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Reflectance Analysis of Layered Surfaces

Using Spectral Information

Tetsuro Morimoto,†1 Rei Kawakami†1

and Katsushi Ikeuchi†1

It is important to understand how to use digital data to preserve the meaningful
information about cultural heritages, including their shape and surface color.
This paper introduces the development of novel multispectral imaging systems
for modeling the color information for cultural heritages, proposing reflectance
analysis methods using a multispectral image, and applying them in practice.

1. Introduction

Despite great public interest in cultural heritages, knowledge of these heritages
is often restricted because of the possibility of deterioration and collapse. Con-
sequently, it has become an important goal in the computer science community
to model and record these restricted heritages and then use the digital data as-
sociated with such heritages in a variety of ways. For example, digital data is
used to create digital media such as computer graphics CG)7) and virtual reality
(VR) content11). It is also used for analysis that can aid in the restoration and
preservation of cultural heritages.

Therefore, it is important to understand how to use this digital data to pre-
serve the important information about cultural heritages, including their shape
and surface color. Usually, shape information can be obtained by a laser range
sensor, and this information has become more accessible with improved data
processing algorithms7). However, current color imaging systems like digital still
camera (DSC) are usually represented with the traditional red, green, blue (RGB)
color model. RGB cannot always provide accurate color information. The color
of images captured with DSC is dependent on both the characteristics of the
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device and the condition of the illumination environment, making it difficult to
accurately represent color appearance in the real world. Consequently, we need
to capture surface spectral reflectance as ultimate color information in order to
preserve the accurate color of cultural heritages.

Spectral reflectance is inherent in the nature of objects. Object analysis using
the fact that different materials have different spectral reflectance is performed
in many fields, such as medical imaging, agriculture, archaeology, and art. How-
ever, in the real world, it is difficult to obtain and handle a multispectral image
effectively. Many objects are often found in an outdoor environment or in a
dark environment, and these can pose problems. In an outdoor environment,
for instance, the illumination environment changes greatly from one time to an-
other. This causes saturation and underexposure when measuring the spectra.
Moreover, many objects have at their surface complex reflection, absorption, and
scattering, with a color mixture between the top and bottom layers, making ma-
terial segmentation impossible. This paper targets analysis of cultural heritages
having such multilayered characteristics.

Our goal is development of novel multispectral imaging systems for the color
of modeling cultural heritages, proposing reflectance analysis methods using a
multispectral image, and applying them in practice. The paper proposes the
following three tasks related to preservation, release, and analysis.

The structure of this paper is as follows. In section2, we propose a practi-
cal color restoration method based on spectral information. In order to make
VR contents by using 3D data, texture images by DSC are generally used as
color information. However, the color of images captured with DSC is dependent
on both the characteristics of the device and the condition of the illumination
environment, and often the color information is not accurate. In a narrow envi-
ronment, such as a tumulus, compact mobility is necessary to measure spectra.
For these circumstances, we propose a color restoration method that uses both
high resolution images captured by DSC and spectral information captured by
a conventional spectrometer. This is a practical method from the viewpoint of
automation and computational cost. In section3, we propose an efficient method
for acquiring and segmenting multispectral images captured in outdoor environ-
ments. A conventional multispectral imaging system may have two kinds of
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cameras. The first is a multiband camera18), which is mainly used in the color
reproduction field and does not have high spectral resolution, but has high im-
age quality. The second is a hyperspectral sensor4), which is mainly used in the
aerial remote sensing field and does not have high image quality, but has high
spectral resolution. Compared to these systems our solution has not only high
image quality and sufficient spectral resolution for object analysis but also a wide
capture angle. The multispectral image segmentation method can handle object
surfaces having complex reflection based on a statistical procedure. In section 4,
a novel physical model, the so-called ”Spider” model, which can be used to esti-
mate the optical properties of layered surfaces, is proposed. Many object surfaces
such as wall paintings are composed of layers of different physical substances, and
are called ”layered surfaces.” Such surfaces have more complex optical properties
than a diffuse surface and are generally unable to be segmented. For this reason,
we propose the Spider model to analyze the complex optical properties of layered
surfaces. We also develop a novel method that can not only segment the surfaces
but also decompose the optical properties of layered surfaces.

2. Color Restoration Method Based on Spectral Information

In this section, we introduce a novel method for color restoration that can ef-
fectively and simplily apply accurate color based on spectral information to a
segmented image using the Normalized Cuts technique16). Using the proposed
method, we can obtain a digital still camera image and spectral information in
different environments. Also, it is not necessary to estimate reflectance spec-
tra using a spectral database such as those that are used in other methods18).
The synthesized images have accurate color and high resolution. The proposed
method works effectively when applied to digital archive contents.

2.1 DSC Image Segmentation using Normalized Cuts Method
We employ image segmentation using the NCuts method to apply spectral in-
formation into the DSC image effectively, since NCuts can handle the mixture
of pigment and rock. Furthermore, we use a slight improvement to divide the
imaged DSC into multiple groups2). First of all, we create the feature vector as
follows: F (i) = [a∗

i , b
∗
i , xi, yi], i = 1, 2, 3, · · · , N , where x and y are the hor-

izontal and vertical positions of image pixels, N is the number of samples, and

a∗ and b∗ are colors. Then our method uses the a∗b∗ plane of the CIE1976LAB
color space. This color space can represent the color perception of a human to
Euclidean distance, and we do not use the L∗ factor to exclude the possible ef-
fect of illumination. In the first step, a simple clustering algorithm, such as the
k-means algorithm, is used to obtain an over-segmentation of the image into N

groups. Setting the nodes of the graph decides the average points of N groups.
Then, we calculate the weight on each edge wuv between all the nodes u and v.

wuv =exp
(−‖I(u) − I(v)‖2/σ2

I

)
×

{
exp

(−‖X(u) − X(v)‖2)/σ2
X

)
, if ‖X(u) − X(v)‖ < r

0, otherwise
(1)

where I(u) and I(v) are calculated from color values a∗ and b∗. σ2
I is the variance

of color distribution, and σ2
X is that of spatial distribution. Then, using edge

weights wuv, we calculate weight matrix W and diagonal matrix D16).
Here we use a slight variation from a later paper by Fowlkes et al.2). In Eq. (2),

D−1/2(D−W )D−1/2 is called the normalized Laplacian L, and can be rewritten
as follows:

L = D−1/2(D − W )D−1/2 = I − D−1/2WD−1/2. (2)
By Eq. (2) is rewritten as

(D−1/2WD−1/2)z = (1 − λ)z. (3)
We can span a low dimensional space, of E−1 dimensions, with the eigenvectors

from the E + 1 least significant eigenvalues, where E is the partition number,
and we ignore the least significant eigenvalue and the corresponding eigenvector.
In the least significant space, all the input data have roughly same values due to
the data normalization. We map the input data onto this low dimensional space,

yEij = zi+1,j/
√

Djj , (i = 1, ..., E, j, ..., N, ). (4)
Finally, we can segment yEij into E clusters using the k-means method.
2.2 Color Restoration based on Spectral Information
The spectra obtained by a spectrometer depend on the illumination and object

characteristics. Therefore, these spectra vary with a change in intensity and
energy distribution of the light source, which are material characteristics. This
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problem is called color constancy. Our method has a solution of color constancy
by spectral information using a white reference3). This color, which is invariant
to illumination, is applied to the color of the DSC image.

