSchool of Information Science and Technology, The University of Tokyo

(© 2010 Information Processing Society of Japan

Vol.2010-OS-115 No.4
ooopooooooDoo 2010/8/3

IPSJSIG Technical Report

operations from common memory access, and propagates taint through string operations from load dummy’;
string to store string. Since SWIFT only concentrates on address traces of a target program, it can YPPATE prod SET price=0 WHERE name=Truby
be implemented both on interpreters of script languages and on processors. Li et al. proposed 1 henfollowing SQL query will be produced.
. . $cmd = SELECT price FROM prod WHERE
SWIFT on processors, but it is hard for SWIFT to be familiarized. name="dummy’;
In this paper, We implemented SWIFT to PHP and executed typical string operations. PHP is UPDATE prod SET price=0 WHERE name="ruby
widely used in the world as scripting language that is designed for server-side web development. As a result, the database will be updated against the programmer’s intention by the attacker.

By implementing SWIFT to PHP, coverage is limited for PHP, but the highly accurate DTP can As seen in this example, a script injection attack is performed by making the victim server in-

be made in the range of taint-support PHP. And it is easy for SWIFT to be familiarized. terpret the string including attack code written in script language. As for binary injection attack,

The rest of the paper is organized as follows. Section 2 reviews background knowledge foreven if an attack binary is successfully injected, execution of injected binary can be easily prohib-
script injection attacks. Section 3, 4 and 5 summarizes current DTP/DIFTs and taint propagatiorited, e.g., by NX bit. As for script injection attack, however, interpretation of injected scripts itself
algorithms. Then, section 6 explains SWIFT in detail. Section 7 and 8 explains how to SWIFT to cannot be prohibited, because it is the main benefit in using scripts. This is the main difficulty of
PHP and evaluation. Section 9 states the conclusion. script injection attack detections.

2. Scriptinjection attacks 3. DTP and DIFT

From Cross-Site Scripting to SQL injection, hackers have various techniques at their disposal The original inspiration of this area was given by that modeof Perl. The main purpose was
to attack Web applications. This section takes SQL injection as an example to explain how scripto prevent script injection attacks especially to web applications
injection attacks occur. Since then, this kind of techniques have been supported by various programming language sys-
SQL injection is a most popular attacks. It allows an attacker to access sensitive informationtems, such as PHP, Ruby, Java, C and its decerfdhtd These language-level supports are
from a Web server’s database. Next we explain the mechanism of SQL injection by using the fol-often referred to aBTP (Dynamic Taint Propagation).
lowing example. A web page shows the price of a product asking the user the name of it through On the other hand, Suh et al. applied Perl taint mode to a processor in order to detect injection
a text box. The below code shows a PHP statement in the page attacks to binary code, and name®Iif T (Dynamic Information Flow Tracking}. Nowadays,
$cmd = EELECT’p”CG FROM prod WHERE the name of DIFT is often used to refer to all such techniques on proc#ssors
name=S$name Although the purpose of DIFT was to detect binary injection attacks, DIFT can also be used to
detect script injection attacks In this paper, we discuss DTPs and DIFTs in a unified viewpoint.
3.1 Advantage and disadvantage of DIFT
The key advantage of DIFT in script injection attack detection is the comprehensiveness. DTP

The string the user entered in the text box has been stored in the vaneniee. Concatenating
$nameand the constant strings, the statement produces the SQL con$uoamtto send to the
SQL server.

In a usual case, for example, the user enteredrjust for $name, the following code is pro- . .
systems are implemented on language-level, so they are language-specific. For example, Perl

duced as:
$cmd = SELECT price FROM prod WHERE taint mode cannot be used for other languages such as PHP. But DIFT systems are not language-
name="ruby specific. Therefore, DIFT provides a more comprehensive platform than DTP. And obviously

Thenthe database will return the price nfby to client. If an attacker injects the string into DIFT is preferable script injection attack detection than DTP if its accuracy is as high as DTP.
$nameby using the code like: However, until now, for the present DIFT systems, the detection accuracy is considered as a

2 (© 2010 Information Processing Society of Japan

Vol.2010-OS-115 No.4
ooopooooooDoo 2010/8/3

IPSJSIG Technical Report
lower one than that of DTPs. Because DIFT could not utilize information of script or high-level (1) 3 uncoded bytes (8*3=24bits) are converted into 4 numbers (6*4=24bits)
languages as a support on detection. In addition, not only the mass of instructions which are ext2) 4 numbers are converted to their corresponding values by using a conversion table
ecuted during interpreting the script provides no helps in information flow tracking, but also it Base64 decoding procedure is the reverse. The point is that Base64 uses table reference as con-
behave as noise. version. In general, table reference is like this:

