IPSJ SIG Technical Report

Automatically Finding Web Documents
Related to a Code Sample

Phan The Dai' and Katsuhisa Maruyama'’

Code search engines on Web have played important roles for novice programmers during
developing software or studying programming by reference examples. However, they
have faced a problem from search results because these code samples lack context or can
be unfamiliar code snippets that are incomprehensible. They must find external
information resources by using another Web search engine with numerous queries
manually and too many pages can be visited. This paper presents a method to
automatically find related Web documents to support them to comprehend source code.
We utilize Web search service APIs for collecting related information of Web pages to
process. Advantaged techniques of information retrieval are used to rank the text
documents. For demonstrating benefits of this method, the proposed method is applied
into an architecture model of a source code search engine and its implementation.
Experimental results from several case studies showed that the method is useful in
supporting programmers understanding new concepts in code samples.

1. Introduction

For programmers, Internet Search has been a frequent and necessary activity to support not
only learning programming but also finding solutions when they are facing with a
programming problem. In which, code-specific search engines such as Google Code Search
[1] can serve as powerful resources of open source code. However, they have not fitted
completely the programmers’ needs. Their shortcoming came from that they were designed to
specifically support programmers searching for raw code samples that lack their contexts.
Novice programmers often face with an unfamiliar code sample, which either declares type
names referring to other packages or have a complex program structure. They must involve
another general-purpose search engine including Google or Yahoo for searching
documentation resources, such as Javadoc pages explaining class members in a hierarchy
structure or pages containing similar code snippets with explanatory texts. This search costs
the programmers more time and effort because they would prepare numerous queries
manually and visit too many pages. Tool support that alleviates this kind of problem during

T Graduate School of Science and Engineering, Ritsumeikan University
Tt Department of Computer Science, Ritsumeikan University

Vol.2010-SE-167 No.7
2010/3/18

code searching is essential.

With the above motivation, we consider that the current existing source code engines
should be integrated an extra function that allows automatically recommending more external
documentation for their code search results. In this paper, we propose a novel method to
automatically retrieve Web documents related to code a programmer wants to understand.
This method uses Web search service Application Programming Interfaces (APIs) to collect
the top of ranked web search results that might explain the code sample. The collected Web
documents are ranked against the code sample by using Information Retrieval (IR) techniques.
In addition, to demonstrate usage benefits of the method, we present an architecture example
of a source code search engine that utilizes this approach to automatically recommend
documentation for each its code search results.

The main contributions of this paper are that it 1) introduces our method, named FWD, that
automatically finds the related documentation on Web for source code, 2) presents a usage of
the method by two models of code search engine that can recommend related Web documents
for its results, and 3) provides an implementation of specific Web-based tool that realizes our
method, and 4) shows the benefits of this approach through some case studies.

The remainder of the paper is organized as follows: Next, Sect. 2 presents Web search
services and several IR techniques used in them. Sect. 3 describes our FWD method to find
Web documents associated with a given piece of code. Sect.4 presents usage of the method
through integrating this solution into a source code search engine. Sect.5 provides
implementation of the specific Web-based tool. In Sect.6, we validate the efficient of this
implementation through some case studies. Sect. 7 discusses several related studies. Finally,
Sect. 8 gives concluding remarks and some directions for future work.

2. Background

This section starts with introducing several code search engines and then describes Web
search service APIs in our automated data collection process. It also explains several common
IR models that have been applied successfully into retrieving links between code and software
documentation in software engineering.

2.1 Source code search engines

A number of code search tools have been proposed and developed with several alternative
solutions to find information of code samples. They are based primarily around traditional IR
techniques that accept queries as keywords (names of classes, names of methods, parameters,
etc). These tools can support developers search on Integrated Development Environment
(IDE), in the same project, Intranet, and Internet. Some significant contributions both from
academic and the industry are Google Code Search [1], Koders [2], Sourcerer [4], SPARS-J

(©2010 Information Processing Society of Japan

IPSJ SIG Technical Report

[5], Codase [17], Code conjurer [18], and Parseweb [20].