2.2.1 Illumination Color Change using Spectral Information
First, consider an opaque inhomogeneous dielectric object having diffuse reflec-

tion, and then the body reflection described by Shafer15) as follows. Let E(�x, λ)
be spectral power distribution of the incident light at the object surface at �x, and
let R(�x, λ) be the spectral reflectance at the object surface at �x. The spectral
sensitivity of the k-th sensor is given by Sk(λ). Then, the sensor response of the
k-th channel Ik(�x) is given by

Ik(�x) = GB(�x, �n,�s)
∫

λ

E(�x, λ)R(�x, λ)Sk(λ)dλ, (5)

where λ denotes the wavelength, �n is the surface normal, and �s is the direction
of the illumination surface. The integral is taken from the visible spectrum (e.g.,
380-780 nm). The geometric term GB denotes the geometric dependency on the
reflection.

Second, a white reference has the reflectance of a perfect diffuser. This reflects
all wavelengths of the light source and does not absorb any of them. Hence, a
white reference has spectral reflectance Rw(λ) ∼= 1. Furthermore, we assume that
the surface normal �n is equal to lighting direction �s, then GB(�x, �n,�s) = 1. The
sensor response of the matte white reflectance allows us to rewrite Eq. (5) as

Iw
k (�x) =

∫
λ

E(�x, λ)Sk(λ)dλ. (6)

In this way, the relative spectral power distribution of the white reference is
measured.

Third, an object spectrum of an arbitrary sample is measured under the same
illumination conditions. The k-th sensor response of a sample with respect to a
white reference is given by

Ik(�x)
Iw
k (�x)

=
GB(�x, �n,�s)

∫
λ

E(�x, λ)R(�x, λ)Sk(λ)dλ∫
λ

E(�x, λ)Sk(λ)dλ
. (7)

Through the use of the spectrometer, the filters Sk(λ) are narrow-band filters. Let
the filter Sk(λ) be modeled as a unit impulse that is shifted over N wavelengths,

the transmission at λk = δ and zero elsewhere. This allows us to rewrite Eq. (7)
as

Ik(�x)/Iw
k (�x) = (GB(�x, �n,�s)E(�x, λk)R(�x, λk))/E(�x, λk) (8)

obtaining

Ik(�x)/Iw
k (�x) = GB(�x, �n,�s)R(�x, λk). (9)

Finally, the target color spectra I ′k(�x) are the product of Eq. (7) and the
sensor response Iw′

k (�x) of the white reference under an arbitrary illumination.
The equation is as follows:

I ′k(�x) = Ik(�x)Iw′
k (�x)/Iw

k (�x) = GB(�x, �n,�s)E′(�x, λk)R(�x, λk)S′
k(λk), (10)

where S′
k(λk) denotes the arbitrary spectral sensitivity of the k-th sensor. Ac-

cording to Eq. (7), the color itself depends on spectral reflectance whereas the
brightness of the color depends on factor GB(�x, �n,�s). However, since our method
uses the brightness of the DSC image, then we assume that GB(�x, �n,�s) corre-
sponds to the brightness of the DSC image.

2.2.2 Combining Spectral Information and the DSC image
We calculate CIE tristimulus value CIEXYZ from sensor response I ′k(�x) in Eq.

(10). Here, we measure the color in point of object surface by a spectrometer.
Therefore, the color pixel �x denotes color region m = 1, 2, · · · , N , where N is the
number of color regions. Also, the spectral sensitivity of the k-th sensor S′

k(λk) is
changed into CIE RGB color matching functions x̄(λk), ȳ(λk), andz̄(λk). Using
Eq. (10), this equation is as follows:

Xsp(m) = K

∫
λk

E′(m,λk)R(m,λk)x̄(λk)dλk,

Ysp(m) = K

∫
λk

E′(m, λk)R(m, λk)ȳ(λk)dλk, (11)

Zsp(m) = K

∫
λk

E′(m,λk)R(m, λk)z̄(λk)dλk,

K = 100/

∫
λk

E′(m, λk)ȳ(λk)d, λk (12)

where K is a coefficient to normalize Ysp to 100. Next, we calculate color differ-
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ences, CIE∆E∗
ab, from target color Xsp(m), Ysp(m), Zsp(m) and the average of

segmented image color Ximg(m), Yimg(m), Zimg(m). Using the method of sub-
section 2.2.3, we can find correspondences m of target colors and color segment
images. In our method, the brightness of the target color coincides with the
brightness of the segmented image. The equation is as follows:

Xsp(m) = Xsp(m)Yimg(m)/Ysp(m), Ysp(m) = Yimg(m),
Zsp(m) = Zsp(m)Yimg(m)/Ysp(m). (13)

The transform vectors Xt(m), Yt(m), and Zt(m) to apply the target color to the
segmented image are given by

Xt(m) = Xsp(m)/Ximg(m), Yt(m) = 1.0,

Zt(m) = Zsp(m)/Zimg(m). (14)
Finally, the transform vectors Xt(m), Yt(m), and Zt(m) are multiplied by all
the pixels of the segmented image Ximg(�x), Yimg(�x), and Zimg(�x).

X
′
img(m) = Ximg(�x)Xt(m), Y

′
img(m) = Yimg(�x),

Z
′
img(m) = Zimg(�x)Zt(m). (15)

When all the segmented images are synthesized, the result is transformed into
RGB color.

2.2.3 Finding correspondence of the spectral information and segmented
image

We need to find the correspondence between the spectral sensor response and
segmented image so that their color difference is minimized. Therefore, we cal-
culate the color difference, CIE∆E∗

ab, from the spectral sensor response and the
average color of the segmented image. This is calculated from a∗ and b∗ color
values in the CIELAB color space. The equation is as follows:

∆E∗
ab =

[
(a∗

sp − a∗
img)

2 + (b∗sp − b∗img)
2
]1/2

(16)
where a∗

sp and b∗sp denote a∗ and b∗ values of the spectral response, a∗
img and

b∗img are a∗ and b∗ values of the average of the segmented image. Finding the
smallest sets, we can find correspondences between spectral sensor responses and
segmented images.

2.3 Experiments and Results
In this section, we describe two experiments we have conducted, accuracy color

restoration of metamers, and application to digital archive contents. All exper-

Fig. 1 Equipment Fig. 2 Illumination spectra

iments were performed using a DSC (Nikon D1-X), spectrometer (SpectraScan
PR-650), and white reference (PhotoResearch SRS-3). Fig. 1 shows the equip-
ment of our system. In these experiments, we used lights as follows: D55 Light
(day light 5500K :SERIC XC-100) and A light (tungsten light 2848K), CW
(fluorescent lamp), H (2300K), D50 in (day light 5000K: Sakata Inx Corpora-
tion SpectraLight III), real torch light, real sunset light, and incandescent light
(5900K: PSR500WD). These illumination spectra are shown in Fig. 2.