The two facts are supposed as the main reasons which degrade the accuracy to detect attacks$oStr = Stable[istr]

But, evaluation results show that DIFT could provide a accuracy class which is just the same
We can regard table reference as safe in usual cases, but if it is used as conversion, it is unsafe.

as DTP). The reason is that the propagation algorithms of DTP/DIFT make more influence on

their accuracies than above factors and by using proper propagation algorithms DIFT could get ¥/nen thinking from the point of taint propagation, table reference falls into a trade-off. If we

good enough detection accuracy. In next section, we will explain this point of view by discussing regard table reference as safe, taint isn't propagated from $istr to $ostr, and it produces security

information flows in program execution and taint propagation algorithms in detail. hole. On the contrary, if we regard table reference as unsafe, taint is propagated from S$istr to $ostr,
and it results in mass of false positives. Most existing DTP/DIFTs select the former, so they don't

4. Current problem propagate taint through Base64.

Some Web applications use Base64 to obfuscate sensitive input. In Cubecart3.0.3, we could 5 T4int propagation algorithms

find the code as below:
This section summarizes the algorithms of taint propagation. Firstly we summarize types of

$redir = base64lecode($GET[redir);
¢ Fedit) information flow and their taint propagations. Next, subsection 5.2 describes non-propagation

After this base64ecode()$redir is not sanitized, and this can lead to a remote Cross-site script- policy, which is one of the most important factors of propagation algorithms.

ing attack. For example, if a user creates and inputs a specially crafted URL like: 5.1 Types of information flow and taint propagation
http://[victim]cc3/index. php?act=login&redir=L3NpdGUvZ Information flow can be divided into data, address, and control flows.
GVtby9jYzMvaw5skzXgucGhwP2FjdD12aWV3RG9jJmFtcDtkb2NJZDO0x Data flowis associated with direct data dependence. In the following sample code, there are direct
. . data dependences from the right to the left hand objects.
And the base64encoded part of variable redir is $0 = $i: /I $0 depends on $i
L3NpdGUVZGViby9jY zMvaWskzXgucGhwP2FjdD12aWV3RG9jImFtcDtkb2NJIZDOx $o=$i+$j; //$odepends on $iand $;
In this case, taintedness can simply be propagated from the right to the left hand objects.
After base64decodefunction, it will generate a code like this: Address flovis associated with indirect reference through addresses. In the following s&mple,
Isite/demo/cc3/index.php?act=viewDoc&docld=1 is dependent ofi (and$table):
$o = $table[$i]; // $o depends on $i
And when the code is executed, it will cause a remote Cross-site scripting. Control flowis associated with if-statement in high-level languages or conditional branches in
Existing DTP/DIFTs don’t propagate taint through Base64, so they can'’t detect the Cross-siteoinary codes. In the following samptois dependent ofi:
scripting mentioned above. In the rest of this section, we will explain why existing DTP/DIFTs if ($i=="")
$o ="+, // $o depends on $i

don’t propagate taint through Base64.

Base64 encoding procedure is as follows: As described before, control flow is more difficult to track than data and address flows. DTPs

3 (© 2010 Information Processing Society of Japan

Vol.2010-OS-115 No.4
ooopooooooDoo 2010/8/3

IPSJSIG Technical Report

can find the dependent range of the variables appeared in the condition of if statement becausestalize the policy to string-to-scalar conversion, which hash functions pe¥@rriThese DTPs

can see the block structure of the statement, which is explicitly specified in the source code. regard all scalars as safe even if they are produced from tainted strings, because script injection at-
On the other hand, it is very difficult for DIFTs to find that of a conditional branch. In order to tacks are performed finally by strings. And most DIFTs do not propagate taint along with address

do so, DIFTs must find the join point of the conditional branch, which is not explicitly specified flows by defaul?, which prevents to propagate taint from the index to the values in hash table or