These tools either allows search within their own indices or are built on top of the external
search engines. For example, Google Code Search crawls publicly accessible source code
resources including archives, CVS repositories and Subversion repositories. PARSEWeb
currently uses Google Code Search to find and download likely examples of object
instantiation. Sourcerer is a search engine for open source code search and provides an
infrastructure for large-scale indexing. Code conjurer is a test-driven-based code search tool
that is supported by a Merobase component finder. Strathcona uses developer’s current
structure context to recommend source code examples from its repository.

2.2 Web search service APIs

Web search engines play important roles in finding and accessing information on the
Internet. General search engines allow users to search for various kinds of web content.
Several current Web search services can provide both Web User Interfaces (WUIs) and APIs
to access their indexes. They offer users with alternative ways to collect data as manually
submitting queries to the their web user interface, to create programs that automate the task of
submitting queries, or to use web search service APIs to access their index and collect data.
However, several search engines have legal restrictions against automating data collection
using the WUIs. Therefore, in this research, we chose using APIs for collecting information
on the Web. Next, we explain the popular Web Search APIs provided by Google and Yahoo.

Google AJAX Search API [15] provides JavaScript libraries for JavaScript environments.
For other Non-JavaScript environments, the API exposes a raw RESTful interface. REST is
an acronym standing for Representational State Transfer. We can interact easily with the
RESTful service by creating HTTP requests and processing HTTP responses. Using an API
key for the Google AJAX Search API in the application (site) is completely optional but
Google suggests users that they should have one.

Yahoo! Web Search API [16] is a RESTful service. Access is rate limited based on the
caller's IP address, and queries are limited per IP and per day. With Yahoo! Web Search
Service API, we can create HTTP requests and process HTTP responses by hand, or by using
the client libraries. To support for developers, libraries for many programming languages such
as Perl, Python and PHP, Java, JavaScript, and Flash and example code have been bundled
together as a Software Development Kit.

2.3 IR techniques for similarity calculation between document and code

IR techniques have proven useful in many areas, for retrieving not only free-text documents
but also specific structured data such as source code. Almost all current search
implementations are based on or extensions of IR methods. Recently, IR techniques have been
applied on retrieving links between code and software documentation such as user manuals,

Vol.2010-SE-167 No.7
2010/3/18

requirements, design documents, test cases, etc and vice versa. A widely used approach is
ranked retrieval, which ranks the documents against the queries constructed from source code
and returns a ranked list of documents. First, documentation and source code need to be
preprocessed, such as retrieval items extraction, transforming all capital letters into lower case
letters, removing stop words and stemming (reducing words to a root form). Second,
similarity is computed by applying some IR models such as Probabilistic Model (PM), Vector
Space Model (VSM) and Latent Semantic Indexing (LSI). As a result, a list of ranked
documentations is generated. Finally, the results with the relevance degrees above the
threshold value are selected from this list.

In the PM model, documents are ranked according to the probability of being relevant to a
query computed on a statistical basic. Suppose that there are N documents, let d denotes for
i-th document and query Q represents a piece of source code. Then, similarity-scoring formula
between d and Q is:

Pr(Q1d)P(d)

Pr(Q)

For a given piece of code O, Pr(Q) is a constant and we can further simplify the model by

Similarity(Q,d) =Pr(d 1Q) =

assuming that all system documents have the same probability. Therefore, for each Q, all
documents d are ranked by the conditional probabilities Pr(Q/d) that can be computed by
estimating a stochastic language model for each document d [7].

In VSM model, documents and queries are represented as vectors in a multi-dimensional
Euclidean space where each axis corresponds to a separate term (word). The co-ordinate along
the axis is a weight determined by statistical occurrence data for the term. Terms definitions
are depend on applications. In our case, terms are words are extracted from the documents
themselves. Once documents and queries are encoded in vectors, similarities between a
document and a document or a document and a query can be deduced according to vector
arithmetic (e.g. a distance function). In a widely used approach, distance between vectors is
captured by the cosine of the angle between them.

