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Model parameter estimation and automatic outlier detection is a fundamental
and important problem in computer vision. Vision data is noisy and usually
contains multiple structures, models of interest. RANSAC has been proven
to be the most popular and effective solution for such problem, but it requires
some user-defined threshold to discriminate inliers/outliers. It is then improved
by the adaptive-scale robust estimators, which do not require the user-defined
threshold and detect inliers automatically. However, there still remains some
problem. The problem is that these adaptive-scale robust estimators do not
focus on the accurate inlier detection.
In this paper, we propose several adaptive-scale robust estimators which can

detect inliers accurately. There are two reasons for the idea of accurate inlier
detection. First, if a robust estimator detects inliers better, then the robust-
ness of the estimation can be improved. Second, in many real applications
such as motion segmentation and range image segmentation, if the inlier detec-
tion is not very well, then a structure can be broken into smaller structures,
an under-segmentation problem, or united with the other structures, an over-
segmentation problem.
In the experiments, various analytic simulations in many aspects have shown

the advantage of the proposed robust estimators compared to several latest
robust estimators. The real experiments were also performed to prove the
validation of the proposed estimators in real applications.

1. Introduction

Vision supplies us with plenty of information and various computer vision algo-

rithms have been being proposed to exploit. We can now extract the geometric,
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photometric, semantic information and so on from all types of image such as in-

tensity, infrared or range image. The applications of computer vision may include

the extracting the geometric primitives from images like lines, planes, surfaces of

known mathematic model1), multiple view image transformation3), motion esti-

mation of the camera that is attached to a robot or an autonomous vehicle3),27),

camera parameter calibration2), image recognition4), searching for the existance

of a pattern in the image database, and in varieties of problems where the model

that describes the mathematical formulation is known but the parameters of the

model are unknown.

Vision data like intensity or range image always contains large number of pixels

and each of them is captured with unknown amount of noise caused by the sensor.

Therefore, the computer vision algorithms usually have to work with the heavily

over-constrained problem. Vision data usually contains several structures of the

same model such as different lines of same 2D line model or different circles of

the same 2D circle model. Moreover, multiple models may appear at the same

time. The different situations of vision data are illustrated in Fig. 1.

 

Single structure. Multiple structures with 

different noise levels of the 

same model. 

Multiple structures of multiple 

models. 

Fig. 1 Vision data may contain single structure, multiple structures of the same model, or
multiple structures from multiple models and random noise. We should note that the
data points for each structure are also contaminated by some small unknown source of
noise.

Therefore, in most computer vision problems, to extract an interested struc-
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ture, the parameter estimation methods must distinguish the data points of this

structure from other structures and other models. RANSAC6) that was proposed

by M.A. Fischler and R.C. Bolles has been proven the most robust and effective

method for such problems. Although, in computer vision, Hough transform or

randomized Hough transform15),16) are also very robust estimators, they are only

efficient for low dimensional parameter vector estimation. For a high dimensional

parameter vector, it is is inefficient to manage the huge voting space.

In this paper, we present some new robust estimators, that rely on a novel

inlier scale estimators. The proposed inlier scale estimators do not detect the

inliers directly from the roughly estimated density using a smoothing parameter.

Instead, we apply a matching method to detect inliers by globally searching the

estimated density of the residual to find the most likely inlier residual distribution.

The inlier residual distribution is modeled using a case-dependent but known

constraint, the residual function, which importantly constrains the inlier residual

distribution. This has not been used in any previous works. In our methods, the

inlier scale is estimated correctly, thus improving the estimation robustness.

2. Related Works

The least squares (LS) method5) is a simple basic method for parameter estima-

tion. It has been extended in the M-estimators5) by replacing the square function

of the LS by a flexible symmetric function with a unique minimum at zero. The

drawback of the simple LS method and M-estimators is the very low breakdown

point. Improved algorithms for the LS method and M-estimators are available

such as the least median squares (LMS) or reweighted LS, reweighted and re-

descending M-estimators5), and these can achieve a higher breakdown point, up

to 50% of the outliers. However, in a real estimation problem, such as extracting

lines from an intensity image or extracting planes from a range image, where

the outlier rate is much higher than 50%, the LS method and the M-estimators

cannot function properly. Another drawback of the LS method and M-estimators

is the initialization: as a result of improper initialization, the global minimum

may not be obtained. This problem can however, be solved effectively using ran-

dom sampling, as is the case in the well-known solutions LMedS, MSAC23) and

MLESAC19).

Some estimators can tolerate higher outlier-rate than 50%. The RANSAC6)

and Hough transform15) are the most popular in this category. If the scale of in-

liers is supplied, RANSAC can reach a very high breakdown point. However, the

drawback of RANSAC and its subsequent improvements17)18)19)20) is that they

need a user-defined threshold to distinguish inliers. The Hough transform can

also achieve a very high breakdown point so long as it is able to manage its large

voting space. Certain extensions of LMS, such as MUSE (minimum unbiased

scale estimate)7) or ALKS (adaptive least kth order squares)8), can be applied

with high outlier rates, however these have a problem with extreme cases, such

as those with very low or high outlier rates, and are sensitive to small pseudo

structures. Another extension of LMS is MINPRAN (minimize probability of

randomness)9), which makes an assumption of the outlier distribution. This as-

sumption seems to be strict since outlier distribution is assumed with difficulty.

RESC (residual consensus)10) computes a histogram of the residuals, then uses

several parameters to compress the histogram, and finally the histogram power

is computed as the score for the putative estimate. It is claimed that RESC can

tolerate single structure data containing up to 80% outliers, however, it needs

many user-defined parameters to compress the histogram and to detect the inlier

residual distribution, which reduces its adaptiveness. The pbM (projection-based

M-estimator)11)21)22) is an extension of the M-estimator that uses projection pur-

suit and kernel density estimation (KDE), and can provide a breakdown point

greater than 50%. However, it only works for linear (or linearized) residual func-

tions, such as in linear regression. Another robust estimator that uses KDE is

ASSC (adaptive scale sample consensus)12). ASSC assumes that the inliers are

located within some special structure of the density distribution; it practically

detects a first peak from zero and a valley next to the peak to locate the inliers.

