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構造トポロジーと複雑ネットワーク特徴量からの
タンパク質フォールディング速度予測

宋 江 寧†1,†2 竹 本 和 広†3 沈 紅 斌†4

檀 浩†2 マイケル・グロミハ†5

阿久津 達也†1

タンパク質のフォールディング速度を予測することはそのフォールディングを理解に
向けて重要なステップのひとつである。私たちはタンパク質の三次元構造から得られる
様々な構造トポロジーと複雑ネットワーク特徴量を併用した新規のフォールディング
速度予測法を提案する。この提案手法は二状態と多状態タンパク質のフォールディン
グ速度の予測において既存手法より高い精度を示す。この予測モデル（PRORATE）
は http://sunflower.kuicr.kyoto-u.ac.jp/˜sjn/folding/において利用可能である。

Prediction of Protein Folding Rates from Structural
Topology and Complex Network Properties

Jiangning Song,†1,†2 Kazuhiro Takemoto,†3

Hongbin Shen,†4 Hao Tan,†2 M. Michael Gromiha†5

and Tatsuya Akutsu†1

Prediction of protein folding rate is an important step towards our further
understanding of the protein folding mechanism. We develop a novel approach
to predict protein folding rates, which combines a variety of structural topol-
ogy and complex network properties calculated from protein three-dimensional
(3D) structures. The leave-one-out cross-validation (LOOCV) tests indicate
that this integrative strategy is more powerful in predicting the folding rates
from 3D structures, with the Pearson’s Correlation Coefficient (CC) of 0.88,
0.90 and 0.90 for two-state, multi-state and combined protein folding kinet-
ics. The implemented webserver (termed PRORATE) is freely accessible at
http://sunflower.kuicr.kyoto-u.ac.jp/˜sjn/folding/.

1. Introduction

A major issue in molecular biology today is to understand how a protein folds into

its 3D structure and how to gain its biological function as a linear string of amino acid

sequence1). Unraveling the protein folding mechanisms remains to be one of the most

challenging problems and has been considered as deciphering the second half of genetic

code2). Protein folding rate is a measure for evaluating how slow or fast the folding

of proteins from the unfolded state to native three-dimensional structure3), which is

usually described by the folding rate constant Kf . On one hand, proteins can fold into

their native structures at very different folding rates, varying from several microsec-

onds to even an hour4). On the other hand, subtle changes in the solvent environment

or protein sequence can dramatically alter the protein folding kinetics, accounting for

the distinct kinetic behaviors under different experimental conditions5). Further, the

misfolding of proteins into non-native states altered by the folding kinetics could lead

to several degenerative disorders, such as prion and Alzheimer’s disease6). Numerous

previous studies of protein folding kinetics as well as its association with protein struc-

ture and function have led to our improved understanding of the physical processes of

protein folding and the fundamental rules governing protein folding behaviors.

Prediction of protein folding rate from its amino acid sequence is an important step

towards our understanding of the protein folding mechanism4). Previous studies have

indicated that protein folding kinetics can be categorized into two kinetic orders: sim-

ple two-state (TS) folding behaviors without the visible intermediates, and three-state

(or multi-state, MS) folding kinetics that exhibits the obvious intermediate state dur-

ing folding process under experimental conditions4). With the increasing availability
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of protein folding data deposited in public databases as the consequence of structural

genomics projects, efficient computational tools are desired to be developed to predict

protein folding rates, which will not only provide important complementary information

for annotating protein folding data, but also contribute to the deep understanding of

protein folding mechanisms.

In the past two decades, a number of prediction studies have been performed to in-

fer protein folding rates using different topological parameters from three-dimensional

structures. The majority of these analyses mainly focused on inferring the statistical

significance of the correlations between protein folding rate and different topological pa-

rameters, including contact order (CO)5), absolute contact order (Abs CO)7), total con-

tact distance (TCD)8), long range order (LRO)9), long range contact order (LR CO)10),

effective secondary structure length (Leff)4), the fraction of local contact (FLC)11),12)

and chain topology parameter (CTP)13).