Assume that, M is number of dimension of space, as the size of the vocabulary. The weight
vector for document d is: Vg = [w; 4 Wi 4 ..., Waral- The i-th element w; 4 is a measure of the
weight of the i-th term of the vocabulary in the document 4. Similarly, the weight vector for
query Qis: Vo = [w; 0, W20, ..., Wil

Different ways of computing term weights (term weighting schemes) have been developed.
One of the schemes often used in information retrieval and text mining is term
frequency—inverse document frequency weighting, tf-idf. According to this weight, the
importance increases proportionally to the number of times a term appears in the document
but is offset by the frequency of the term in the documents collection. Term weight of term ¢

(©2010 Information Processing Society of Japan

IPSJ SIG Technical Report

in a document d is defined as follow:
woa = tf; * idf,
where #f; is term frequency (term counts) a term ¢ occurs in a document d; df; is document
frequency or number of documents containing term ¢; idf; is inverse document frequency,
which is calculated by log(D/df,).
The cosine similarity between query Q and document d can be computed by cosine
similarity formula as follows.

M
V, eV, EW,‘.JW,:Q
Similarity(Q,d) = cos(0) = 2 = =
Ve

K Ji Wia \/ﬁ Wiz,Q
i=1 i=1

For N documents, those documents can be represented as a M X N term-document matrix,

those rows are M terms and N is the number of rows (each row is a document).

LSI is an algebraic model based on VSM. The basic assumption of LSI model is documents
come from a mix of orthogonal topics; in the other words, there are some implicit
relationships among the words of documents. Firstly, documents are represented as a large
term-document matrix. Next, the VSM space is truncated and transformed to LSI subspace by
applying singular value decomposition (VSD) to the term-document matrix. Finally, we can
compute the similarity by using cosine formula in LSI subspace and filter result list according
to a predetermined threshold.

3. FWD Approach: Finding Related Web Documents for a Code Sample

This FWD (Finding Web Documents) approach is based on two assumptions that are 1)
several documents related to source code are possibly published on Internet, and 2) the code
and its documents are often likely to share common terms. Input of the entire process in the
FWD approach is a code sample (or a source file) and output is a list of related Web pages
that are ranked according to relevance against this sample. The relevant Web pages should be
retrieved are pages contain similar source code, API documents (Javadoc pages), pages
contain code snippet and explanatory texts, tutorial pages, pages from mail
listings/group/forums, pages about other similar solutions (other libraries), etc.

This process includes two main phases: phase 1 is “Collecting Documents” and phase 2 is
“Ranking”, as shown in Figure 1. The sub-processes in both phases are organized in pipeline
architecture; the output from phase 1 constitutes the input for phase 2.

In the phase 1, the process firstly extracts identifiers (declared names) in the code sample
such as package declaration, import declarations, type declarations, super class, super
interfaces, field declarations, method declarations. It constructs queries each of which can be

Vol.2010-SE-167 No.7
2010/3/18

an identifier or a combination of ones by Boolean operators. The combination purposes to
improve the quality of search results. An example is as “package name AND class name”. It
calls Web search service APIs such as Google AJAX Search API or Yahoo! Web Search
Service API for these queries and retrieves their web search results. It obtains the addresses of
these results to download web pages and parses them to extract text documents.

1. Collecting Documents - creating Index Web Search Service

&<
<

API
Queries)

Code ifi List of
Identifiers Words Download &
Identifiers Combination pleai==ach Parsing

Web search results

ocuments F"INormalization

xt II
Text —» Index

Web Do
IR-Inde!

2. Ranking ¥ query .
Text | | Query Similarity indexed documents
Normalization Parser Calculating |

scored documents
User List of documents Classificaion GetN top
Interface | results

Figure 1: Overview of FWD approach

The extracted documents will be normalized as texts and indexed based on a vocabulary
that is extracted from the documents them selves. Text normalization process includes the
following steps: 1) transforming all capital letters into lower case letters, 2) removing
stop-words or common words (such as articles, punctuation, numbers), and (3) reducing
words to a root form (stemming). Text processing is required to reduce noise and to improve
the semantic similarity between documents. This process performs stemming of the words in
order to be able to compare words with the same stem, but different suffixes. In this research,
to support for indexing process, we used Lucene that implemented the extended Vector Space
Model. When text documents are indexed, inverted index structure data is created, and term
weights are calculated. Similar to VSM, Lucene is using Tf-idf weights because Tf-idf values
are believed to produce search results of high quality.