ASSC can provide a very high breakdown point, around 80%, when applying the

proper bandwidth for the KDE. ASSC has subsequently been improved as ASKC

(adaptive scale kernel consensus)13). ASKC improves the objective function of

ASSC and the robustness in the case of a high outlier rate. However, in our

experiments, ASKC and ASSC usually underestimated the population of inliers.

The estimated inlier scale for these estimators correlates with their KDE band-

width. Therefore, the objective function does not evaluate the estimate precisely,
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thus reducing the robustness of the estimators.

3. Overview of Proposed Estimator

In contrast to the pbM, ASSC or ASKC, our proposed methods do not com-

pute the inlier scale directly from the estimated residual density, since this only

roughly describes the true distribution and the location of a local peak, global

peak or local valley in the density estimation depends on a smoothing parameter

(bandwidth or binwidth). We estimate the inlier bound by globally searching

the inlier scale estimate that results in the best fit of the residual density to a

residual distribution model.

In previous methods, the residual distribution of inliers was typically assumed

to be a Gaussian distribution. In our methods, we carefully analyze the distri-

bution of inliers using the residual function which constrains the distribution of

residuals. The residual distribution model is determined statistically or math-

ematically using the residual function. This means that the distribution model

of inlier residuals varies when we apply different residual functions. This anal-

ysis helps the proposed estimators correctly estimate the inlier scale, thereby

improving the robustness.

4. Preliminaries

In this section, we describe the estimation problem and some definitions that

are used in the paper.

Assume the estimation of a structure model with the constraint:

g(θ,X) = 0, (1)

where θ is the parameter vector of the structure, and X is an explanatory data

point. Our estimation problem is then described as:

• Input : N observed data points Xi, i = 1..N , including both inliers and

outliers.

• Output : Parameter θ that describes the data.

In a real problem, each inlier Xt is affected by an unknown amount of noise n:

X = Xt + n. (2)

Therefore, the actual parameters θ cannot be recovered, and some approximation

of θ needs to be estimated. A robust estimator based on random sampling like

RANSAC solves the problem by trying many random trial estimates θ̂, with

the best estimate θ̂∗ being the approximation of θ. In evaluating whether an

estimate θ̂ is good or bad, the estimator can only rely on the statistics of the

error for each data point; this error is called the residual, which is a non-negative

measure in the proposed method. For each model estimation problem, there

are numerous ways of defining the residual function, including using the original

constraint function (1). Generally, however, the residual is defined as:

rθ̂ = f(θ̂,X). (3)

A good definition of the residual is that proposed by Luong et al.25):

rθ̂ =
g(θ̂,X)

∥ ▽g(θ̂,X) ∥
, (4)

where ▽g(θ̂,X) is the gradient of g with respect to variable X.

In a real problem, the inlier residual is not zero. The standard deviation of these

inlier residuals is called the “inlier scale”, and is denoted by σθ̂. The problem

is that σθ̂ is not known, and therefore, an inlier scale estimator tries to estimate

it. This estimate is denoted by σ∗
θ̂
. Once the inlier scale has been found, the

threshold tθ̂ = τσ∗
θ̂
can be decided to distinguish inliers from outliers.

Given an estimate θ̂, and an inlier scale σθ̂, the probability density function for

all residuals is denoted as Pθ̂(r), which is the sum of density functions for inliers

and outliers. The proposed estimators work with data with multiple structures,

and therefore the residual distribution may have multiple modes. A segment of

the distribution that has a mode near the origin is assumed to belong to the inlier

structure, whereas the others belong to the outlier structures. The decomposition

of the residual distribution is illustrated in Fig. 2. The outlier distribution is

usually complicated and unpredictable. However, the inlier distribution can be

well modeled in most problems. In our methods, the inlier distribution model

is made using the residual function. The density function for the standardized

distribution model (SDM), with the sample deviation of 1, is denoted as P (ξ), ξ ≥
0. Then, the inlier distribution is estimated by matching the residual distribution

Pθ̂(r) with SDM.

An adaptive-scale robust estimator consists of two constituents7)–10),12),14): a

scale estimator and a hypothesis evaluator. For a given putative hypothesis,

the scale estimator has to detect the inliers and estimate the inlier scale. Then
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Fig. 2 Decomposition of residual density distribution: inlier density distribution and outlier
(other) density distributions. The outlier distribution may consist of a distribution of
the other structure and a distribution of random outliers.

the hypothesis evaluator computes the score using a objective function for this

detection based on the estimated inlier scale. This is different from that of

pbM11),21),22), in which inliers are detected finally after the solution is outputted.

The general flowchart for the proposed adaptive-scale robust estimators is pre-

sented in Fig. 3, the details are described in the following sections. The inlier

residual distribution model, SDM, is described in Section 5. A histogram of resid-

uals is computed using the bin-width that is discussed in Section 6.3. Searching

for an inlier scale, inlier detection methods, is described in Section 6.1 and Sec-

tion 6.2. And finally, the hypothesis is evaluated by an objective function in

Section 6.4.

5. Case-dependent Residual Distribution Analysis

In most previous works8),10),12)–14), the theory of the algorithms is made for

the Gaussian distribution of inlier residuals. However, it is not always true in

practice. Therefore, we would like to formulate a residual distribution closer to

the actual inlier residual distribution, in order to extract the inliers better. Our

idea is that the distribution of inlier residuals depends on the residual function.

In this section, we carry out an analysis of the residual distribution for various

estimation problems. It is better to assume Gaussian noise on the data points

 

Make a random sample 

Compute residuals and make a 
Histogram 

Make the Standardized 
Distribution Model (SDM) 

 

Searching for the inlier scale of 
which the distribution best fits 

to SDM 

Score the solution by density of 
estimated inliers 

Record the best solution 

Stop? 