2.3.1 Verification of Color Restoration Accuracy
In this experiment, we evaluated the color restoration accuracy of our method.

We selected a target object that consists of five colors and has no specular re-
flection. First, we captured a target image under the D55 light. Simultaneously,
we measured the spectral power distribution of colors of an object surface and a
white reference using a spectrometer. We changed the color of the DSC image
into the color under target illuminations by our method, where target illumina-
tions were A light, CW, and H, described in the previous section.

Notice that the color of the output image Figs. 3. c at left is similar to that
of ground truth Figs. 3. c at right. Table 1 shows the color differences, ∆Ea∗b∗ ,
between ground truths and restoration colors. Here, the ground truth of the
target spectra is measured under several illuminations, and restoration colors are
estimated values in the CIELAB color values. Notice that the average of the
color differences, ∆Ea∗b∗ , between ground truths and restoration colors is less
than 1.08 in the target object. Generally, in human vision, the color difference
that enables us to discriminate between two colors is more than about 3.0.

2.3.2 Application to Digital Archive Contents
We made digital archive contents to evaluate the practicality of our method.
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(a)Input image Output image Ground truth(b)Segmented image

(c)A light

Fig. 3 Output image and ground truth. (a) Input image; (b) Segmentation result by
NCuts method; (c)left column: simulated image under each light by our method;
(c) right column: captured image under A light.

Purple Green Skin W and B Average
A 0.282301 0.438471 0.968805 0.20786 0.474359

Cool White 0.788768 1.460883 1.895176 0.20272 1.086887
Horizontal 0.245402 0.284683 1.096399 0.33352 0.490001

Table 1 Color difference (∆Ea∗b∗ ) between restoration colors and ground truths

Benkei-ga-ana tumulus is an ancient tomb in Japan, made late in the 6th century.
Several wall paintings resembling ships and horses were painted by ancient artists
in this tumulus.

Notice that part of the red pigment can be extracted, as shown in Fig. 4.
This object has an ambiguity of boundary caused by degradation of the wall
painting. For this reason, we configured the parameter of NCuts to decrease the
contribution of spatial distribution σX in Eq. (1) and increase the number of
segments. The clear boundary of each segment cannot be observed, but we can
extract relatively accurate pixels in the parts of the pigments in Fig. 4. b. Color
transformation error could hardly be observed in Fig. 4. c and d.

(c) Torch illumination (d)  D65 illumination(a) Input image (b) Segmented image

Fig. 4 Color restoration of a wall painting in the Benkei-ga-ana tumulus. (a) DSC cap-
tured image; (b)Segmented image (c) Simulated image under torch illumination;
(d) Simulated image under D65 illumination

Archaeologically, we have a question as to how the artists painted the wall

(a) (b) (c) (d)

Fig. 5 Digital archive contents of Benkei-ga-ana tumulus (a) Simulation of color ap-
pearance under D65 light. (b) Simulation of color appearance under torch light.
(c) Overview of Benkei-ga-ana tumulus. (d) Entrance of Benkei-ga-ana tumulus.

painting. We do not know whether they painted in daylight or using torch illu-
mination. In Fig. 4, we are able to discriminate difference of colors under D65
(CIE daylight 6500K); however, under torch illumination, it is difficult for us to
discriminate the color difference. Therefore, our assumption is that the artists
made the wall paintings under D65 illumination. Fig. 5 shows the application of
our method to digital archive contents. We restored more than 80 texture images
in a content. Also, we found it possible to map the color restoration images onto
3D geometry by laser range sensor. This application behaves like virtual reality:
we can interactively operate the viewpoint and change the illuminations.

3. Multispectral Imaging for Material Analysis in an Outdoor Environ-
ment

This section describes a new multispectral imaging system applicable to wide
areas. Our design allows the system to have a wide field of view of high resolution
with low noise and negligible distortion. We can apply this system to measuring
the surface spectrum on an object surface in an outdoor environment. For deter-
mining the distribution of microorganisms, we developed a multispectral image
segmentation method using the data obtained by our system. Finally, we applied
our system and segmentation method to the data from the bas-relief of the Bayon
Temple in the Angkor ruin, and we identified the classes and distribution areas
of the microorganisms.

3.1 Acquisition of a Multispectral Image
We developed a novel multispectral imaging system that has a wide view angle,

high image quality, and an accurate spectrum. The system can efficiently measure
a target object in an outdoor environment.
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3.1.1 Panoramic Multispectral Camera
Our multispectral imaging system has been designed to be a handy system

with spectrum accuracy in each pixel with a wide view angle. The system con-
sists of a small monochromatic CCD camera with a liquid crystal tunable filter
(LCTF), shown in Fig. 6, mounted on an automatic pan/tilt platform (CLAUS
Inc. Rodeon VR head). The LCTF (CRI Inc. Varispec) is an optical filter that
allows the wavelength of the transmitted light to be electronically adjusted. The
monochromatic CCD camera (Sony XCD-X710) with the LCTF mounted can
obtain a series of two-dimensional spectral images by repeatedly changing the
LCTF’s transmittable wavelength with image acquisitions. The captured image
has high image quality without distortion. The LCTF capturing system has a
narrow field of view because the LCTF is mounted in front of the lens. We com-
pensate for this problem by using an automatic panorama pan/tilt platform. The
system captures a wide view multispectral image by synchronizing these three
devices efficiently.

Fig. 6 Panoramic multispec-
tral imaging system

(a)
(b)

Fig. 7 (a) Spectral sensitivity function of monochro-
matic CCD camera and LCTF transmit-
tance function (b) Illumination spectrum when
the exposure time in all bands is fixed.
(Black):obtained spectrum, (Blue):ground truth.

3.1.2 Estimation of Adaptive Exposure in an Outdoor Environment
The optimal exposure time is necessary to be determined in each wavelength

due to the two reasons: uneven characteristics and varying illumination con-
ditions. A multispectral imaging system using LCTF generally needs a fixed
exposure time over the entire range of wavelengths for comparing pixel intensi-

ties over all wavelengths. However, the spectral sensitivity(blue line) given by
the combination of LCTF and monochromatic camera is very low in short wave-
lengths (e.g., 400-500 nm), as shown in Fig. 7.(a), and relatively high in other
wavelengths. If the pixel intensity at a certain wavelength would be smaller than
the dark current noise, we would not be able obtain a meaningful measurement
at that wavelength. For instance, Fig. 7.(b) shows a measured spectrum under
dark illumination. Longer exposure time is necessary for spectral accuracy with
wavelengths from 400 nm to 500 nm than for other wavelengths.

Varying illumination conditions occur in an outdoor environment, in which
many cultural heritages are located. Our sensor samples spectral data by chang-
ing the LCTF’s filtering characteristics and samples a series of images along the
wavelengths. During this sampling period, it often occurs that the illumination
condition varies due to the movement of clouds. If the intensity of illumination
dramatically varies during measurement, it would induce saturation or underex-
posure at certain wavelengths. The dynamic determination of optimal exposure
time at each wavelength is necessary for adjusting the effects of varying illumi-
nation conditions.