For ranking the text documents against the code sample, the ranking process utilizes the list of
the identifiers extracted in the phase 1. In the phase2, the process normalizes these identifies
as three steps for document indexing in the phase 1. Then, it inputs the results into a Query

(©2010 Information Processing Society of Japan

IPSJ SIG Technical Report

Parser that parses them and builds a query. A scoring algorithm will calculate scores for all
the indexed documents in the repositories against the above query. Finally, we select the first
N results in the ranked list; apply some other processes such as classification, and presenting
the final results to the user interface.

4. New Architecture Model of Code Search Engine

This section presents a usage of the FWD method by presenting models of code search
engine that can recommend related Web documents for its search results. We describe two
kinds of model. The first one is applied in the current source code search engines as an
enterprise application in practical. The second is implemented in our research as tool aiming
to validate the benefits of our approach and validate the quality of results. The main
difference between two models is that the first model needs preprocesses to create an local
indexed documents repository.

According to the first model, we consider that the current source code engines should be
refined as an architecture shown in Figure 2. In this model, in addition to the current its code
index, a search engine has one more local index repository that stores indexed web pages
(documentation). To collect Web documentation and store them into the Web Doc Index, we
use proposed steps in phase 1 of our FWD approach as preprocesses that need to be done
before users can search. Loop over all code samples in the code repository (we assume that
code index also store code samples), use information in each code sample to collect Web
documents and index them. Once Web Doc index was created, finding relevant documents for
each code search result is easy by using online processes of phase 2 in our FWD approach.
Noting that, in this case, Ranking is responsible for as a Documents Searcher. This model has
several advantages such as allowing searching quickly and presenting concurrently many
results to the user interface, but it requires us resources and time to prepare data.

Vol.2010-SE-167 No.7

2010/3/18
Preprocesses to create Web Doc Index Repository
Collecting Documents - creating Index
Code each code [T Web Do
Index :am/ple\ R L > Index
Online processes e, —eaad
eSS # Ranking (Docuspents Searcher)
ﬁ Code List of search each C("de e
I@ ~| Search results sample il R | B | B
= code a
= doc a1
= doc a2
B code b
& GEE List of documents
= doc b

Figure 2: Enterprise architecture model using FWD approach

As mentioned in Sect.2, several code search services such as Google Code Search and
Sourcerer provide free available APIs to allow accessing their index. API allows us
implement search applications with the same its search quality and functions. Basing on this
consideration, we propose the second model that does not use Web crawlers and offline
processes. Figure 3 illustrates our proposed architecture model. The user interface allows the
interaction between users and system, accepts user’s input and present results to the users.
This tool has two main parts. Part 1 is independent and includes a code search component; and
part 2 includes processes for finding related Web documents for each code sample. Input of
the part 2 is each code sample that is obtained from search results of the part 1.

With respect to the part 1, it is simple to implement an efficient Code Search component by
using Code Search service API. This component gets the user’s needs to build a request,
send it to the service, and retrieve response results that are ranked by the Code Search API’s
algorithm. Then, we can customize and format these results before presenting them to the user
interface. Details of the processes in the part 2 were described at Sect.3.

(©2010 Information Processing Society of Japan

IPSJ SIG Technical Report

Google Code

Google Code Search Index

Search API

i

Finding related Web documents (FWD)

1. Collecting Documents - |

[Userinterace 7 Code
IE Code list of search { | ——.
eywords ™ search results =P sample creating Index
Y i

code a

doc a1 ‘2. Ranking |

doc a2

doc bl
doc b2

code b - |
= doc bZ

List of documents

Figure 3: Experimental architecture model using FWD approach
5. Implementation

We implemented a Web-based demo application. This section describes the implementation,
also the issues, challenges and solutions during the designing and developing this system.

Implementation is an application written by Java programming language (Java Servlets,
JSPs, JavaScript). Java Beans are for presenting and storing the search results. Servlets
control processes in the application interacting with Web server. Algorithms and manipulating
processes are implemented by Java classes. User interfaces are implemented by JSPs and
JavaScript. Figure 4 demonstrates all main components in the implementation.