 

No 

Inlier Scale Estimator 

Objective Function 
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Fig. 3 The general flowchart for the proposed adaptive-scale robust estimators.

than to assume a Gaussian distribution of residuals. Firstly, this is because the

noise on data points originates from physical sensors such as a camera in which

noise distribution is usually modeled by a Gaussian distribution. Secondly, it is

because the residual distribution is constrained by the residual function. There-

fore, we assume that the noise model for the data points is known and it is

a Gaussian of unknown variance in this paper. However, due to the residual

function (3), the distribution of residuals is generally different from that noise

distribution. Then, we analyze the distribution model for residuals. Two exam-

ples are presented in this section: line fitting and fundamental matrix estimation.

5.1 Linear Residual

We start the analysis with a well-known problem for a robust estimator, the

line fitting problem, in which the residual function is a linear function of the
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parameters. We have a set of N points (x, y), and the parameters of the true line

l are slope (a, b) and intercept c, where a and b are normalized so that a2+b2 = 1.

We denote these parameters as θ = (a, b, c). In most computer vision problems,

the data points are limited within some bound. Inliers are contaminated by noise

with a noise model such that:

x = xt + nx,

y = yt + ny,
(5)

where (xt, yt) is the true point and (nx, ny) is noise added to the point. The

noise scale is assumed to be much smaller than the bound of the data points.

Given an estimate for the estimation of the line fitting problem: θ̂ = (â, b̂, ĉ),

where â2 + b̂2 = 1, the fit of this estimate to the data set is analyzed by the

residuals of all points. We focus on the analysis of the distribution of residuals.

Signed residual r for data point (x, y) is computed as:

r = âx+ b̂y + ĉ. (6)

This is actually the signed point-line distance from (x, y) to the estimated line.

For outliers, regardless of whether the estimate θ̂ is correct or not, the residual

r is still large and is bounded by the same limit [rmin, rmax].

For inliers, r can be decomposed as follows.
r = (âxt + b̂yt + ĉ) + (ânx + b̂ny)

= rt + rn,
(7)

where rt = âxt + b̂yt + ĉ and rn = ânx + b̂ny. It can be seen that r is the sum

of two different variables with different properties. rt is the linear combination

of xt and yt given the estimation parameters â, b̂, ĉ, and depends strictly on the

accuracy of the estimation. rn is the linear combination of the noise on the data

points. If the noise on the data points is Gaussian noise, with some standard

deviation and zero mean, nx ∈ G(σx, 0), ny ∈ G(σy, 0). Then rn is also a variable

that comes from a Gaussian with standard deviation σn =
√

â2σ2
x + b̂2σ2

y and is

bounded σn <
√

2(σ2
x + σ2

y). rn does not really depend on the accuracy of the

estimation. The better the estimate, the smaller rt becomes and in the ideal case

when the estimate is perfect, rt =0, and the distribution of r = rn is entirely a

Gaussian distribution.

This analysis can also be extended to any multiple linear regression problem

in which the residual is a linear function of the variables:

r =

p∑
k=1

âkxk + â0, (8)

where âk is a parameter of the estimation, and (x1..xp) is a data point. As the

estimate improves, so the distribution of inlier residuals matches the Gaussian

distribution more closely. In this case, the residual distribution model is a Gaus-

sian distribution. The SDM is then the standard Gaussian distribution for the

absolute of the variable.

5.2 Non-linear Residual

Similar to Section 5.1, in this section we analyze the problem when the residual

is a non-linear function or general function (3) of a data point. In this case, it

is difficult to analyze the distribution mathematically. However, such a func-

tion constrains the distribution of residuals helping us to analyze it statistically

by simulation, and then the ideal distribution of the residuals can be modeled.

Implementation of this step can be done online.

Assuming a certain noise model on the data points, such as Gaussian noise on

the data point X, we can model how the residuals from inliers are distributed in

the ideal case. In a complicated problem such as fundamental matrix estimation,

it is easier to analyze by simulation. For a fundamental matrix estimation the

constraint function of the data points is24)25):

g(F ,x,x
′
) = x

′TFx = 0, (9)

where F is the fundamental matrix and X = (x,x
′
) is a single pair of point

correspondences on two consecutive images. Several residual definitions exist,

such as those in25). Two non-linear residual functions are selected to simulate

how the residuals are distributed.

• The first residual function, which is called GRAD in this paper, is based on

a gradient criterion:

r = f(F ,x,x
′
) =

∣∣∣x′TFx
∣∣∣√

∥ Fx ∥2 +∥ F Tx
′ ∥2

. (10)

• The second residual function, which is called DIST in this paper, uses sym-
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metric distance from points to epipolar lines:

r = f(F ,x,x
′
) =

∣∣∣x′TFx
∣∣∣√ 1

∥ Fx ∥2
+

1

∥ F Tx
′ ∥2

. (11)

The simulation is performed with an exceptionally large number of data points,

and the statistical results are shown in Fig. 4. For the ideal case in this sim-

ulation, residuals are calculated with a known fundamental matrix, zero-mean

Gaussian noise is assumed on data point X, and no outliers appear. The dis-

tribution of residuals is standardized so that the sample standard deviation, de-

noted by σ, is 1. Fig. 4 shows the standardized residual distributions together

with the standard Gaussian distribution for comparison. For the distribution of

GRAD residuals, about 97.7% of the population is found within the range 2.5σ,

and about 99.9% of residuals within 5σ. For the distribution of DIST residuals,

about 97.6% of the population is found within the range 1.5σ, and about 99.7%

of residuals within 5σ. For the Gaussian distribution, 97% of the population are

within 2.5σ.
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Fig. 4 Standardized Residual Distribution Model (SDM) of fundamental matrix estimation
and line fitting problem with Gaussian noise on data points.

6. Inlier Detection Methods

In this section, we describe about the robust methods to detect inliers by

fitting the actual residual distribution of putative hypothesis with the SDM to

find the inlier distribution. The first method uses only a dense segment of SDM

for fitting. This is fast but it requires some parameter, even thought it is easy

to setup in practice. The second method does not limit the SDM and uses

fitting the whole SDM. In this method, both inlier distribution parameter (inlier

residual deviation) and also the average of ground distribution (additive outlier

distribution). Which helps the second method works more robust though it is a

bit slower.

6.1 Fitting for One Parameter

Since the tail, with low density, of the inlier distribution is usually heavily over-

lapped with the outlier distribution, we do not use the whole SDM for matching.