We attempt to estimate an optimal exposure time for each wavelength based
on noise analysis13). The noise can be categorized into signal-dependent noise
and signal-independent noise (SIN). In this system, we mainly consider the effect
due to the signal-independent noise, since the signal-dependent noise is negli-
gible compared with signal-independent noise. The signal-independent noise is
composed of fixed pattern noise (FPN) and read-out noise, and photo response
non-uniformity (PRNU). FPN is a dark current noise, a dynamic component.
The read-out noise is composed of the reset noise, amplifier noise, and quantiza-
tion noise. We focus on the FPN and the read-out noise, since PRNU is a static
component easily calibrated in the initial stage.

The FPN depends on the temperature and the exposure time. Here, we as-
sume that the sampling time is reasonably short, say 5 to 10 min, so that the
temperature can be considered as constant. The FPN has a linear relation with
the exposure time as shown in Fig. 8. The linear relation can be expressed as
follows: εDC = at + b, where t is an exposure time, a is the amount of the FPN
increase depending on exposure times, and b is the amount of the FPN with zero

6 c© 2010 Information Processing Society of Japan

Vol.2010-CVIM-172 No.37
2010/5/28



IPSJ SIG Technical Report

exposure time at that particular temperature. These values are measured at the
site before sampling from a series of images with various exposure times while
the lens is covered with a cup.

The read-out noise appears randomly at pixel positions at each image. We
model the read-out noise as a Gaussian distribution at each pixel. In order to
evaluate the parameters of the Gaussian distribution, we obtain a series of lens-
covered images, and we calculate mean and standard deviation values. The mean
value of images εDC are the FPN, and the standard deviation value of images εR

are read-out noise. We use the upper bound of the SIN as εDC + εR.

Fig. 8 The correlation between the FPN
and exposure time.

Fig. 9 GUI of panoramic multispectral
imaging system.

Based on the discussion of the noise analysis, we design the procedure to deter-
mine the optimal exposure time at each wavelength. The procedure consists of
two parts. The first part finds the exposure time that gives the brightest image
of a white reference while avoiding saturation over all wavelengths. The second
part determines any wavelength that gives lower value in the white reference than
the SIN upper boundary, and, if this wavelength exists, it increases the exposure
time while avoiding saturation.

The first part consists of:
Step 1. Select the brightest area (m × n) on a white reference at each wave-

length, λ, as shown in Fig. 9, and obtain the average brightness within the
window, L(λ). Repeat this step over all wavelengths

Step 2. Obtain the maximum value, Lmax, among all the brightness values
over all wavelengths.

Step 3. Determine the standard exposure time ts as the longest exposure time
when all the values in the brightest area found in Step 1 are not saturated.
Namely, Lmax < 216.

The second part rescues the particular wavelength image buried under the noise
level. For this, we measure the FPN εDC and read-out noise εR by putting the cap
in front of lens. Here, the average value is the FPN, and the standard deviation
is considered as the boundary of the read-out noise.

In each wavelength, the optimal exposure time t(λ) is adaptively estimated.
The optimal exposure time t(λ) can be represented as:

t(λ) =

{
ts(εDC + εR + µ)/L(λ) (if L(λ) < εDC + εR + µ)

ts (otherwise)
(17)

where µ is an off-set value to bring the adjustment to the safer side.
3.1.3 Multispectral Image Synthesis
After capturing images, we can synthesize the obtained images L(i, j, λ) to the

spectral power distribution image L′(i, j, λ):
L′(i, j, λ) = ts(L(i, j, λ) − εDC(i, j, λ))/t(λ) (18)

Here, the FPN image εDC(i, j, λ) in arbitrary exposure time can be estimated by
using following equation, according to the linear correlation between the FPN
and exposure time, as shown in Fig. 8:

εDC(i, j, λ) = α(λ)εs
DC(i, j, λ), (19)

where εs
DC(i, j, λ) is measured as the FPN image first. This can be obtained to

calculate the mean image of captured images when light is intercepted from the
camera. The linear correlation between the FPN and exposure time is as follows:

α(λ) = (at(λ) + b)/(ats(λ) + b), (20)
where a and b are, respectively, slope and intercept.

We calculate a spectral power distribution image L(i, j, λ), which is divided
into the channel values L′(i, j, λ) in each pixel i, j by camera sensitivity function
C(λ), and LCTF transmittance function T (λ). Fig. 7 shows the actual sensitivity
functions of each.

L(i, j, λ) = L′(i, j, λ)/(C(λ)T (λ)). (21)
Next, we stitch the multispectral images of different view angles. Stitching usu-

ally extracts image features from a pair of images, establishes correspondences
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among such extracted features, and calculates the translation and rotation pa-
rameters to superimpose overlapping areas for connecting these two images. Here,
the features in multispectral images are different in each band image. To over-
come this issue, we generate an intensity image using all the spectral images in
each viewing direction. Second, we extract Scale-Invariant Feature Transform
(SIFT) features (interest points)10) from these initensity images and establish
correspondences for obtaining the translation and rotation parameters. Finally,
we stitch the spectral image of each view angle using these parameters. Fig. 10
shows a synthesized panoramic multispectral image.

Fig. 10 Panoramic image made from mul-
tispectral images: this image has
81 dimensional spectrum in each
pixel.

(a) (b) (c) (d)

Fig. 11 Segmentation result of layered sur-
faces (a) Input image (b) Method
1: PCA + k-means (c) Method
2: KPCA + k-means (d) Method
3: Proposed NCuts on super-pixel
method

3.2 Multispectral Image Segmentation
Segmentation of a multispectral image needs dimensional reduction. For di-

mensional reduction, linear and nonlinear reduction methods exist. Our prime
objects, microorganisms on the bas-relief of the Bayon temple, have a nonlinear
characteristic in spectral distributions due to the combination of top and bot-
tom layers. Consequently, we need to employ the nonlinear demension reduction
method. We develop a multispectral image segmentation method using NCuts.

3.2.1 Nonlinear Mixing and Layered surfaces
Some of the top layer’s pixel spectra typically show mixed spectral character-

istics between the top layers and bottom layer. These cause a so-called spectral

mixing5). The spectral mixing can be categorized into two models: linear mix-
ing and nonlinear mixing. The linear mixing occurs when one pixel consists of
sub-parts from different materials; the different materials are distributed on the
image plane. Generally, the linear mixing can be solved by reducing spectral
dimension by using PCA, and clustering reduced data.

Our application, analysis of microorganisms, falls in the category of nonlinear
mixing problem. This mixing occurs due to layer surfaces such as microorgan-
isms and bottom rock surfaces. The different half-transparent materials are dis-
tributed along the line of sight. The PCA method cannot be applied to nonlinear
mixing, but the nonlinear mixing problem can be solved either by employing the
extending the kernel PCA (KPCA)14) or the NCuts method.