Graph theoretic approaches that model protein structures as connecting networks of

interacting residues, from the perspective of complex networks14),15), provide new in-

sights into protein folding mechanism?). Moreover, a most-recent study indicates that

complex network properties correlate with folding rates16). Based on the these views, it

would be interesting to investigate whether protein folding rates can be more accurately

predicted on the basis of the integration of various structural topology parameters and

the general complex network properties calculated from protein 3D structures.

In this study, we propose a novel approach to predict the folding kinetic orders and

folding rates for two-state and multi-state protein folders using support vector regres-

sion approach. We combine a variety of structural topology parameters with complex

network properties as the input features into the SVR models. We construct the SVR

models by mapping these input feature vectors into a high-dimensional feature space

using the non-linear polynomial kernel functions. The rigorous leave-one-out cross-

validation (LOOCV) tests show that the generic complex network properties coupled

with structural topology parameters can significantly improve the prediction accuracy,

suggesting that this approach can be effectively utilized for reliable inference of protein

folding rates and folding kinetic orders, which could provide important complementary

information for the annotation of the foldomics data. In this article, some details are

omitted, which are given in the journal version of this article17).

2. Methods

2.1 Datasets

We used a larger dataset that has been recently constructed by Ouyang and Liang18).

It consists of 80 protein folders with their folding rates experimentally determined.

Among them, 45 proteins exhibit two-state (TS) folding behaviors, while the other 35

proteins belong to the three-state or multi-state (MS) folding kinetics. They belong to

different structural classes: 18 are all-α proteins, 32 are all-β proteins, and the remain-

ing 30 are αβ proteins. The logarithmic folding rates of these proteins range from −6.9

to 12.9.

2.2 Structural Topology Measures

We utilized 8 structural topology properties (CO, Abs CO, TCD, LRO, LR CO, Leff ,

FLC and CTP), mentioned in Sec. 1.

2.3 Complex Network Properties

We constructed PCNs and LINs based on protein 3D structures, and calculated the

following graph-theoretic metrics: Clustering Coefficient (CC)14), Cyclic Coefficient

(CYC)19), Triangle Density (TD)20), Characteristic Path Length (CPL)14) and Assor-

tative Coefficient (AC)21). Henceforth, in addition, the complex network properties X

obtained from PCNs and LINs are represented as X PCN and X LIN, respectively.

2.4 Support Vector Regression

To predict folding rates, the support vector regression (SVR) in SVM light package22)

was utilized. We selected different combinations of optimal parameters of polynomial

kernel functions to build the different SVR models.

2.5 Performance Evaluation

To evaluate the performance and avoid the over-fitting, we performed the back-check

and the leave-one-out cross-validation (LOOCV) tests.

For the classification task of predicting protein’s folding kinetic orders, we evaluated

the performance by calculating the overall accuracy (ACC), Sensitivity, Specificity and

the Matthew’s correlation coefficient (MCC).

For the regression task of predicting protein folding rates, the Pearson’s correlation

2 c© 2010 Information Processing Society of Japan

Vol.2010-BIO-21 No.31
2010/6/19



情報処理学会研究報告
IPSJ SIG Technical Report

coefficient (CC) between the predicted and observed folding rates and the root mean

square error (RMSE) are used to evaluate the prediction performance.

3. Results

3.1 The Difference between the TS and MS Folders Indicated by Topol-

ogy and Network Properties

There are two significant topology measures that show distinguishable preferences

for the TS and MS proteins: CO and LR CO. On the other hand, five out of ten

different complex network properties exhibit significant statistical significance between

the TS and MS protein folding kinetics, including four properties of PCN (CC PCN,

CYC PCN, CPL PCN and AC PCN) and one property of LIN (AC LIN).

3.2 Specific Correlations Between Topology Parameters, Network Prop-

erties and Protein Folding Rates

We next computed the Pearson’s correlation coefficients between topological param-

eters/network properties and the corresponding protein folding rates in our dataset

(表 1). We observed that five topology parameters (CO, Abs CO, TCD, LRO and

CTP) show significant negative correlations, and FLC has significant positive corre-

lation with the folding rates of TS proteins. However, in the case of the MS protein

folders, CO and LR CO exhibit positive correlations with their folding rates. This

correlation differentiation between the same topology measures with the folding rates

might imply the difference of folding mechanisms of the TS and MS proteins.