Only the dense segment of P (ξ) with 0 ≤ ξ ≤ κ that contains most of population

of SDM is used for matching. κ is selected so that the range 0 ≤ ξ ≤ κ contains

more than 97% of the population. For example, when the SDM is the standard

Gaussian distribution, we set κ = 2.5.

The inlier scale is estimated by searching the best fit between a segment of

the residual distribution and the SDM. The segment of the residual distribution

used for matching starts from zero. Then, the residual scale of the first structure

is detected regardless of the outlier structures. The fitting error between the

density function Pθ̂(ρ) with assumed inlier scale σ and the SDM density function

P ( ρσ ) is:

eθ̂(σ) = min
µ

∫ κσ

0

(
Pθ̂(ρ)− µP (

ρ

σ
)
)2

dρ, (12)

where µ is some scale of the SDM density function, ρ is the residual variable and

κ indicates the part of the SDM used in the matching as discussed in Section 4.

The minimization (12) with respect to µ is solved when it is assigned:

µ =

∫ κσ

0
Pθ̂(ρ)P ( ρσ ) dρ∫ κσ

0
P ( ρσ )

2 dρ
. (13)

Then, the best scale of inlier residuals σ∗
θ̂
is estimated by searching the scale that

gives the smallest fitting error. This is summarized as

σ∗
θ̂
= argmin

σ
{eθ̂(σ)}. (14)
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Inliers are then distinguished using the threshold tθ̂ = κσ∗
θ̂
. The inlier scale σ∗

θ̂
is

refined for later use in the objective function, by being replaced by the standard

deviation of estimated inliers:

σ̂∗
θ̂
=

√∫ tθ̂

0

ρ2Pθ̂(ρ) dρ, (15)

In our algorithm, we compute the probability density of the residual from an

estimate θ̂ by applying the well-known histogram method, although the KDE can

also be used. A histogram is simple and as residual sorting is not required, in

contrast to most previous estimators, it can be computed with low computational

cost. Then, (12) and (13) are converted into histogram-based form, ρ is replaced

by the bin variable bi = ibθ̂, which is the location of the ith bin, with bθ̂ the

bin-width. The refined inlier scale in (15) is replaced by the sample deviation of

inlier residuals ri ≤ tθ̂. In addition, Pθ̂(bi) is the count of residuals belonging to

the ith bin. Searching for the best inlier scale σ∗
θ̂
and tθ̂ is graphically depicted

in Fig. 5.

6.2 Fitting for Two Parameters

In the above method, we model the actual residual distribution as the separated

inlier distribution and outlier distribution and use limited SDM for the fitting

to find the inlier distribution. Even though, this algorithm works quick and

quite well against the data with more than 80% of outlier rate in experiments,

theoretically, this is true when the outlier distribution does not accommodate

within the inlier distribution.

To realize the drawback of the above model for actual residual distribution,

we propose another model for residual distribution. Residual distribution is as-

sumed to consist of inlier distribution, outlier distribution and ground (outlier)

distribution, which is illustrated in Fig. 2.

The fitting error between the density function Pθ̂(ρ) with assumed inlier scale

σ and the unlimited SDM density function P ( ρσ ) is:

eθ̂(σ) = min
µ,h

∫ +∞

0

(
Pθ̂(ρ)− µP (

ρ

σ
)− h

)2
dρ, (16)

where h is the ground distribution which is added to inlier distribution. Com-

pared to the model fitting error function (12), in (16), parameter h is to compen-
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Fig. 5 Demonstration of finding the inlier bound. Data contains two parallel lines, and the
SDM in this case is the Gaussian. The residual histogram is computed given the
estimate θ̂, which has two actual modes for the two lines. The inlier scale is obtained
by finding the smallest fitting error, and then the inlier bound is computed as tθ̂ = κσ∗

θ̂
.

sate for the high ground distribution. The minimization (16) can also be solved

straightforwardly:

µ =

∫ +∞
0

(ab2)dρ
∫ +∞
0

bdρ−
∫ +∞
0

(ab)dρ
∫ +∞
0

(b2)dρ∫ +∞
0

(b3)dρ
∫ +∞
0

(b)dρ−
(∫ +∞

0
(b2)dρ

)2 , (17)

and

h =

∫ +∞
0

(b3)dρ
∫ +∞
0

(ab)dρ−
∫ +∞
0

(ab2)dρ
∫ +∞
0

(b2)dρ∫ +∞
0

(b3)dρ
∫ +∞
0

(b)dρ−
(∫ +∞

0
(b2)dρ

)2 , (18)

where

a = Pθ̂(ρ), b = P (
ρ

σ
).
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Searching for the best inlier scale σ∗
θ̂
is graphically depicted in Fig. 6. We can

clearly see that, the fitting error function eθ̂(σ) in this method is smoother than

that of the previous method, which is promising to produce more robustness in

practice.
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Fig. 6 Demonstration of finding the σ for inlier distribution. Data contains two parallel lines
similar to that in Fig. 5, and the SDM in this case is the Gaussian. The residual
histogram, a), is computed given the estimate θ̂, which has two actual modes for the
two lines. The inlier scale is obtained by finding the smallest fitting error, b). The
corresponding µ and h for the best σ, σ∗

θ̂
, are given in c) and d), respectively.

6.3 Bin-width for Density Estimation

Bin-width (smoothing parameter or bandwidth for KDE) is the size of a bin in

the residual histogram mentioned in Section 6. In this section, we decide the bin-

width to be used in our algorithm. Bin-width (or bandwidth in previous works)

affects the smoothness of the density distribution and consequently influences

the detection of local peak or valley. Setting the bin-width is usually a difficult

problem for those methods that rely on the probability density of residuals.

In this section, we describe about two choices for the smoothing parameter. The

first is fixed and is widely used in robust estimators. It needs some experience to

produce the smoothness of density estimation. The second smoothing parameter

is totally data driven, and consequently it does not require any experience of user

for all the situation.