in usual instruction-set architectures. array accesses.
As far as we know, no DIFT can track control flows, and only a few DTP can track and propa-
gate taint along with control flows. 6. SWIFT
5.2 Non-propagation policies This section presents the proposal of SWIFT. The goal of SWIFT proposal is to provide a high
The output of a realistic application program is always a response to user input. fautect accuracy on detecting script injection attacks.
DTP/DIFT, which can perfectly track all the kind of information flow described above, would First of all, subsection 6.1 and 6.2 describes two key observations for introducing our proposal.
mark all the output as tainted. Such DTP/DIFT is useless. Thereforapth@ropagation policy, Then, we describe the detection of string access in subsection 6.3. Finally, we present the taint
is as important as how to propagate taint in particular in control flows. But as far as we know, allinformation propagation technique of SWIFT in detail.
the current DTP/DIFTs define non-propagation policy on heuristics, such assayotitationor 6.1 Command parsing
table reference. Su et al. show that SQL injection can always be perfectly detected as long as the SQL syntax is
5.2.1 Sanitization known and the substrings are correctly detettestedor untrusted®.

Most DTPs regard sanitized string as safe. Since sanitization is often performed by regular As the example of SQL injection we describes in section 2. The command parser of the SQL
expression match and replace in script languages, most DTPs untaint strings which experience gerver knows which substring must be trusted and which substring may be untrusted. Specifically,
Some DTP untaint strings tested for the presence of particular (unsafe) characters. However, thieywords, such allPDATE or SET, or field and table names, suchpage or prod, must be
is a well-known security hole. trusted; while arguments such agy could be untrusted. If the parser knows that the substring

5.2.2 Table reference of $cmd corresponding téname, underlined data in SQL injection example, is untrusted, the

Most DTPs regard the values obtained from hash tables or arrays as safe, and do not propagatarser can easily distingui§itmd is an attack or not.
taint from the input to the output. Most script languages support hash table or array in such a form This command parsing can also be applied to any commands raised from web applications

as follows: other than SQL such as system calls. In general, data from untrusted source should not specify the
$ostr = $table[$istr];

Hash table retrieving is performed in the following manner:

names of the system resources, but may specify their contents. The names of the system resources

include file names, command names, or field and table names of databases.

(1) Theinputstring is converted to a scalar index by a hash function. In the example of section 2, it is very possible that the programmer may apply lower-case con-

(2) The chain indicated by the index is selected. version t@nameonly because all the name of the products in the database is stored in lower-cases.

(3) Following the selected chain, the key string of one tuple in the chain is compared with the | the programmer write lower-case conversion like figure 1(d), almost all the current DTPs untaint

input string after another. If a key string matches the input string, the tuple is selected. $namebecause it uses a translation table. In this case, however, such an attack is still possible

(4) Finally, the value string of the selected tuple is copied to the output string. even thougt$nameis converted to lower-case (note that the SQL keywords are case-insensitive).

Most DTPs do not propagate taint through hash tables or arrays. In addition, some DTPS genrpen the current DTPs result in a false negative. So the substring correspdmdsrteshould

4 (© 2010 Information Processing Society of Japan

gooooooood
IPSJSIG Technical Report

be always tainted even in non-attack cases. In the example of section 2, eugnis left tainted,
the parser can distinguish it is not an attack.

The next subsection describes appropriate non-propagation rules when used with command
parsing.

6.2 Radio-button and text-box operations

A radio buttonand atext boxare two representative user interfaces on web pages. Radio buttons
are used to choose one from some options. On the other hand, text boxes are used to get arbitrary
strings, often with string conversions, such as case conversion or coding conversion.

As described in section 2, text boxes are unsafe to injection attacks. The programmer must
carefully check the string entered through text boxes. Whereas radio buttons are considerably
safe. Since the options of a radio button are provided by the programmer, the string that the user
choose is necessarily under control of the programmer. It is practically impossible for attackers to
attack through radio buttons.

The string operations in web applications can also be divided into radio-button and text-box.

6.2.1 Radio-button operations

figure 1(a) is a sample code of radio-button. As is the case of radio buttons, the value of the
output$ostr is chosen from the strings given by the programmer according to the $pihe
programmer cannot predict the exact valuesostr, but can completely predict the range of the
value thatbostr will take. It can be said that the programmer has control on the output.

figure 1(b) is another implementation of figure 1(a). This is the same as hash tables described
in section 5.2. In this case, the programmer also has control on the output. It is, however, not

because hash tables are considered safe as described in section 5.2, but because the contents of the

table has been given by the programmer.