With respect to the complex network properties, we also observed that there are signif-

icant correlations between three network properties (CC LIN, CYC LIN and TD LIN)

and the corresponding folding rates of the TS proteins. All these network parameters

have strong negative correlations with the folding rates of TS proteins. It is particularly

interesting to notice that all LINs’ properties exhibit stronger correlations with protein

folding rates in contrast to the corresponding PCNs (表 1). Nevertheless, when it comes

to the MS proteins, four PCN properties have significant correlations with the folding

rates. For example, CC PCN and CYC PCN have significant positive correlations with

MS folding rates, whereas TD PCN and CPL PCN have strong negative correlations.

Only one LIN property TD LIN exhibits significant correlation with the MS folding

rate. Based on these observations, we conclude that PCN parameters have better cor-

relations with the folding rates of the MS proteins, while LIN measures have stronger

correlations with the folding rates of the TS proteins. All these findings suggest that

distinctive folding mechanisms hold for the TS and MS protein folding kinetics.

表 1 Correlation coefficients between topology parameters, network properties and the corresponding

folding rate lnKf values. The results are computed with the traditional threshold Rd = 8Åusing

the Cα atom for the TS proteins as the node and Rd = 8Åusing the non-hydrogen atom for

the MS proteins as the node, respectively.

Measures Two-state Multi-state Overall

Topology

CO −0.725 0.406 −0.191

Abs CO −0.512 −0.845 −0.583

TCD −0.746 0.095 −0.291

LRO −0.733 – −0.585

LR CO −0.020 0.572 0.297

FLC 0.678 0.587 0.498

CTP −0.567 −0.771 −0.570

Prolength −0.108 −0.838 −0.428

Network

CC PCN 0.321 0.803 0.516

CC LIN −0.753 −0.041 −0.494

CYC PCN 0.278 0.810 0.504

CYC LIN −0.708 −0.227 −0.512

TD PCN −0.411 −0.600 −0.401

TD LIN −0.756 −0.637 −0.555

CPL PCN 0.048 −0.656 −0.230

CPL LIN 0.398 −0.175 0.129

AC PCN 0.186 −0.351 −0.137

AC LIN 0.353 −0.353 −0.062

3.3 Improving Folding Rate Prediction by Integrating Topology Param-

eters, Network Properties and Combined Features

To explore the possibility of improving the prediction of protein folding rates, we

further encoded these topology and/or network parameters as the input features into

SVR classifiers. Feature selection was performed using a recursive elimination strategy.

The resulting prediction performances are summarized in 表 2.

In the case of two-state protein folding kinetics, the SVR classifier based on network

properties performed better than that based on topology parameters. In contrast, for
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表 2 Prediction performances in terms of CC and RMSE using different SVR models based on topology, network and the combined features.

SVR models
Topology Network Combined

Back-check Jack-knife Back-check Jack-knife Back-check Jack-knife

Two-state
CC 0.810 0.780 0.856 0.791 0.933 0.853

RMSE 2.20 2.34 1.93 2.29 1.34 1.95

Multi-state
CC 0.872 0.821 0.831 0.813 0.882 0.824

RMSE 1.84 2.14 2.08 2.18 1.77 2.12

the multi-state protein folding, the SVR classifier based on topology parameter provides

better performance compared with that based on network properties (図 1). We argue

that these results might be a reflection of the difference of folding mechanisms between

the TS and MS protein folders. Moreover, after combining the topology and network

properties, the resulting SVR classifier further improves the prediction accuracy.

図 1 The scatter-plots of the observed and predicted folding rates of the TS and MS protein folders

by the jack-knife cross-validation test.