6.3.1 Fixed Bin-width Computation

A bin-width that produces good smoothness of the density estimation is re-

quired in such situation, and a widely used bin-width30) for robust estimators

is:

bθ̂ =

(
243

∫ 1

−1
K(ζ)2dζ

35N(
∫ 1

−1
ζ2K(ζ)dζ)2

) 1
5

ŝθ̂, (19)

where K is some kernel, such as the popular Gaussian kernel or the Epanechnikov

kernel, ŝθ̂ is some scale estimate, such as the standard deviation of residuals,

median scale estimate5) or MAD estimate5), and N is the number of data points.

In our method, ŝθ̂ is the smallest window containing 15% of the smallest residuals.

6.3.2 Adaptive Bin-width Computation

In the previous Section 6.3.1, we use a fast computation for bin-width similar

to most of previous adaptive-scale robust estimators. It requires some experience

of user for the smoothness of the computed density. It can not be adaptively

changed for a dynamic situation such as when the outlier rate is varied while

capturing the data. Therefore, an adaptive bin-width is desirable for a robust

estimator. There exist number of previous works for binwidth computation30)–34),

however these methods for computing the density is not suitable since they do

not focus only on the inlier distribution.

In searching for a solution, we has become fascinated by the one of previous

robust estimators, ALKS (adaptive least kth order squares)8) which is an im-

provement of MUSE (minimum unbiased scale estimator)7).

Given an hypothesis θ̂, all the residual ri for n data points are computed. In

ALKS, all residuals are then sorted increasingly. ALKS proposes an normalized
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error8):

ϵ2k =
1

qk − p

qk∑
i=1

(
ri
ŝk

)2

=
σ̂2
k

ŝ2k
, (20)

where p is the size of random sample for random sampling, σ̂2
k is the standard

deviation of first k residuals, ŝk is unbiased scale estimate7):

ŝk =
rk

Φ−1
(
0.5(1 + k

n+1 )
) , (21)

and Φ(u, 1) is the cumulative density function for Gaussian distribution. Φ−1(.)

is the argument of the normal cumulative density function having the value inside

the bracket, which is used as a compensation factor for (20). This compensa-

tion factor is just an approximation since in practice the data is contaminate

with unknown proportion of outliers. qk is the number of inliers decided by the

threshold 2.5ŝk. In our experience, ALKS has an ability to detect the inlier dis-

tribution quite well under the complicate multi-structural data. However, the

inliers/outliers dichotomy is usually located outside the inlier distribution, which

means ALKS usually over-estimates the inliers. Another problem for ALKS is

that it needs the minimum size of a meaningful structure, however it is reasonable

in practice where the size of data is perceivable. If there exists extreme outliers

in the data, ŝk can be come so large that minimum of the criterion is produced at

an incorrect k due to the relative relation between inlier and outlier distributions.

Taking the advantage of the excellent ability to detect the structure, we solve

the drawbacks of ALKS and use this algorithm not for a robust estimator but

for computing an adaptive bin-width. We replace (20) by the following term:

ζ2k =
1

k − p

k∑
i=1

(
ri
rk

)2

. (22)

In this normalized error function, the compensation factor is removed for its

ineffective performance. From(22), we can see that ζk is limited by 1: 0 < ζk < 1.

We use this function not to find the inlier but to find most inliers to use in the

bin-width computation (19). The algorithm is described as follows:

( 1 ) Find the location kmax of global maximum ζmax of ζk
kmax = argmax

p<k≤n
(ζk).
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Fig. 7 Demonstration of finding scale estimate for adaptive bin-width computation through
various situations of residual distribution.

( 2 ) Find the min value of ζk:

ζmin = min
kmax<k≤n

(ζk).

( 3 ) Find the first k1, k1 > kmax, that produces

ζk1
=

1

2
(ζmax + ζmin).

( 4 ) The scale estimate sθ̂ for bin-width computation function (19) is set:

sθ̂ = rk1
.

( 5 ) Finaly the adaptive bin-width is computed as follows:

bθ̂ =

(
243

∫ 1

−1
K(ζ)2dζ

35N(
∫ 1

−1
ζ2K(ζ)dζ)2

) 1
5

rk1 , (23)

The demonstration of finding the scale estimate sθ̂ for adaptive bin-width com-

putation is described in Fig. 7:

Having obtained the bin-width, a histogram of the estimate can be built. Since

the bin-width is small for outlier residuals, especially in case of high outlier-rates,

the number of bins may be large and therefore, large number of bins for outliers
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should be ignored. For a specific inlier unimodal distribution with deviation σ

of N residuals, the bin-width is computed, the densest bin at the mode contains

a limited number of residuals, which is many greater than 1. Then, the number

of bins for that inlier distribution is limited, which is many less than N even

when the distribution becomes a uniform distribution. However, if there are

more than two component distributions (an inlier distribution and some outlier

distributions), the number of bins may be many greater than N due to the large

scale of outlier residuals. In order to search only for the inlier distribution, in

practice, we limit the number of bins, for example, by N .

6.4 Hypothesis Evaluation Function

Inspired by the use of the KDE in the pbM-Estimator21)22), and ASKC13), we

also apply it in our adaptive objective function to evaluate the putative hypoth-

esis:

F (θ̂) =
1

Nσ̂∗
θ̂

N∑
i=1

K(
ri,θ̂
σ̂∗
θ̂

), (24)

where σ̂∗
θ̂
is adaptively estimated by the proposed inlier scale estimator as shown

in Section 6 and κ has been defined in Section 6; K is a kernel such as Gaussian

or the case-dependent kernel made in Section 5. The KDE objective function

evaluates how densely the residuals are distributed at zero using a kernel’s win-

dow. In our case, the window of kernel K is κσ̂∗
θ̂
, which covers all the estimated

inliers, therefore the objective function gives the density measured at zero only

for inliers.

7. Summary of Proposed Robust Estimators: FITSAC1, FITSAC2

In this paper, we introduce two robust estimators for the experiments: FIT-

SAC1 and FITSAC2. The flowchart for these estimators is generalized as shown

in Fig. 3. The difference between two estimators is described as follows. FIT-

SAC2 is a completely adaptive estimator without any support from user. It uses

the matching method in Section 6.2 and the binwidth in Section 6.3.2. FITSAC1

does not require the information about the noise on inliers, however it requires

some user’s support for computing the binwidth. It uses the matching method

that is described in Section 6.1 and the residual density distribution is computed

using the binwidth in Section 6.3.1.