3.2.2 Dimension Reduction of Normalized Cuts
The dimension reduction of NCuts is similar to it of KPCA. KPCA is a typi-

cal kernel method. KPCA projects high-dimensional space to lower-dimensional
space, using eigenvalue decomposition based on the Gram matrix. NCuts method
employs the Laplacian matrix, instead of the Gram matrix, for nonlinear map-
ping from input data and Gaussian Kernel, and then finds the optimal lower-
dimensional space using eigenvalue decomposition.

We prefer the NCuts method over the KPCA because of computational cost.
KPCA needs more dimensions for effectively representing data, because typically
a cumulative curve is rather flat in KPCA; there is not much difference in the
contribution between two adjacent eigenvalues. On the other hand, in the NCuts
method, once we find the partition number, indicating how many regions exist in
an image, we only need to pick up n eigenvectors in ascending order, where n is
the partition number. In our application, it is relatively easy to set the partition
number as a rough estimation of how many regions of microorganisms exist in the
scene. For this reason, we prefer the NCuts method to KPCA for our nonlinear
segmentation.

The NCuts method consists of nonlinear dimension reduction and clustering.
Among various segmentation methods, the Ncut method has a unique feature of
nonlinear dimensional reduction.

3.2.3 Applying NCuts to multispectral segmentation
Dimensionality is one of the issues in applying the NCuts method to the mul-
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tispectral image segmentation method. The NCuts method requires making a
weight matrix of a high-resolution image, of which the dimensions are (N × N),
where N is the number of image pixels, typically more than 250,000. The NCut
method handles this issue by effectively using the proximity threshold, ignor-
ing remote nodes for calculation, and ending up solving a sparse matrix of a
high-dimensional image.

We employ a two-step method to overcome this high-dimensional issue. In our
microorganism analysis, we cannot apply the proximity threshold because two
remotely located regions from the same kind of microorganism should be classified
into the same class. We assume that a nonlinear manifold of high dimension has
a linear sub-space in a low dimension. First, we over-segment the multispectral
image using a standard PCA method and k-nearest neighbor method, and form
super-pixels corresponding to each segment. Then, we apply the NCuts method
to these super-pixels.

Our implementation is as follows: First, we compute M super-pixels by over-
segmentation using PCA dimension reduction and k-nearest neighbor method.
Second, we calculate M mean spectra for all M super-pixels. Let I =
{I1, I2, I3, ., Ii, .., IM}, where I is spectrum data of m dimensional. Third, we
compute the weight matrix W from M (M < N) super-pixel values using the
following equation:

Wij = exp
(−‖I(i) − I(j)‖2/t2

)
(22)

In our experiment, we set t, a normalization factor, at 70% of the maximum
distance in the weight graph. Finally, we can segment a multispectral image into
material regions by using this weight matrix and NCuts.

3.3 Experimental Results
In this section, we describe two experiments. We conducted accuracy verifica-

tion of our system, and applied our method to the analysis of cultural heritages.
3.3.1 Accuracy Verification of Multispectral Image
In this experiment, we captured multispectral images of a color chart (X-lite

Color checker), under artificial sunlight (Seric XC-100), by using both fixed expo-
sure and the proposed dynamic exposure methods, respectively. Then, we mea-
sured the spectrum of each patch using a spectrometer (PhotoResearch PR-655)
as the ground truth. Next, we calculated the root mean square error (RMSE) be-

tween the obtained spectral data and the ground truth in each patch. Compared
with the RMSE values by the fixed exposure method, the RMSE values by the
proposed method are much lower. The mean value of RMSE in fixed exposure is
1.352. And the mean value of RMSE in the proposed dynamic exposure is 0.854.
The result also showed that our system is effective for spectral analysis.

3.3.2 Comparison with Conventional Segmentation Method
In this subsection, we compared conventional segmentation methods and the

proposed method. First, we calculated reflectance spectra from the input mul-
tispectral image by using our method. Second, we segmented the reflectance
spectra image into different materials using these methods:
( 1 ) Method 1: PCA and k-means clustering
( 2 ) Method 2: KPCA and k-means clustering
( 3 ) Method 3: Proposed NCuts on super-pixel method
Fig. 11 shows the segmentation result of layered surfaces for examining the effect
on the nonlinear mixture. The input image is a watercolor pigment painted on
a white paper. This image has complex color between the top layer and the
bottom layer. Fig. 11. b, by Method 1, and c, by Method 2, include significant
segmentation error.

3.3.3 Spectral Analysis for Bas-relief at the Inner Gallery of Bayon Tem-
ple

This subsection describes how we applied our proposed multispectral imaging
system and segmentation method to analyze a cultural heritage. At the Bayon
Temple in Cambodia, microorganisms are one cause of deterioration in the inner
gallery. Fig. 12 shows the microscope images of microorganisms observed at
each spot. Due to deterioration, the detailed bas-reliefs on the walls are losing
their shapes. We examined the kind, distribution, and reproductive cycle of
the microorganisms to find an effective method to remove them. We assumed
that some of them could be discriminated by detecting the absorbance spectra of
photosynthetic pigments in them, and we found we could calculate absorbance
from reflectance.

Fig. 13. a shows the image of the scene we observed. Then, we found cor-
respondences among multispectral images in different seasons to the same area
through 3D data. The results in Fig. 13.b show the measured absorbance spec-
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(a)

Chlorophyll a

Chlorophyll b

Carotenoids

Phycoerhthrins
Phycocyanins

(b)

Fig. 12 (a) Microbial growth on the wall surface: microscope images of microorganisms
observed at each spot.(b)Absorbance of photosynthesis pigments: green algae
mainly has chlorophyll a and b. Cyanobacteria mainly has chlorophyll a and
phycocyanins.

(a) (b) (c) (d)

Fig. 13 (a) Observed scene image: this scene was made by mapping a multispectral im-
age onto 3D data.(b)Absorbance spectrum in each class area.(c)Segmentation
result of microorganisms in rainy season. (d)Segmentation result of microor-
ganisms in dry season.

trum of each segmented area. The three areas, depicted using blue, white, and
red colors in the figure, should be differentiated by the quantity of phycocyanin.
This is because the areas’ absorption has large differences at around 600 nm,
which coincides with the phycocyanin’s absorbance spectrum as shown in Fig.
12. As Fig. 13.c and d shows, white and blue areas decrease in a dry season
compared to a rainy season, which implies that the quantity of phycocyanin has
decreased in the dry season. The results indicate that the cyanobacteria, the
main source of phycocyanin, increase in a rainy season and decrease in a dry
season.

4. Decomposing Complex Reflection Components of a Layered Surface
Using the Spider Model

In this section, we describe a novel physical model called the ”Spider” model
that can deal with color changes of layered surfaces and also decompose optical

properties of each layers. The proposed model can represent the gradual color
changes due to the change of optical properties of layered surfaces based on the
Lambert-Beer (LB) based model. The proposed decomposition method cannot
only segment the colors correctly even when they change gradually, but can also
estimate the top layer’s reflectance and optical properties, and the bottom layer’s
reflectance. Furthermore, there are no methods sharing our goals and techniques.
We have developed methods for both an RGB image and a multispectral image.