6.2.2 Text-box operations

figure 1(c) is a sample code of text-box operation. Though the switch statement in the block of
the for statement looks like the code in figure 1(a), it is actually of text-box. This is an inefficient
implementation of lower-case conversion. As described in the previous subsection, the user can
control the value o$ostr except that it is converted in lower-case, and it is still possible to attack
through this operation. It cannot be said the programmer has control on the output.

Text-box operations include string copy and all kinds of string conversions such as case con-
versions explained above, or coding conversions. URL encode/decode and character code conver-

Vol.2010-OS-115 No.4
2010/8/3

.5
switch ($i) {
case 'A: $ostr = "alpha”; break;
case 'B": $ostr = "beta”; break;
1.5
}

(a) Sample code of radio-button operation

$table['A] = "alpha”;
$table['B’] = "beta”;
I*ox
$ostr = $table[$i]; . X
(b) Sample code of radio-button operation

for ($i = 0; $i < strlen($istr); $i++)
switch ($istr[$i]) {
case 'A: $ostr[$i] = 'a’; break;
case 'B": $ostr[$i] = 'b’; break;
I*%
} '
(c) Sample code of text-box operation

$table['A] ="a’;

$table['B] ="b";

1.

for ($i = 0; $i <strlen($istr); $i++)

$ostr[$i] = $table[$istr[$i]]; .
(d) Sample code of text-box operation

$i $o
alphagbetag B betap 2ddrmess

time

(e) Address trace of radio-button operations of (a) and (b)

Sistr Sostr

UPDATE address

update

ime oQ
(U] A‘ddress trace of text-box operations of (c) and (d)

Figurel Radio-button and text-box operations and their address trace

(© 2010 Information Processing Society of Japan

Vol.2010-OS-115 No.4
ooopooooooDoo 2010/8/3

IPSJSIG Technical Report

sions are the most frequently used in web applications. constsirings $name send
.e='g'g rubyf@ ..e='ruby ‘g address

figure 1(d) looks like the radio-button operation of figure 1(b). In addition, the contents of the

$tableis also provided by the programmer. However, in fact it is just another implementationfor |- X
figure 1(c) and of text-box.

6.2.3 Command parsing and string operations

In an application, strings travel on the route from the input to the output, experiencing one or
more radio-button and/or text-box operations. Substring of the string can be considered under

control of the programmer if it experiences at least one radio-button operation on the route.

Therefore, what we should do is to detect whether the operation that a substring experiences is

radio-button or text-box, and propagate the taintedness of input string to output string if and only

time

if the operation is detected as text-box. Figure2 Address trace of string concatenation of SQL injection
Notice that this will propagate taintedness to the output even if it is not an attack. This is ac-
ceptable, since SWIFT is assumed to be used with command parsing described in the previous address
subsection. The parser will detect it is an attack or not correctly. Nl
6.3 Algorithm of SWIFT —
T
6.3.1 Address trace
As described in the previous subsection, the switch statements in figure 1(a) and 1(c) are almost -
the same except that the latter is included in the for statement. In order to distinguish the opera- -

tion in figure 1(c) is of text-box, DTP has to know the switch statement is in the for statement and time
repeatedly executed producing a single string. It is difficult for conventional DTPs, which focus Figure3 Address trace of multi-byte string operation
on each statement or instruction being executed as it did not grasp the overall situation.
SWIFT focus on memory access during program execution, and make use of address traces drhe first tainted load indicates the load to input varidildn this case, the value & is'B’, then
the string operations. Figure 1(e) and 1(f) show two examples of address traces of these strinthe constant stringpeta” is copied to the output variabtostr.
operations. In these figures, the x-axis indicates the address, and the y-axis indicates the time. Figure 1(f) corresponds to the sample code of the text-box operation shown in figure 1(c). The
There are four types of triangles. Upward triangleand a indicate load instructions to untaint taint input string'UPDATE” is converted tdupdate”.
and taint data, respectively. Downward triangieand v indicate store instructions whose store In the both figures, the load instructions read strings and the store instructions write strings, the
value should be untainted and tainted, respectively. A group of triangles connected with a lineactions appear in an interleaved pattern. The obvious difference is that the loads are untainted in
indicates a string access. The load/store instructions that does not related to DTP are not drawn fadio-button while tainted in text-box.
these figures. The sample code in figure 1(b)/1(d) are semantically the same as 1(a)/1(c), and their address
6.3.1.1 Basic address traces traces also looks like 1(e)/1(f), respectively.