The criterion for terminating the random sampling depends on the applications.

It can be the excess of an amount of running time, or a number of iterations

that assures a good estimate27). In our experiments, we fix the same number of

iterations for the proposed method as well as the compared methods.

8. Experiments with Adaptive-scale Robust Estimators

In this section, we describe the experiments carried out to validate our al-

gorithms in both linear and non-linear estimation problems: plane fitting, line

fitting and fundamental matrix estimation. For each problem, a simulation is

first used to understand the various aspects of the algorithm and then experi-

ments with real data are carried out to validate the algorithm in real situation.

For the plane and line fitting problems, we compared our algorithms with sev-

eral popular robust estimators: the pbM-Estimator , LMedS, ALKS, ASSC, and

ASKC. For the fundamental matrix estimation, we used LMedS, ASSC, ASKC,

and ALKS for comparison since the pbM-Estimator was originally proposed for

linear robust regression problems only. In the experiments using ALKS, since it

is very unstable when the normalized error function accumulates only small num-

ber of residuals, we started using this error function only when it accumulated a

number of residuals greater than 15% of the total number of data points. For the

pbM-Estimator, we used the program from the authors35). The Epanechnikov

kernel was used for all kernel density estimations including the related objective

functions such as in the proposed objective function. All algorithms were sup-

plied with the same set of random sampling trial hypotheses and no estimation

optimization was done in any of the algorithms. In FITSAC1, the value of κ

is chosen according to the SDM. κ is selected so that the section of SDM for

matching contains about 97% of the population. In the experiments, κ = 2.5

for the line fitting problem and fundamental matrix estimation using the GRAD

function, while κ = 1.5 for the fundamental matrix estimation using the DIST

function. For FITSAC2, the inlier scale, or the standard deviation of inlier resid-

uals, is estimated. The performance of FITSAC2 does not rely on any user-define

parameters. However, when the exact inlier detection is necessary, we also use

κ to distinguish inliers, but this is done after the execution of random sampling.

The criteria for validating the proposed estimators are:
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• robustness with various outlier rates and noise scales,

• accuracy of the inlier bound (threshold to distinguish the inliers), and

• the ability to work with data with multiple structures.

In data with the appearance of multiple structures, it is important that an

estimator estimates a tight bound and outputs as many inliers as possible for

a particular structure, otherwise the actual structure may be broken into many

smaller structures or several structures may be estimated as a single one.

8.1 Linear Residual

In this problem, a estimator must extract the correct line or plane from a

data set that contains single or multiple structures with the appearance of ran-

dom outliers. The experiments were carried out by various popular and analytic

simulations for a robust estimator as previous works. For data with a single

structure, the evaluation was carried out with various outlier rates and noise

scales. For data with multiple structures, we validated the proposed estimators

using the various types of data with multiple structures frequently used for test-

ing robust estimators: that is, data with parallel lines, data with steps and roof

data.

Given an estimate θ̂ = (â, b̂, ĉ, d̂), the residual function is defined as:

ri = |âxi + b̂yi + ĉzi + d̂|, (25)

where (xi, yi, zi) is a data point. The estimation error is defined as follows.

Errorθ̂ =

√
(a− â)2 + (b− b̂)2 + (c− ĉ)2 + (d− d̂)2, (26)

where (a, b, c, d) are ground-truth parameters. The normal vector of each plane

is normalized so that
√
a2 + b2 + c2 = 1,

√
â2 + b̂2 + ĉ2 = 1.

8.1.1 Single Structure with Various Outlier Rates

A 3D plane with 500 points was randomly generated for each trial data set.

Gaussian noise with a mean of zero and noise scale σG was added to the inliers.

Random outliers were generated to replace inliers, and therefore, the total data

set always contained 500 points. All the points were located within the 3D volume

[0, 0, 0, 1000, 1000, 1000]. 100 data sets were randomly generated, and for each

data set, the same 10000 iterations of random sampling were supplied to each

estimator. The graphs shown below use the averages of the results for all 100

data sets.

We evaluated both the estimation error and inlier bound with various outlier

rates. The ratio between the number of estimated inliers and the number of true

inliers, and the ratio between the scale of the estimated inlier residual and the

scale of the true inlier residual should be about 1 for any estimator.
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Fig. 8 Experiments with varying outlier rates for single-line data: (a) estimation error, (b)
ratio between the scale of the estimated inlier residuals and the scale of residuals of
true inliers.

In the first experiment for 3D plane fitting, we tested the outlier rate factor

for all estimators with the same noise scale σG = 8. The average results are

shown in Fig. 8. Fig. 8.a describes the break-down point and the accuracy of

the robust estimators, while Fig. 8.b shows the ratio between the estimated and

true inlier scales. We can see that in this experiment our proposed algorithm

yields the best overall performance for accuracy and estimated inlier scale of all

the algorithms. At low outlier rates, less than 50%, LMedS is accurate, but

for higher outlier rates, LMedS fails to estimate. The performance of ALKS

is unstable for very low or high outlier rates; the estimated inlier scale ratio is

about 2, which means that ALKS overestimates the inlier scale. ASSC, ASKC,

pbM and the proposed algorithm have similar breakdown points allowing these

to retain good performance up to an outlier rate of 90%. ASSC and ASKC show

similar performance, since their estimated inlier scales and KDE bandwidths

correlate, but they usually underestimate the inlier scale. On the contrary, the

performance of the pbM and proposed estimators for estimating residual density

does not really depend on the bandwidth (or bin-width), and thus the accuracy

of the pbM and proposed estimators remain high for the various outlier rates.
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In addition, as the proposed estimators always estimates an accurate inlier scale,

the estimated inlier scale closely matches the true inlier scale. However, it should

also be noted that the pbM estimates the solution first and then estimates the

inlier scale and consequently the inlier scale is not important for the accuracy of

the estimated solution.