4.1 Layered Surface Model

�� ��

������

	


����������

��������

(a) (b)

	

�

	�

������

Fig. 14 (a) The optical model of the
Lambert-beer model. (b) The op-
tical model based on the Lambert-
Beer model of layered surface ob-
jects

(a)

(b)

Fig. 15 Spider model:(a) (Left) Water
color painting. (Right) The plot
of left figure into the normalized
color space. (b) Simulation of spi-
der model: (Left) Simulated spider
model. (Right) Simulated image.

The optical transmittance of light passing through a transparent object can
be described by the Lambert-Beer Law1). It is the exponential function of the
attenuation factor multiplied by the distance of the light traveling through the
object, which is written as:

T (λ) = Io(λ)/Ii(λ) = e−µ(λ)d, (23)
where T is the optical transmittance, λ is the wavelength, Io is the intensity of
the outgoing light, Ii is the intensity of the incoming light, µ is the attenuation
factor of the object, and d is the distance of the light traveling through the object
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(the length of the light path). Assuming the light travels perpendicularly to the
object surface, d can represent the optical thickness of the object. Fig. 14. a
shows the pictorial description of the law.

The light reflected from layered surfaces can be modeled based on the Lambert-
Beer law, which in this paper we call the Lambert-Beer based model, or LB-based
model. First, let us consider the reflection from the bottom layer. The light
reflected from the bottom layer is attenuated during the travel through the top
layer; thus, the light received by the sensor becomes B(λ)e−µ(λ)d from Eq. (23).
B is the reflected light at the bottom layer, µ is the attenuation of the top layer,
and d is the thickness, as illustrated in Fig. 14. b.

The light that is reflected by pigments of the top layer in the infinitesimal
distance dl is F (λ)µ(λ)dl, according to the definition of attenuation12). Here, we
assume that pigments receive the same amount of light F in the top layer. The
total amount of light reflected by the top layer is the sum of the light coming
from each infinitesimal distance dl, which is the integration over the distance
d:

∫ d

0
F (λ)µ(λ)e−µ(λ)ldl = F (λ)(1 − e−µ(λ)d). Note that each light from dl is

attenuated by the factor of e−µl by other pigments.
Thus, the total amount of light observed by the sensor becomes

I(λ) = B(λ)e−µ(λ)d + F (λ)
(
1 − e−µ(λ)d

)
, (24)

where I is the mixture intensity of the transmitted light from bottom and top
layers. We call I a mixed layer. B and F can also be defined as the intensity
of light coming from the surface when the thickness d is zero and infinitely large
(∞), respectively. In this paper, we define opacity φ(λ) = 1 − e−µ(λ)d. Hence, if
we have two-layered surfaces, they are composed of the bottom layer B(λ), the
top layer F (λ), and the opacity of the top layer φ(λ). This paper assumes that
the opacity of the bottom layer is infinitely large throughout the image.

In more details, there are two types of bottom layers. The first is the bottom
layer that is not covered by the top layer. This bottom layer receives light directly
from the light source, which mathematically can be described as:

B′(λ) = L(λ)ρ(λ), (25)
where B′ is the reflection of the bottom layer when it is not covered by the top
layer. L is the light intensity. ρ is the albedo of the bottom layer.

The second type is the bottom layer covered by the top layer, which we can

formulate as:
B(λ) = L(λ)e−µ(λ)dρ(λ), (26)

and differs from Eq. (25) due to the change of the light impinging on its surface
(L(λ)e−µ(λ)d). Note that in the last equation, we ignore the cumulative reflections
reflected back and forth from the bottom layer to the top layer (the interface
reflections), since we assume that the top layers are sufficiently thin.

4.2 Spider Model
Pixel values of a layered surface distribute as a curved line in the RGB space.

They resembles the shape of a spider when multiple lines are observed. This
section introduces the spider model and shows the derivation of it using the
LB-based model (Eq. (24)).

Let us start with an example. Fig. 15. a shows the plot of water color painitng
into the RGB space. The gray circle represents the bottom layer’s reflection.
Black circles represent the top layer’s reflection with the largest opacity value.
As one can observe, the three top layers roughly form three non-linear lines in
the space. They stretch from the pixel values that represent the top layers with
the largest opacity to the pixel values representing top layers with less and less
opacity, and end up by intersecting at the bottom layer where the opacities of the
three top layers equal zero. Fig. 15. b shows a synthetic image generated by the
LB-based model (right), and its plot into the color space (left). We plotted three
colors with various opacity values. The gray circle represents the bottom layer’s
reflection. Black circles represent the top layer’s reflection when the opacity=1.

Mathematically, we derive the spider model as follows. First, instead of using
spectral data, we use RGB color data taken from an ordinary digital camera for
which the gamma correction is set to off. The LB-based model for the RGB data,
then, can be expressed as:

Ic(x) = Bc(x)e−µc(x)d(x) + Fc(x)
(
1 − e−µc(x)d(x)

)
, (27)

where index c represents one of the three color channels {r,g,b} and x is the
spatial image coordinate. Bc is the reflection by the bottom layer. Fc is the
reflection of the top layer when the thickness is infinitely large (or sufficiently
large so that the bottom layer does not affect the top layer’s reflection). In the
last equation, we assume that the camera’s color sensitivities follow the Dirac
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delta function. For the sake of simplicity, we will omit x throughout the paper;
however, unless it is stated otherwise, the variables should be considered to be
dependent on x.

Considering the intensities in the red and green color channels, from Eq. (27),
we can write:

Ir = Bre
−µrd + Fr(1 − e−µrd) (28)

Ig = Bge
−µgd + Fg(1 − e−µgd). (29)

In the two equations, all variables are dependent on the color channels except for
d. Thus, by letting αc = e−µcd:

−d = ln(αc)/µc

ln(αr)/µr = ln(αg)/µg

αr = αµr/µg
g . (30)

From Eq. (29), we know that:
αg = (Ig − Bg)/(Fg − Bg). (31)

Substituting the last equation into Eq. (30), we can obtain:
αr = ((Ig − Bg)/(Fg − Bg))

µr/µg . (32)
Finally, by plugging the last equation into Eq. (28), we can express the intensity

of the red color channel as:
Ir = Br + ψr(Ig − Bg)γr , (33)

where γr = µr/µg, and ψr = (Fr − Br)/(Fg − Bg)γr . Accordingly, we can apply
to the blue color channels, resulting in the following equation:

Ib = Bb + ψb(Ig − Bg)γb , (34)
where ψb = (Fb − Bb)/(Fg − Bg)γb , and γb = µb/µg. Eqs. (33) and (34) imply
that the correlations of the intensities in different color channels are not linear.
Fig. 15. a shows the plot of the intensities, Ic, of layered surfaces in the RGB
space, which form curved lines as predicted by Eqs. (33) and (34).