Finding related Web Documents for a code sample

Google AJAX Search API @
© | &3
1

Code List of Identifiers #
Google | . .
Code sample | |Identifiers ., Queries Web Web Web .
Search AP Extractor Constructor Search Download Parser
i Web search results
Code Source Code L ' nd
Search Extractor : ndexer
¥ __
1 I Listof !
[Suserintertace—} —_ ' dentifiers |
-=~1
Listof [____ | ! *—"I
@ results ¥ aquery
5 code a — A\
&~ docal Query |

S doca2 Analyzer —» Parser Ranker D
= doc a10 o 1

[= code b

S docbl Classification Get N = 50top
S docB® [List of relevant documents results

Figure 4: Main components in the Web-based demo application

Vol.2010-SE-167 No.7
2010/3/18

5.1 Code Search

For implementing Code Search component, we utilized Google Code Search Data API
client library. This API allows developers to create a plug-in for IDE or client, web
applications to access code repositories indexed by Google Code Search. To send a query to
Google Code Search, we can use regular expressions in queries. The result returned for a
request is a feed containing entries. Every entry represents for a search result. The elements in
an entry in a code search feed include: information about the authors, license applies to the
code; the full path to the file, name of the file in the version-control repository or archive; the
matched code snippets; the location of the package (name and URI). In case of using the
client library these elements are represented by a set of classes and parsed into appropriate
objects.

5.2 Web Search

Here, Google code search API has not supported API to get the content of source file in its
result entries. We utilized HtmlUnit library[b] to implement a module named Source Code
Extractor to automatically parse Google’s result page and extract the content of code.

Next, Identifiers Extractor component is responsible for parsing a Java source file and
extracting identifiers. We implemented a class that extends the class ASTVisitor from the Java
DOM/AST library of the Eclipse JDT. To optimize the later downloading process, some
common import declarations (for examples, java.util, java.io, java.text, etc) are eliminated
from the identifiers’ list. Using words from list of identifiers, Queries Constructor component
will create queries.

For obtaining information of Web documents, we utilized Google AJAX Search API to call
Google Web search service for these queries. In fact that, after some preliminary experiments
comparing performance between the Google and Yahoo! Web search API, we realized that
Google AJAX Search API allows retrieving results faster. Currently, we only retrieve around
the first ten result pages to the fifteen result pages for each request. In our implementation, we
found that looking at more pages did not significantly improve the quality of the results and
caused to cost long time for downloading. Because Lucene always digests text data, before
these web pages are indexed, they need to be parsed to extract text content. We implemented a
Web parser that uses open source Apache Tika toolkit. We also implemented an analyzer for
transforming all capital letters into lower case letters, removing common words and stemming.
The common words include some English stop-words and Java stop-words.

b) http://htmlunit.sourceforge.net/

(©2010 Information Processing Society of Japan

IPSJ SIG Technical Report

5.3 Indexing and Ranking with Lucene

In our implementation, we used the extended VSM scoring that refined by Lucene[6] with
some additional factor to find the best matches to queries. Lucene called this formula
Lucene’s practical scoring function as follows.

score(q,d) = coord(q,d)* queryNorm(q)* E(lf(l ind)* idf(t)2 *t.getBoost() * norm(t,d)

ting
tf(t in d) is a factor correlates to the term's frequency; idf(?) is a factor correlates to the inverse
of the term’s document frequency; coord(q,d) is a score factor based on how many of the
query terms are found in the specified document; queryNorm(q) is a normalizing factor used
to make scores between queries comparable; t.getBoost() is Boost of term t in the query q as
set by application (calls to setBoost()); norm(t,d) is s value encapsulates a few (indexing time)
boost and length factors.

The Indexer component is implemented by using Lucene. Lucene provides some core
classes for indexing text such as IndexWriter, Directory, Analyzer, Document, and Field. The
IndexWriter class is main point of the indexing process. It creates a new index or opens an
existing one, and then adds, removes or updates Documents in the index. The abstract class
Directory represents the location of a Lucene index. Document and Fields are two Lucene's
fundamental units of indexing. Every Document contains some named fields that are
embodied in a class called Field. Each Field has a name and a series of detailed options that
describes what Lucene should do with the Field’s value when the document is added to the
index. In our implementation, the most important Field is “Contents” that is combined from
title, summary and text content. To distinguish the different important levels of Documents,
higher Boost values are set for some Documents. If a page has its domain appearing in our
predefined list of domains, its Boost value is greater than default value (1.0f). We defined
some important domains such as sun.com, java.net, developer.com, ibm.com, oreilly.com,
Javaworld.com, java2s.com, sourceforge.net, etc.