8.1.2 Single Structure with Varying Noise Levels on Inliers

A second experiment was carried out to test all estimators with various noise

scales. The data was set up similar to the experiment for 2D line fitting, ex-

cept that the Gaussian noise scale σG on inliers varied between 1 and 52, while

the outlier rate was fixed at 60%. Examples of the noise scales are shown in

Fig. 9, while the average results are shown in Fig. 10. Fig. 10.a describes the

estimation error, while Fig. 10.b describes the ratio between the estimated inlier

scale and true inlier scale. Since the outlier rate is 60%, LMedS fails to estimate

correctly, giving a much larger estimated number of inliers than the number of

true inliers. The performance of ALKS is unstable with the higher noise levels

on inliers. All the other estimators have lower accuracy with higher noise levels,

although the proposed estimators gives the most robust performance. FITSAC1

and FITSAC2 have quite similar performance. These results confirm that our

proposed estimators have the best accuracy and robustness of all the estimators,

and the estimated inlier bound is quite close to the ground-truth.
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Fig. 9 Random data sets with an outlier rate of 60% and (a) σG = 8.0 and (b) σG = 50.
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Fig. 10 Experiments with varying Gaussian noise scales and outlier rate fixed at 60%.
Proposed estimators are highly resistant to high noise levels.

8.1.3 Parallel Lines with Different Distances

Here we demonstrate the ability of the estimators with the appearance of mul-

tiple structures in the data.

A data set containing two parallel lines was used in this experiment. Each

estimator was required to estimate one of the two lines correctly with a precise

inlier bound. The experiment was carried out with different distances between

the two parallel lines:
Line1 : 2x− y + d = 0, where d = 20, 30, 40, ...210

Line2 : 2x− y = 0.
Various random data sets were used, with each data set containing 270 random

outliers, 420 random points on line2, and 210 random points on line1. Gaus-

sian noise σG=8.0 was added to each point on each line, and the coordinates of

all points were within the rectangle (0, 0, 62.5σG, 62.5σG). The estimations of

the robust estimators using an example data set are shown in Fig. 11, in which

FITSAC1 and FITSAC2 have similar results. In this example, all estimators esti-

mated the correct line, but LMedS, the pbM and ALKS overestimated the popu-

lation of inliers, ASSC and ASKC underestimated the inliers, while the proposed

estimators estimated the inliers correctly. The average results for 100 random

data sets are shown in Fig. 12. Fig. 12.a shows the estimation error for the ro-

bust estimators, while Fig. 12.b shows the ratio between the number of estimated

inliers and the number of true inliers. When the two lines are close together with

d = 20, they are almost mistaken for being one line, with all estimators having
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ASSC ASKC Proposed

Fig. 11 Parallel Lines: estimation by each estimator using a random data set with d=70.
ALKS and the pbM are confused, since the two lines are extracted as one. ASKC
and ASSC extract a small part of the actual line. LMedS estimates a line with
a large number of inliers belonging to Line 1 and a few inliers belonging to Line
2. The proposed methods (FITSAC1 and FITSAC2) extract one of the two lines
correctly and neatly.
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Fig. 12 Parallel Lines: (a) estimation error, (b) ratio between the number of estimated
inliers and the number of true inliers.

a similar accuracy. When the lines are further apart, the performance of ALKS

is the worst, as it only manages to estimate correctly once the two lines are very

far apart with d > 170. This is understandable since it is claimed8) that ALKS

only estimates correctly step signals with a height greater than 8σG. Because the

actual outlier rate of estimating any line is greater than 50%, LMedS produces

worse results as the two lines move further apart. ASSC and ASKC have a sim-

ilar performance, but the number of inliers is underestimated in both cases and

remains similar since it is only related to their KDE bandwidth. The proposed

algorithm starts to estimate the line correctly for both solution parameters and

inliers when d = 60, that is, when the distance between the lines is about 3.3σG.

With regards the bound on the estimated inliers, our proposed estimators give

the best results, since the number of estimated inliers is relatively close to the

number of true inliers; in fact it is slightly smaller since leverage true inliers were

also judged as outliers. FITSAC1 can detect the inliers better than FITSAC2

when two lines are close since it ignores the long tail of the distribution model,

while FITSAC2 use the whole model for matching. However, Here, the results of

FITSAC2 has shown that even-though it does not limit the distribution model

for matching, FITSAC2 still resist to the multiple outlier distribution quite well.

The reason for this resistant is that the structure with high density is always de-

tected first in the proposed algorithm, outlier distribution from other structures

has only small effect on the whole matching function and the ground distribution

parameter compensates for the whole outlier distribution well.

8.1.4 Range Image Segmentation

In this experiment, we demonstrate the ability of robust estimators for seg-

mentation problem, for example, range image segmentation. In this problem, a

robust estimator must extract all the planes that make the object, a chair in our

experiment. The segmentation for each robust estimator is done as follows. First,

the robust estimator extracts one segment, then the inliers for that segment are

removed from the data. The same procedure is repeated with a fixed number of

iterations or until there is no remaining data points. We set this number to 8 for

this chair image.

The segmentation results are shown in Fig. 13. The results show that pbM

over-detected the inliers then some structures were combined. ASKC and ASSC

under-detected the inliers then some planes were divided into smaller parts. FIT-

SAC1 and FITSAC2 gave the most proper results, in which planes were seg-

mented clearly.
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Fig. 13 Range image segmentation demonstrates the ability of a robust estimator for seg-
mentation problem. The robust estimator must properly detect the inliers. The
over-detection or under-detection results in a undesirable segmentation.

8.2 Non-linear Residual

For this experiment, we first carried out a simulation to validate various as-

pects of the proposed algorithm, and then performed the experiment with real

data to show the effectiveness in a real situation. The GRAD and DIST residual

definitions described in Section 5.2 were used for the fundamental matrix estima-

tion. These residual definitions are not linear, and therefore, the pbM-Estimator

is not applicable, because it was originally designed for linear residual problems

only. Thus we compared the proposed algorithm with ASSC, ASKC, LMedS and

ALKS, even though the non-linear residual function could have been linearized

for use by the pbM.