This spider model is the core of our method, since by obtaining it, we are able
to know the optical parameters of the layered surface, which in turn enables us
to classify the color of the top and bottom layers of a pixel. Furthermore, using
their properties, we can analyze opacities of layers, and also simulate the color
changing depending on the top layer’s thickness as shown in Fig. 15.a.

4.3 Estimating Optical Properties of Layered Surfaces
Given a single input image containing the mixture of bottom and top layers,

this section shows how to extract the optical properties of layered surfaces based
on the spider model. This process is possible to be fully automatic, for example
by tracing every line distribution in the color space, similar to?). However, in
this paper, to show the effectiveness of the spider model, we utilize simple user
interactions to brush rough areas where the top layers and background layers are
present. The brushing (or scribling) can be as simple as drawing a line, as shown
in Fig. 16. b.

Overall, our proposed method consists of two processes: (1) Extracting the
spider model (ψc, γc), (2) Determining the value of Bc, Fc and φc of each pixel
in the input image by using a graphical model. This process is similar to the
problem of labeling pixels by using multiple labels.

4.3.1 Estimating Spider Model
The aim of this section is to discuss how we can extract the spider model’s

parameters (ψc, γc). We consider two of cases: (1) an input image with a single
bottom layer and several top layers, (2) an input image with several top layers
and several bottom layers. Note that, these cases are just examples of conditions
where our method can work.

Fig. 16. a shows an example of case 1. We assume that from the user’s scribble
we can have parts of regions where the top layers are present and parts of the
bottom layer’s region. To have the spider model’s parameters of each region, we
plot the pixels that correspond to the scribble on the top layer, producing three
indepedent distributions in the RGB space as shown in Figs. 16. c - e. Fitting
the spider model onto each of the distributions according to Eq. (33) and (34),
will give us the values of {ψc, γc} for red, green, and blue top layers. To help
estimate {ψc, γc}, we use Levenberg-Marquardt method. The same process also
works for an input image that has a single bottom and a single top layer. Note
that Bc is known, since we can obtain it from the bottom region marked by a
user.

Fig. 17. a shows an example of case 2, an input with several top layers and
several bottom layers. For this case, not only can we estimate {ψc, γc} for every
top layer, but also estimate the values of Fc. Since according to the spider model,
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(a) (b) (c) (d) (e)

Fig. 16 Estimated spider model: (a) Input image. (b) Marked regions. (c) Estimated
line of blue. (d) Estimated line of red. (e) Estimated line of green.

(a) 

(b) (c) (d) (e) 

Fig. 17 Estimated spider model using the intersection of color lines. (a) Input image.
(b) Marked regions (c) Red: (left) Estimated color lines, (right) Estimated
color of the top layer and ground truth. (d) Blue: (left) Estimated color lines,
(right) Estimated color of the top layer and ground truth. (e) Green: (left)
Estimated color lines, (right) Estimated color of the top layer and ground
truth.

if we have a top layer with two bottom layers, we will have two curve lines that
intersect at a point representing opacity, φc = 1. This phenomenon is shown in
Fig.17. c until e. In the perspective of the spider model, the phenomenon also
occur when we have two or more top layers and one bottom layer, where the
intersection point indicates the reflection of the bottom layer Bc.

4.3.2 Layered Surface Decomposition
To decompose layered surfaces in an image is equivalent to estimating Fc, Bc,

and φc for every pixel in the image. Therefore, given {Ix}, {Bc}, {wl}, where
index x represents an input-image pixel, Ix is the RGB values of pixel x, wl

is the curve line (or the spider’s leg) generated by {ψc, γc} of top layer l, we
intend to estimate the label of x. In our case, the number of labels depends

on the number of the top layers and the bottom layers, which is defined as
L = [1, . . . , l, . . . , N + 1], where N is the number of the top layers, and N + 1 is
because we include the label of the bottom layer. For clarity, in this section we
assume that we only use one bottom layer, although the method discussed below
can also work for multiple bottom layers.

Solving this problem is also equivalent to computing the probability of the label
of a pixel based on the distance between the pixel’s RGB value and a leg of the
spider model, where the leg represents the curve line that leads to the top layer.
The closer the distance of a pixel to a leg, the higher the probability.

To correctly label the pixels, we should incorporate the case when a pixel is
closed to the head of the spider model, meaning when a pixel is closed to a bottom
layer. This can be solved by creating a data cost described as follows:

D(x = l|Bc, wl, Ix) =

{
0 if d(Ix, Bc) < th

1 − e−d(Ix,wl) otherwise
(35)

where Bc is the RGB value of a bottom layer. wl represents the curved line
created by parameter {ψl

c, γl
c}. Function d represents the Euclidean distance in

the RGB space. Threshold th is set depending on the noise level of the bottom
layer and the camera, in our experiment we set the value between 10 ∼ 20 (within
RGB standard values from 0 to 255). As the initial values, for all values of i and
x, we set D(x = l|Bc, wl, Ix) = 1.

Next, we also employ the smoothness constraint, and model the spatial corre-
lations based on MRFs:

E ({x}, {Bc}, {wl}, {Ix}) =
∑

p

D(x = l|Bc, wl, Ix) +
∑
p,q

S(xp, xq)

where S(xp, xq) will be zero if xp = xq, and one otherwise. To minimize the cost
function, we use graphcuts for multiple labels17).

Having labeled every pixel, we can now estimate the values of Fc, by analyzing
the pixel distribution that are labeled to a top layer. Fc is the pixel that has
the largest geodesic distance from Bc, since they are the edge points of the
distribution. Finally, having estimated the values of Fc, we can straightforwardly
compute the values of φc (the opacity) for every pixel. The Figs. 18 show
decomposed images of Fig. 15.a.
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(a) (b) (c) (d)

Fig. 18 The result of layered surface de-
compostion: (a) Input image with
user specified top and bottom
strokes. (b) Extracted top layer’s
image. (c) Extracted bottom
layer’s image. (d) Extracted opac-
ity image (1 − e−µd).

(a) (b) (c) (d) (e)

Fig. 19 (a) Estimated opacity image. (b)
Reducing the opacity with n = 0.1.
(c) Reducing the opacity with n
= 0.5. (d) Increasing the opac-
ity with n = 3. (e) Increasing the
opacity with n = 9.

4.4 Simulation
Having decomposed the layers and extracted their optical properties, we are
able to simulate the top layer’s appearances with various degrees of opacity.
If the estimated opacity image is represented as φ = 1 − e−µd, we can write:
e−µd = 1−φ. From section 4.1, we know that if we increase the opacity, optically
it means we increase the optical thickness of the object. Thus, increasing the
thickness n times implies e−µnd = (1 − φ)n. Based on the last equation, we can
simulate the opacity by using the following formula : φ′ = 1− (1−φ)n, where φ′

is the simulated opacity, and n is a positive real number to change the thickness.
We simulated the opacity of the water color painting in Fig. 15. a. Fig. 19. a
shows the original estimated opacity, while Figs. 19. b-e show various simulated
opacities. Note that the opacity is dependent on the wavelength, thus different
color channels give different opacities, making the appearance of the opacity not
white.