To support building query and basic search operations, Lucene provide some necessary
classes such as IndexSearcher, Term, Query, TermQuery, TopDocs, ScoreDoc. IndexSearcher
is a commonly used subclass that allows searching indices stored in a given directory. Its
search method returns an ordered collection of documents ranked by computed scores. We
can decide the number of top search results that need to be retrieved by specifying it in the
IndexSearcher's search method. Searching for a specified word or phrase involves wrapping
them in a term, adding the terms to a Query object, and passing this query object to
IndexSearcher's search method.

Lucene also provides various types of concrete query implementations, such as TermQuery,

Vol.2010-SE-167 No.7
2010/3/18

BooleanQuery, PhraseQuery, PrefixQuery, SpanQuery, etc. We can construct powerful
queries by combining any number of query objects using BooleanQuery. Our Query Parser
component that is responsible for constructing a query from the list of identifiers is
implemented similar to this method. Additionally, every term query has different contribution
to the total query. The term queries that their text terms extracted from type declarations such
as major class, interface names are set a higher boost value than from super class, super
interfaces, import declarations. These terms are usually common with programmers then their
contributions to score of documents are not high (term queries are set lower Boost values).
Some of them are byte, short, int, float, list, void, java, javax, util, io, text, etc. Specially,
through validating some experiment results, we explore that including all of terms of import
declarations into the query can cause a problem that some unimportant documents are ranked
into top of results. This problem is solved by only extracting the last term of each import
declaration when building a query for the source code.

ScoreDoc and TopDocs are primary classes involved in retrieving the search results.
ScoreDoc is as a simple pointer to a document contained in the search results. This
encapsulates the position of a document in the index and the score computed by Lucene. The
TopDocs class is a simple container of pointers to the top N ranked documents that match a
given query. In our implementation, to score the text documents, we implemented the Ranker
module, that its input is a query constructed from the list of code identifiers and returns N =
50 results.

5.4 Classification

When presenting the results to the user interface, the pages that are possibly Javadoc will
be attached with specific icons. In order to do that, we implemented a simple solution through
observing Javadoc pages on Web. We realized that their header or footer usually contains
some of the following keywords: “Overview”, “Package”, “Class”, “Use”, “Tree”,
“Deprecated”, “Index”, etc. Searching in the results collection for documents matching with a
query constructed from these words, we can recognize Javadoc pages with a relative accuracy.

In addition, we used the Highlighter package, which was also released together with the full
Lucene’s source to fragment and highlight text parts in the results based on the query. So,
matched parts in the results will be highlighted, once being presented to the user interface.

6. Case Studies

We took some explanatory case studies validate the quality of results for our proposal
automatically finding Web documents for code. To measure the retrieval effectiveness of an
IR system, two most widely used measurements are precision and recall. Recall is the ratio of
correct documents retrieved for a given query over the number of relevant documents for that

(©2010 Information Processing Society of Japan

IPSJ SIG Technical Report

query in the set of documents. Precision is the ratio of the number of correct documents
retrieved over the total number of documents retrieved. However, in our case, calculation of
recall for each request is very difficult or impossible, because of the following reasons: (1)
collection of Web pages always changes, and there have been a huge number of pages, and (2)
validating whether a result is correct (useful) is to depend on satisfaction level of users and
their knowledge.

We assume that, searchers are usually interest in some results in the top ranked results. So
that, we defined a new measurement called useful rate (similar to precision) that is the ratio of
the number of useful links over the number of total links retrieved and is measured at certain
cut-off levels. Experimental results are shown in Table 1. For these results, whether a page is
assumed to be useful was based on inspection and feed back of three participants. Although,
we can have knowledge about the related concepts, these results can be different by validation
of different groups according to their satisfaction levels. There are several conventions in our
tests as follows: the code samples selected in the experiment are the source files that use
external APIs and include many identifiers. Some pages that duplicate content but have
different addresses can be counted. Besides, we gave some following definitions. Give a code
sample A that can include (relevant with) some new concepts such as a;, a;..., a,. The new
concepts can be new types (code identifiers) that refer to other packages (APIs), code ideas,
etc. Document B is assumed to be useful (or relevant) for comprehending 4 if B satisfies one
of the following conditions: B is a page describing 4 such as Javadoc page, or explaining
usage of A as tutorial page; B talks about element a;; B contains an issue or solution similar
with what 4 is solving; B describes some domain concepts that the users need.