Figure 1(e) corresponds to the sample code of the radio-button operation shown in figure 1(a). Figure 1(b) is of a hash table access. As shown in section 5.2.2, the hash table access starts with

6 (© 2010 Information Processing Society of Japan

Vol.2010-0S-115 No.4
gooooooood 2010/8/3
IPSJSIG Technical Report

hashing the input, and ends with copying the value of the selected tuple to the output. Figure 1(epair is referred to as anterleaving-stream read/write.
only shows the first taint load to the input to hash it, and the following string copy from the value
string of the tuple t&ostr. The values of the tuples are untainted, since it has been copied from basebaencodna

56940 T T T

untainted_load
the untaint constant strings just in the reverse direction of figure 1(e). e Sore

untainted_store
56950 | ¢

Figure 1(d) uses a translation table. In $ieh iteration, thebi-th character o$istr is loaded, | e |
then the value in th8table corresponding to the loaded character is loaded, and finally the value X
is stored tdbi-th character ofostr. Figure 1(f) only shows the first taint loads$str, and the el
last stores t&ostr, omitting intermediate untaint loads $table. As shown in figure 1(f), it can

be detected of text-box focusing on the taint load$istr, and the stores tostr. seeso

time

56980 [

So for script injection attacks detection, we should trace interleaving string reads and writes, i :
. . . . ¥
and the taintedness of the read string should be propagated to the write string. And as the result, 57010 -

we can get the output of radio-button operations be untained, and the output of text-box operations
be tainted.

57020
150 200 250 300 350 400 450 500
address

Figure4 Example of interleaving pair (base@hcode)
6.3.1.2 Other examples

Figure 2 shows the address trace of SQL injection. In this case, the constant strings and user
input $name are concatenated to produgemd. As shown in figure 3, the three substrings of 6.3.2.2 Tables
$cmd should be tainted or untainted depending on the source strings are taint or untaint. And Two tables are used to detect read and write streams. Each of the entries of the read/write stream
here, the strindruby” could be tainted because the parser will detect it is not an attack. tables is allocated to a stream.

Figure 3 shows a copy processing of multi-byte string operation. Web applications often deal The entry of the tables has the following fields:
with multi-byte characters, such as URL coding or non-ASCII character sets.
6.3.2 String access detection

6.3.2.1 Streams and Interleaving Pair

e start The start address of the stream.
e nextThe predicted next address of the stream.

e n_accessThecurrent number of accesses in the stream.
A read streamis a sequence of read accesses to a string, and a read access in a read stream i® n_substrmThecurrent number of substreams in the stream.
referred to as atream read Likewise, awrite stream is a sequence of write accesses to a string, ¢ switchedA flag to calculaten_substrm

and a write access in a write stream is referred to stee@mm write. 6.3.2.3 Stream Read/Write Detection

The purpose of the algorithm is to detect iaterleaving pair of a read stream and a write On a read access #@mdr, nextof all the entries of the read table is comparea@dalr. If there

stream. Figure4 shows an example of an interleaving pair. This figure shows a address trace & no match, a new entry is createart, next n_accessareinitialized toaddr, the address next
base64encode.The x and y axis show memory addresses and time. In an interleaving pair, the to add, and one. If there is a matainaccesss incremented andextis advanced for the future

stream reads and writes appear in turn. The read stream is divided into pluratibsiceamsby access. An entry with_accesgyreaterthan a threshold is recognized to represent a read stream.

occurrences of the stream writes, and vice versa. Each of the read/write substreams contains ofreother words, ifaddr matches th@extandn_accesss greater than a threshold, the read access
or more stream reads/writes. And, a read/write access in the read/write stream of an interleaviniy detected as a stream read. And, the same holds true for the write table and write accesses.

(© 2010 Information Processing Society of Japan

Vol.2010-OS-115 No.4
ooopooooooDoo 2010/8/3

IPSJSIG Technical Report

6.3.2.4 Interleaving Stream Read/Write Detection tions. We refer functions that execute each PHP built-in functionas Zif functions.