Since it is not possible to compare the estimated fundamental matrix with a

ground-truth fundamental matrix, we computed the error as the standard devi-

ation of only the inlier residuals of the estimated fundamental matrix θ̂
∗
= F̂

∗
:

Error ˆF
∗ =

√√√√ 1

M

M∑
i=1

(r
i,

ˆF
∗)2, (27)

where M is the number of inliers. This error computation relies on how the

solution fits the motion data: a better fit produces smaller residuals for inliers,

and vice versa. In the simulation, we know the true inliers and thus M is known.

In the real experiment, the error is computed for the M smallest residuals (which

are considered inliers), with M assigned manually after checking the actual data.

   

Frame t-1 Frame t 

Fig. 14 A pair of images in a sequence: inliers (image features in red) and outliers (image
features in green) are output by the proposed estimator.

In this experiment, real video sequences were captured in an indoor environ-

ment with an omnidirectional vision sensor. Examples of the captured images

are shown in Fig. 14. The sensor consisted of an omnidirectional mirror, a tele-

centric lens and an imaging sensor. The camera was mounted on a rotary stage

and controlled by a PC, which translated the camera whilst it was being rotated.
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For each pair of images, 200 Harris image features were detected on the first

image and tracked on the second image to obtain the feature correspondence

pairs using the KLT feature tracker29) implemented in OpenCV28). Features for

each image were mapped to the unit sphere. The fundamental matrix between

a pair of consecutive images was computed using the seven point algorithm with

these feature correspondence pairs. For each video sequence, about 50 images

were captured whilst ensuring the same rotation between consecutive images.

The performance of all the estimators tends to deteriorate with a greater de-

gree of rotation, since the KLT tracker is less accurate under greater rotation.

Therefore, we used three video sequences with different rotation settings. These

video sequences are referred to as V ideo 4deg, V ideo 14deg and V ideo 18deg

for rotation speeds of 4 degrees/frame, 14 degrees/frame, and 18 degrees/frame,

respectively. We computed the error by (27) and M was set independently for

each video sequence after randomly checking five pairs of images within each

video sequence. The average number of true inliers and the assigned value of

M for each video sequence are given in Table 1. From this table, we can see

that the outlier rate for V ideo 4deg is low, about 10%. For V ideo 14deg, the

outlier rate is about 50%, and for V ideo 18deg, the outlier rate is about 65%.

For each image pair, 20000 iterations of random sampling were provided for each

estimator. In this case, the true noise model on the feature points was not known.

However, it was assumed to be a Gaussian model with zero mean and thus the

residual distribution models for the GRAD and DIST residual were known. In

this experiment, the results for GRAD and DIST residual function are similar,

the only description of experiment for GRAD is shown in this section.

The average error and number of estimated inliers for 100 executions of each

video sequence are given in Table 1 and Table 2, respectively. The results show

that the FITSAC1 has the best accuracy for various outlier rates. The number

of estimated inliers correlates with the outlier rate; it is slightly larger than the

number of true inliers. FITSAC2 is slightly less accurate than FITSAC1 but the

inlier detection is similar to that of FITSAC1. FITSAC2 has the similar accuracy

compared to ASSC. ASSC and ASKC estimate a similar number of inliers for the

various outlier rates as in the previous experiments. ALKS performs the worst

of all these estimators in this real experiment.

Table 1 Fundamental matrix estimation for real video sequences using GRAD residual
function: estimation error.

Video sequence Video_4deg Video_14deg Video_18deg 

Average number  

of true inliers 
187.70/200 102.75/200 72.25/200 

Assigned M 150 90 60 

Fitting error    

FITSAC1 0.000615 0.001493 0.001692 

FITSAC2 0.000638 0.001690 0.001765 

ASSC 0.000731 0.001673 0.001756 

ASKC 0.000926 0.002350 0.002426 

ALKS 0.004123 0.008205 0.008013 

LMedS 0.000625 0.001676 0.002536 

 

Table 2 Fundamental matrix estimation for real video sequences using GRAD residual
function: number of estimated inliers.

Video sequence Video_4deg Video_14deg Video_18deg 

Average number 

of true inliers 
187.70/200 102.75/200 72.25/200 

FITSAC1 182.307 110.847 87.935 

FITSAC2 183.306 109.913 82.925 

ASSC 68.079 65.534 65.534 

ASKC 23.122 24.073 24.073 

ALKS 66.057 94.977 70.133 

LMedS 101.000 101.000 101.000 

 

8.3 Computational Cost

We simulated the relation between processing time and the number of data

points, the average results of which are shown in Fig. 15. For the FITSAC1,

the residuals are not needed to be sorted, therefore it is fast in comparison with

the others, especially when the number of data points increases. FITSAC2 is

the second slowest estimator. For the other estimators, the residuals have to be

sorted first. LMedS is the simplest algorithm among the sorting-based methods,

it takes the second fastest place in this comparison. After sorting the residu-

als, ALKS needs more cost to find the separation between inliers and outliers.
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Fig. 15 Processing time for all estimators

ASKC and ASSC have the same procedure to locate the inlier distribution using

mean-shift algorithm, the only difference is that ASKC uses the smaller window

(bandwidth) for searching the local peaks of residual density then it consumes less

computational cost than ASSC. The slowest estimator is pbM since it consumes

heavy cost to find a global peak of residual density.

9. Conclusions

In this paper, we proposed two novel highly robust estimators (FITSAC1 and

FITSAC2) for the estimation problem in computer vision that deals with data

with high outlier rates and multiple structures. Our algorithms do not need any

prior information about the inlier scale, as it is estimated adaptively.

Depending on the specific problem, the distribution model of residuals is ana-

lyzed using that useful constraint, the residual function. The analysis is feasible

and simple, and simulation of the residual distribution model can always be

performed. The advantage of this approach is that it estimates the inlier scale

correctly and therefore improves robustness. The adaptive smoothing parameter

efficiently help FITSAC2 work robustly in various situation without any support

from user.

The proposed robust estimators were positively validated through experiments

with various conditions and real estimation problems. The use of the constraint

from the residual function in the robust estimator is effective for improving the

robustness and detection of inliers.

The proposed estimators can be applied to any problem in which the residual

function is properly defined. Furthermore, it is especially useful when the inlier

scale needs to be estimated accurately.
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