The test cases were taken on a PC that has the following configuration, Intel Core 2 Duo
CPU, 2.40 GHz; RAM 4.00 GB, connected to ADSL Internet.

The results showed that the lower cut point is, the higher useful rate is. Useful rate is
relatively high around 60~90%. This means our approach is efficient in ranking documents;
we can get many useful web documents at the top of results. During the experiments, we
attempted to classify the results manually and realized that kinds of useful documents that our
tool can found are: web pages containing similar code snippets, Javadoc pages, web pages
containing explanatory text of usage APIs, tutorial pages, pages from mail listing or groups,
and forums that discuss about related issues according the code sample, etc. These kinds of
above information and feed back from participants showed that our approach is useful for
comprehending an existing program. In other words, automatically finding related Web
documents for search results of code search engines are good for searchers to get new domain
knowledge in code sample.

This experiment also shows that the implementation needs much time for downloading and

Vol.2010-SE-167 No.7
2010/3/18

processing, about from 10 seconds to 5 minutes depending on the number of declared names
in a code sample. An infrastructure with parallel processes can improve the system
performance. Using the enterprise architecture model as described in Sect.4 could be a better

solution.
Code Search Results of finding related Web documents for each code sample
Keywords to Code sample Ranked | Cut | Useful links | Irrelevant links | Total links Useful Rate

search selected (.java) order | point retrieved retrieved retrieved (%)
1 13 2 15 86.7
"Htm1Unit" HtmlUnit Test Case 2 2 25 5 30 833
3 34 11 45 75.6
1 14 1 15 933

"indexHTML" indexHTML 1 2 27 3 30 90
3 39 6 45 86.7
1 13 2 15 86.7
XML 1 2 25 5 30 833

o 3 36 9 15 30

AL i 12 3 15 80
NodeTree 9 2 19 11 30 63.3
3 25 20 45 55.6
1 11 4 15 733
"ASTParser" ASTParser 1 2 17 13 30 56.7
3 21 24 45 46.7

1 12 3 15 80

HTIML 13 2 18 12 30 60
. . 3 21 24 45 46.7
HIML Parser i 1 1 15 933
DocumentParser 15 2 25 5 30 833
3 35 10 45 77.8

Table 1: Results from several case studies

7. Related work

This section discusses several related studies: 1) program comprehension, 2) traceability
links between code and documents in software engineering, 3) assumptions when proposing
the method, and 4) types of information programmers usually need during developing
software programs.

In the area of assisting for program comprehension, academic research projects have
primarily focused on extracting properties from the program code or code comments or
combination both of them [9]. Their goals are to syntactically analyze the source code or
information encoded in comments and identifiers for creating event concepts and relationships
in the form of a concept-based semantic network. Search based software engineering with
search-based optimization algorithms have been also applied to program-comprehension
related activities [10].

(©2010 Information Processing Society of Japan

IPSJ SIG Technical Report

Recovering traceability between code and specifications [11, 12, 13] is also useful for
program comprehension. The experiment results showed that Vector Space IR performs as
well as Probabilistic IR. Vector Space Model requires less effort in the preparation of the
query and document representations [37]. Recently, a comparison [8] showed that, for
realistic datasets, VSM implemented by Lucene is one of the best models that do not perform
dimensionality reduction. However, while the above researches are limited in local repository
where stores source code’s software and its manuals; we applied the proposal for finding
documentations on Internet.

One more similar point between our research and the previous researches is that we
assumed that programmers use meaningful names for program’s items, the source program
and its documents are often likely to share common terms.

Finally, the researchers [14] showed that many searches by programmers are interested the
most in information about APIs. Our approach used declared names in code sample as queries
to retrieve Web pages. These factors can contribute to the result pages tending to focus on
API documentations, seek more information about a particular API.