When a stream write is detected, thwitchedflags of all the entries of theead (not write) All variables in a PHP script are stored in the structure named zval after they are compiled.
table are set. After that, a read access of a stream is detected as the first access to a new substréaal is Figure 7 Zvaluevalue in the zval is Figure 8 When a string in a script is stored in zval,
becauseswitchedis set. Thenn_substrmis incremented, andwitchedis reset for the possible a pointer to the string is acquired by using macros, such_ 8§ R/AL(), Z_STRVAL _P() and
second access in the same substream. An entrynastibstrmgreateithan a threshold is detected Z_STRVAL _PP(),in the Opcode functions. The argument afSARVAL is zval, and the rest of

as the read stream of an interleaving pair. In other wordsjdir matches th@extandn_substrm the macros take the pointer to zval as their arguments.
is greater than a threshold, the read access is detected as an interleaving stream read. Likewise,
the same holds true for the write table and write accesses. ;:{’fj",mmlmw;

6.3.2.5 Propagation and Backtracking e indorul

Every time a stream read is detected, the taintedness of the read is storedaimtisgness

function caselow(5str){

Then, when an interleaving stream write is detected, the taintedness of the written word is set to ?QEFZ‘%”-?TEWsm{
the value otaintedness. switch (Sstril) -
case'A": Sdst.="'a’; break;
When the detector detects streams, the same number of accesses as the threshold have already case'B': Sdst.= 'b'; break;
been performed. Thusacktracking is needed, that is, these written characters should also be Posmsemsesmmmsans
tainted. Thestartfield of the entry is mainly used to locate the start address of the stream. case'z": Sdst.= 'z} break;
default: Sdst.=Sstr[Si]; break;

}
7. Implementation of SWIFT to PHP)

return Sdst;
This section explains how to implement SWIFT to PHP. Since SWIFT only focuses on address)’>
traces of a program execution, it can be implemented both on script interpreters and on proces-))
Figure5 Sample PHP script
sors. PHP is widely used in the world as scripting language that is designed for server-side web
development. By implementing SWIFT to PHP, coverage is limited for PHP, but a highly accurate
DTP can be made in the range of taint-support PHP. And it is easy for SWIFT to be familiarized. 7.2 Acquisition of memory addresses
7.1 PHP interpreter We explain the acquisition of memory addresses. Because we can utilize information of the
We describe the interpreter of PHP. interpreter’s source code, there is no influence of interpreting noise, namely we can acquire only
Figure 5 shows a sample PHP script. We refer functions users defines as PHP user-definedemory addresses of strings. We acquire memory addresses on the source code of Opcode func-
functions. In this script, caselow() is a PHP user-defined function. Strlen() in caselow() is a PHPtions and Zif functions.
built-in function. 7.2.1 Opecode functions
A script of PHP is compiled to the intermediate language named opcode by a runtime compiler String access is done by using the macros mentioned above in Opcode functions, so we can
and is executed. Figure 6 shows a dump of opcode. PHP user-defined functionsand PHP built-irecognize string access. However, we don’'t get memory addresses from all macros, because the
functionsare called by opcode named [FGALL. macros only return the pointer to the string. We get memory addresses only when a memory area

PHPinterpreter is written in C. We refer functions that execute each opcode as Opcode funcawhere string is stored moves to another memory area. There are two actual cases.

8 (© 2010 Information Processing Society of Japan

gooooooood
IPSJSIG Technical Report

Vol.2010-OS-115 No.4
2010/8/3

typedefunion _zvalue_value{

function name: (null)
number of ops: 7 long Ival,
compiled vars: 10= Sstr, !1 = Slower struct _zval_struct{ double dval;
line # op fetch ext return operands zvalue_value value; /“value™/ struct{
zend_uint refcount__gc; char*val; /" string value */
2 0 NOP zend_uchar type: intlen;
41 1 ASSIGN 10, 'toihiroshi' zend_uchar is_ref__gc; } str;
42 2 SEND_VAR 10 Jzval ; HashTable *ht;
3 DO_FCALL 1 ‘caselow’ zend_object_value obj;
4 ASSIGN 11,81 Figure7 Zval }zvalue_value;
43 5 ECHO 11
45 6 RETURN 1 Figure8 Zvaluevalue

function name: caselow

number of ops: 151
st W S In this case we should get addresses ofSTRVAL _P(result) and ZSTRVAL _P(opl).