3.4 Formulating as a Two-class Prediction Problem and Comparing Pre-

diction Performance with Two Recent Studies

Since previous studies examined the predictive performance by a conventional two-

class classification, namely, to predict whether a protein folds via TS or MS kinetics,

we also examined and compared our SVR classifier with two recent methods, includ-

ing the binary logistic regression (BLR) which uses chain length as the feature23) and

the composition-based predictor which is based on the differentiation of amino acid

contents between the TS and MS folders10). To make an objective comparison, these

methods are measured on the same training and test datasets. The result comparison

is presented in 表 3. As can be seen, the SVR classifier performs much better than the

BLR method. The SVR classifier also compares favorably with the composition-based

predictor. These results suggest that this SVR classifier is at least competitive with, if

not better than, the two recently developed methods.

4. Discussion

Prediction of protein folding rates is an important step towards our deep understand-

ing of the protein folding mechanism and remains to be one of most challenging tasks

in structural bioinformatics today. One of the main contributions of this paper is that

we comprehensively integrate the complex network properties along with a variety of

structural topology features of protein structures as the input features to build the

SVR classifiers in order to improve the prediction performance. In particular, for the

TS proteins, the predictive power of network properties is stronger than that of struc-

tural topology parameters, suggesting that network properties can be used to better

describe the underlying mechanism that dominates the TS protein folding process. On
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表 3 Two-class prediction accuracy in terms of the Sensitivity, Specificity, ACC and MCC for the prediction of two-state and multi-state

protein folders by different approaches.

Methods
Prediction accuracy (%)

Sensitivity Specificity ACC MCC

Comparison with Ma et al.
Composition-based predictor 79.7% 82.0% 80.8% –

SVR 76.0% 85.7% 80.8% 0.607

Comparison with Huang and Cheng
Binary logistic regression (BLR) 98.3% 72.0% 90.6% 0.774

SVR 90.6% 95.0% 91.7% 0.798

the other hand, topology parameters are more indicative of the MS protein folders than

the network measures, which might imply that the topology parameters are the most

important determinants in the case of the MS folding kinetics.

To improve the prediction performance of protein folding rates, we adopted the re-

cursive elimination strategy to optimize the feature selection of the SVR by comparing

the performance using different combinations of topology and network parameters. The

primary goal here was to improve the prediction accuracy, due to the fact that using

all the features together might not lead to the best prediction performance. However,

several ways may help to further improve the prediction performance in the future.

The first method is to use more accurately determined PDB structure data with bet-

ter resolutions, as it is well-known that SVR has better performance when trained on

larger dataset with adequate training samples. The second strategy can be focused on

improvement of feature selection and SVR parameter selection procedures that have

important effect on the final prediction accuracy. The third way is to use high-quality

folding rate dataset that has refined data representation, which can ensure better rep-

resentation particularly for the MS protein folders when fed into the SVR classifiers.

This might be applicable when more protein foldomics data are available24).

It is likely that the improvement in prediction accuracy for both the TS and MS pro-

tein folders is a reflection of the fact that the folding mechanism of a protein is largely

determined by its global structural topology and network organization rather than its

local inter-atomic interactions, as previously discussed by Bagler and Sinha16). The

specific correlations between various network properties and protein folding rates found

in this study may further enhance our understanding of the protein folding process from

the perspective of complex network organization. Our method provides useful insights

by utilizing as many as ten different properties of the complex networks in the form of

the PCNs and LINs, which could shed light on the network organization underlying the

complex protein folding process that applies not only to the two-state but also to the

multi-state protein folding kinetics.

5. Conclusion

We attempted to predict protein folding rates of proteins with TS and MS folding

kinetics, by developing a multiple-feature framework based on SVR approach. Our

method integrated a variety of structural topology and complex network properties as

the input features into the SVR models. We comprehensively investigated the specific

correlations between topology parameters/network properties and protein folding rates,

based on short-range and long-range contact scales. Statistical analyses indicate that

LINs show much stronger correlations with protein folding rates in compassion with

the corresponding PCNs. Moreover, our approach could yield favorable or at least com-

parable prediction performance in contrast to two recently published methods. The

results highlighted that our integrative approach is computationally competitive and

can be used as a powerful tool for the characterization of the foldomics protein data.
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