8. Conclusions

In this paper, we discussed some barriers when programmers search open source by using
the current source code search engines. We introduced a method named FWD that allows
automatically finding the related documentation on Web for code sample. We discussed usage
of the method by two models of code search engine that can recommend related Web
documents for its results. To realize this approach, we implemented a Web-based search tool
for assessing. The paper showed some preliminary case studies to evaluate the quality of the
approach FWD. The results demonstrated that our proposal can find useful web documents’
links that tend to appear in the top results and they are useful for searcher in program
comprehension.

However, more case studies with code samples from other resources for validating the tool
should be done in the future. The experiments need inspection of other experts. Besides, some
enhancements that we would like to adopt to our approach in the near future can be
summarized as follows: (1) study other optimizing solutions to improve the implementation’s
performance; (2) investigate alternative methods for query construction (identifiers
combination); (3) automatically recognize and classify types of web pages such as code
snippets, tutorial pages, forums/blogs, etc in the result pages.

[10]

[11

—

[12

—

[13

—

Vol.2010-SE-167 No.7

2010/3/18
References
Google Code Search’s Website, <http://www.google.com/codesearch/>.
Koders’ Website, <http://www.koders.com/>.
Krugle’s Website, <http://www.krugle.com/>.
Sourcerer services’ Website, <http://sourcerer.ics.uci.edu/services/>.
The SPARS Project, Osaka University, <http://demo.spars.info/j/>.
Apache Lucene Scoring, = Apache Lucene, viewed 28 Nov. 2009,

<http://lucene.apache.org/java/3_0_0/scoring.html>.

Aharon A., Mordechai N., and Yahalomit S., ‘A Traceability Technique for
Specifications’, In Proc. of the 16" IEEE International Conf. on Program
Comprehension, IEEE, pp. 103-112, 2008.

Antoniol G., Canfora G., Casazza G. and De Lucia A., ‘Information Retrieval Models for
Recovering Traceability Links between Code and Documentation’. In Proc. of the IEEE
International Conf. on Software Maintenance (ICSM), San Jose (October 2000)

Bradley L. Vinz and Letha H. Etzkorn. A Synergistic Approach to Program
Comprehension. Proceedings of the 14th IEEE International Conference on Program
Comprehension (ICPC’06). IEEE, 2006.

Mark Harman. Search Based Software Engineering for Program Comprehension. 15th
IEEE International Conference on Program Comprehension (ICPC'07). IEEE, 2007.
Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and Merlo, E., "Recovering
Traceability Links between Code and Documentation", IEEE Transactions on Software
Engineering, vol. 28, no. 10, October 2002, pp. 970 — 983.

Marcus, A., Maletic, JI, and Sergeyev, A., "Recovery of Traceability Links Between
Software Documentation and Source Code", Int. Journal of Software Engineering and
Knowledge Engineering, vol. 15, no. 4, Oct. 2005, pp. 811-836.

Xiaobo Wang, Guanhui Lai, Chao Liu. Recovering Relationships between
Documentation and Source Code based on the Characteristics of Software Engineering.
Journal Electronic Notes in Theoretical Computer Science 243, 2009, pp. 121-137.
Raphael H., James F., Daniel S. Weld, ‘Assieme: Finding and leveraging implicit
references in a web search interface for programmers’, In Proc. of the ACM Symposium
on User Interface Software and Technology, October 7-10, 2007, USA, pp. 13-22, 2007.
Google AJAX Search API, <http://code.google.com/apis/ajaxsearch/web.html>.

Yahoo! Web Search APIs, <http://developer.yahoo.com/search/web/>.

Codase search engine’s Website, <http://www.codase.com/>.

O. Hummel, W. Janjic, and C. Atkinson, ‘Code conjurer: Pulling reusable software out of
thin air’, IEEE Software., 25(5): pp 45-52, 2008.

S. Thummalapenta and T. Xie, ‘Parseweb: a programmer assistant for reusing open
source code on the web’, In ASE '07: Proceedings of the 22" JEEE/ACM international
conference on Automated software engineering, New York, pp 204-213, 2007.

(©2010 Information Processing Society of Japan