line # op fetch ext return operands
— 1 Z_STRVAL _P(opl)corresponds to read string, whileZTRVAL _P(result)corresponds to write
3 1 SEND_VAR 10 .
2 DO_FCALL 1 strien string.
/x. 3 ASS‘GN e ” Sf, Another case is that the macros access an element of the string by using subscript. For example,
6 10 FETCH_DIM_R $5 1o,12 . .
5 7 Ghir 6 65w we can find source code as below:
12 IMPZ ~6, ->16
13 ASSIGN_CONCAT 13,7’ Z_STRVAL _P(T->str_offset.str)[T>>str_offset.offset] = ZSTRVAL(tmp)[O0];
14 BRK 1
In this case we should get the addresses of right and left operands.
32 135*IMP ->138
136 CASE ~6 $5,'7' 7.2.2 Zif functions
137 JMPZ ~6,->141 . . X
138 ASSIGN_CONCAT 13,7 There are about a hundred Zif functions from which we have to get memory addresses. For
139 BRK 1
S 7 example, zifurlencode() zif_base64encode() zif_erey_replace().Because only pointers to char
36 148 IMP ->7 . .
37 149 RETURN 13 are passed to Zif functions, we must read the source code and get memory addresses.
38 150* RETURN null
8. Evaluation
Figure6 Dump of opcode 8.1 Environment

We implemented SWIFT to PHP-5.3.1. As for taint-support PHP, we used PHP-taint 20080622

One case is that functions that manage the memory of the interpreter take the macros as thi@2ckage.
We set the environment as below: Ubuntu 9.04, Apache 2.2.14, Mysql 5.1.37.

arguments. The function to which we should pay attention is five of the following: estrdup(), es-
8.2 String operations

trndup(), estrndugel(), erealloc(), memcpy(). Memcpy() is C built-in library function. The e*()s
are defined on the interpreter, and they use memcpy() internaly. For example, we can find source Table 1 summarizes the result of basic string operations. The string operations include string
copies, case and code conversions, which are commonly used in web applications. (2) to (7) are

code as below:
PHP built-in functions, thus they are written in C.
memcpy(ZSTRVAL _P(result),Z_STRVAL _P(op1),Z_STRLEN.P(opl)); . . L
(1)concatenation, (2)substr(), and (3)ereglace()execute string copies in the ends of opera-

(© 2010 Information Processing Society of Japan

Vol.2010-OS-115 No.4
ooopooooooDoo 2010/8/3

IPSJSIG Technical Report

operation PHP-SWIFT | PHP-taint program attack PHP-SWIFT | PHP-taint
FN FP FN FP FN FP FN FP
(1) concatenation phpSysinfo | Cross-site
(2) substr() 2.3 scripting
) eregreplace() \/ Qwikiwiki Directory N
4) ereg() 1.4.1 traversal
(5) strtoupper/tolower() phpBB | Cross-site N
(6) urlencdoe/decode() N PHZPI?I.\JSuIe chgtl'_”g
(7) base64encode/decode() v 75 injection N
(8) untaint table -
(9) tainttable v Cuahécaan (;::issﬁ':'te N
(10) tolower (switch-statement v PHP’_,'\‘ub Crosps—sie
FN: false negative FP : false positive 7.1 scripting v
Tablel Results of string operation PHP-Nule SQL
7.1 injection v

FN false negative FP: false positive

tions, and all the models can propagate taint correctly. (4)ereg() is regular expression match, and Table2 Results of web applications

all the model untaint the scalar result.

(5)strtoupper/strtolower() are case conversions. directory traversal, and SQL injection according to the exploit code. As summarized in Table 2,
(6)urlencode/urldecode() and (7)baseéicode/baseb4lecode(do encode and decode oper- SWIFT caused no false positives or negatives. But PHP-taint produced false negatives.
ations. As a result, PHP-taint untaints the outputs of all these functions. 8.4 Accelerator

(8)untaint table and (9)taint table retrieve values from tables with taint keys.(8)untaint and we evaluated PHP-SWIFT with a PHP accelerator. A PHP accelerator is an extension designed
(9)taint table have been stored untaint and taint values, respectively. Since PHP-taint regard® speed up execution time of software applications written using PHP. Most PHP accelerators
the values from tables as safe, it results in false negative in (9)taint table. On the other handyse opcode caches. Opcode caches work by caching compiled codes of a PHP script (opcode)
PHP-SWIFT can track the flow between the input and the output values through a table. in shared memory to avoid the overhead of parsing and compiling source code on each request.