4.5 Experimental Results
4.5.0.1 Setup

In our experiment, we captured the images using NIKON D1X. The camera is
radiometrically calibrated to obtain a linear correlation between the incoming
light and the image intensities by setting the gamma correction off. We arranged
the position of the light source distant from the objects, and we excluded the
possibilities of shadows and interreflections. The regions of mixed layers and

(a) (c)(b) (e) (d) 

Fig. 20 (a) Input image: a water color painting painted by a professional artist. (b) In-
put image with user-specified top and bottom strokes. (c) Extracted top layers
Fc. The region in gray is the pixels labeled as the bottom layer. Other colors
represent the estimated top layer’s color of each pixel. (d) Extracted bottom
layer Bc. This is white since it represents the white canvas (e) Extracted
opacity image φ.

bottom layer in the captured image are roughly marked by user interaction.
Then, optical properties of the layered surfaces are estimated.

4.5.0.2 Results
First, we demonstrate the application of layered surface decomposition to a

water color painting in Figs. 20. Fig. 20. c represents the success of seg-
mentation using a spider model. Next, as the results of being able to increase
opacity synthetically, we can apply our method to increase the accuracy and
robustness of color segmentation, particularly for objects with layered surfaces.
Here, we will show the results of our segmentation based on our layered surface
decomposition compared with the closed-form matting8), an object segmenta-
tion method9) and a k-means method. Fig. 21 shows the segmentation results
of applying other methods to the images shown in Fig. 20. a and Fig. 22. a.
Compared with our methods, these results are considerably less accurate and less
robust. For these experiments, we used the Interactive Segmentation Tool-Box
software (http://www.cs.cmu.edu/ mohitg/segmentation.htm) and matting soft-
ware8). Finally, we conducted experiments simulating color change depending on
various thicknesses of the top layer in Figs. 22.

In these results, we can simulate color change by various thicknesses of pig-
ments. In Fig. 22. 2, we tried to recover some of the degraded parts of the wall
painting. From the results, we could simulate color changes based on the various
degrees of degradation.
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(a) (b) (c) (d)

Fig. 21 Segmentation of layered
surfaces: (a) Closed-form
matting8). (b) Lazy Snap-
ping9). (c) K-means. (d)
Our method.

(a) (c) (e)

(b) (f)(d)

(1) Water painting

(a)

(b)

(c)

(d)

(e)

(f)

(2) Rock painting using powdered mineral pigments

Fig. 22 Simulating color change of layered surfaces
depending on various thicknesses of top
Layers. (a) Input image. (b) Estimated
opacity 1−e−µd image. (c) Simulated image
by reducing the opacity 10%. (d) Opacity
image reduced 10%. (e) Simulated image
increasing opacity 3 times. (f) Opacity im-
age increased 3 times.

4.6 Extended method based on Spectral Information
So far, we described a proposed method based on RGB color. However, we can

easily extend the method into a method based on spectral data. In this section,
we describe in detail how to extend our method into a spectral-based method.
Futhermore, we employ K/S values, which is the equation of the equation of
Kubelka-Munk model6). We can estimate some wavelengths without scattering
using the following equation:

K/S = (F (λ) − 1)2/2F (λ), (36)
where K is the absorption coefficient, and S is the scattering coefficient. When
K/S is large, the scattering effect is small. In our experiment, the value of K/S

is set at > 0.5. In this way, we can select optimal wavelengths without scattering.
Let I = I1(λ), I2(λ), . . . Ii(λ), . . . IN (λ), where Ii(λ) is an input spectrum of M

dimension. Fi(λ) is the reflectance spectrum of each top layer Fi. B(λ) is the
reflectance spectrum of a bottom layer. First, we can calculate the reflectance
spectrum B(λ) of the bottom layer and reflectance spectra of all top layers Fi(λ)
as well as we could using an RGB-based method. Second, we can estimate the M ′

optimal wavelengths by using K/S values. Furthermore, we select the wavelength
m having most variance in their wavelengths. Then, we can select E dimensional

wavelengths, which are consist of the m and arbitrary E − 1 wavelengths. How-
ever, we do not need to estimate all forms of Eqs.37 for segmentation. We can
select the number of wavelengths according to computational cost. Third, we
estimate nonlinear lines having E(E < M) dimension. It is necessary to use Eqs.
(33), (34) for estimating nonlinear color lines. Then, we can rewritte Eqs. (33)
and (34) as following the E − 1 equations:

I(E) = B(E) + ψ(E)(I(m) − B(m))γ(E)

I(E − 1) = B(E − 1) + ψ(E − 1)(I(m) − B(m))γ(E−1)

...
I(1) = B(1) + ψ(1)(I(m) − B(m))γ(1) (37)

Next, we segment spectra of each different layer. Finally, we can estimate
e−µ(λ)d in each pixel.

4.7 Experiment using Multispectral Image of Water Color Painting
In our experiment, we captured the multispectral image using the LCTF imag-

ing system that is described in section 4.6. We also used artificial sunlight(Seric
XC-100). Sample spectra were normalized by an illumination spectrum.

Figs. 23 show the RGB images of decomposed spectra and estimated spectra
of each layer. The segmentation accuracy of these results compared favorably
with the results of the RGB based-method. Fig. 23. e shows the comparison of
between estimated spectra of top layers and ground truth, and also shows the
K/S value of each pigment. Notice that blue and green results have sufficient
accuracy, but the red result is less accurate. Fig. 23. b shows the K/S values of
red pigment. Notice that K/S values are low in error wavelengths. This result
implies that a scattering effect is affecting the wavelengths.

5. Conclusions
The ultimate purpose of this paper is the development of reflectance analysis
methods using a multispectral image and yielding practical applications for mod-
eling cultural heritages. Considering this purpose, the main contribution of this
paper is to propose two multispectral imaging methods and two reflectance anal-
ysis methods. We apply these not only in theory but also in practice to show their
viability. The contribution can be specifically summarized by the five following
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Fig. 23 Decomposed multispectral images. (a) Input image. (b) Scribbled image.
(c) Estimated top layers image. For better visualization, we increased the
brightness of the color. (d) Estimated e−µ(λ)d image. (e) Estimated spectra
of top layer. Red lines of (a), (b), and (c) are estimated spectra. Blue lines
of (a), (b), and (c) are ground truth. (f) Estimated e−µ(λ)d (g) K/S values in
each spectrum.

points: First, we have developed a practical color restoration method based on
spectral information for making VR contents, have actually produced VR con-
tents by using restored images, and have also showed them in the Kyushu national
museum. Second, we have developed a multispectral imaging system that can ef-
ficiently acquire spectra in a wide field. Third, we have proposed a multispectral
image segmentation method based on statistical procedures. Fourth, we have
proposed the Spider model as a physical model for layered surfaces, and have
also proposed decomposing complex reflection components of a layered surface.
Finally, we have applied our methods to both the reflectance analysis of tumuli
and the spectral analysis of the bas-relief in the Inner Gallery of the Bayon Tem-
ple. These methods are specifically designed for modeling cultural heritages, but
they can be used in other fields as well.
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