(10) is a lowercase conversions code, shown in figure 1(c). Though the function is the same aSome users and enterprises introduce accelerators in order to increase a speed of PHP code.
(5)strtolower(), it is written in PHP. (10) is written with a switch statement construction. PHP- ~ We used an eAccelerafdias an accelerator. The eAccelerator is one of free accelerators. We
SWIFT produce no false positives or negatives, because PHP-SWIFT can correctly propagateonfirmed PHP-SWIFT worked correctly with the eAccelerator.
taint for all the operations. So, even if programmers use operations such as these to be the input .
arguments of applications, PHP-SWIFT could also provide high precision. 9. Conclusion

8.3 Real-world web applications In this paper, we implemented String-Wise Information Flow Tracking, SWIFT, to PHP.

We executed eight web applications with known vulnerabilities written in PHP. The applications SWIFTis a completely different approach from conventional DTP/DIFTSs. In order to detect script
are phpSysinfo 2.3, QwikiWiki 1.4.1, phpBB 2.0.8, PHP-Nuke 7.5, Cubecart 3.0.3 and PHP-Nukeinjection attacks precisely, SWIFT observes memory accesses of a target programs, detects text-
7.1. These applications use some input variables as an argument without validation or even anyox string operations and propagates taint through them. Since SWIFT only uses address traces
string operations to them. We made Script injection attacks such as Cross Site Scripting (XSS)of a program, it can be implemented both on script language interpreters and on processors.

10 (© 2010 Information Processing Society of Japan

Vol.2010-OS-115 No.4
ooopooooooDoo 2010/8/3

IPSJSIG Technical Report

We implemented SWIFT to PHP and compared the accuracy with taint-support PHP. PHP-
SWIFT can correctly propagate taint for typical string operations and real-world web applica-
tions with known vulnerabilities, while PHP-taint don’t. Additionally, we confirmed PHP-SWIFT
worked correctly with the eAccelerator.

We are going to implement SWIFT to all PHP built-in functions. We plan to distribute PHP-
SWIFT.

References

1) Allen, J.: Perl Version 5.8.8 Documentation - Perlsec, http://perldoc.perl.org/perlsec. pdf
(2006).

2) Chen, H., Wu, X., Yuan, L., Zang, B., chung Yew, P. and Chong, F.T.: From Speculation
to Security: Practical and Efficient Information Flow Tracking Using Speculative Hardware,
Int’l Symp. on Computer Architecture, pp.401-412 (2008).

3) Christey, S. and Martin, R.A.: Vulnerability Type Distributions in CVE, http://cve.mitre.org/
docs/vuln-trends/ (2007).

4) Dalton, M., Kannan, H. and Kozyrakis, C.: Raksha: A Flexible Information Flow Architec-
ture for Software Securit@4th Int'l Symp. on Computer Architecture, pp.482—493 (2007).

5) Haldar, V., Chandra, D. and Franz, M.: Dynamic Taint Propagation for Zast, Annual
Computer Security Applications Conf., pp.303—311 (2005).

6) Livshits, B., Martin, M. and Lam, M.S.: SecuriFly: Runtime Protection and Recovery from
Web Application VulnerabilitiesTech. Rep., Stanford Uni{2006).

7) Nanda, S., Lam, L.-C. and cker Chiueh, T.: Dynamic Multi-Process Information Flow Track-
ing for Web Application Securitygth Int'l Middleware Conf(2007).

8) Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J. and Evans, D.: Automatically Hard-
ening Web Applications using Precise Taintir&f)th Int’l Information Security Conf.pp.
295-307 (2005).

9) Pietraszek, T. and Berghe, C.: Defending against Injection Attacks through Context-
Sensitive String Evaluatioth Int'l Symp. on Recent Advances in Intrusion Detectam
124-145 (2005).

10) Su, Z. and Wassermann, G.: The Essence of Command Injection Attacks in Web Applica-
tions,33rd Symp. on Principles of Programming Langua(606).

11) Suh, G.E,, Lee, J.W., Zhang, D. and Devadas, S.: Secure Program Execution via Dynamic
Information Flow Trackingl1th Int'l Conf. on Architectural Support for Programming Lan-
guages and Operating Systepp.85—-96 (2004).

12) Xu, W., Bhatkar, S. and Sekar, R.: Taint-Enhanced Policy Enforcement: A Practical Ap-
proach to Defeat a Wide Range of Attack§th USENIX Security Conf., pp.121-136 (2006).

11 (© 2010 Information Processing Society of Japan

