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This paper presents a matrix-based algorithm for integrating inheritance re-
lations of access rights for generating integrated access control policies which
unify management of various access control systems. Inheritance relations of
access rights are found in subject, resource, and action categories. Our algo-
rithm first integrates inheritance relations in each category, and next, integrates
inheritance relations of all categories. It is shown that these operations can be
carried out by basic matrix operations. This enables us to implement the inte-
gration algorithm very easily.

1. Introduction

With the increase and distribution of information, data security and privacy
are critical issues. System administrators pay a lot of attention in order to
prevent information leakage caused by fraudulent actions and mis-operations, and
introduce access control systems to establish access control policies for various
applications and file systems.

Since each access control system has its own access control policy, administra-
tors have to configure policies individually in all systems. Therefore, when the
personal information protection law and the security guideline of organizations
are changed, the administrators have to pay enormous attention for updating
every policy for each system. Thus, the policy generation framework for unifying
management of various access control systems is strongly required.

Regarding the policy generation framework for unifying management of vari-
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ous access control systems, several methods have been proposed 4),6),9),12),13),17).
Among them, Refs. 4), 6), and 9) consider the policy generation framework by
integrating inheritance relations of access rights. An inheritance relation is a
partial order defining a seniority relation between the attributes and behaviors
of objects, whereby the senior attributes and behaviors of objects acquire the
permissions of their juniors, and thus, the access rights of their juniors are inher-
ited to the seniors. Such inheritance relations are found in subject, resource, and
action categories. Inheritance relations are introduced in various access control
systems, e.g., Microsoft Windows R© Rights Management Services (RMS) 14) for
OFFICE documents, Adobe R© LiveCycleTM Rights Management ES 1) for PDF
documents, and PolicyComputingTM 18).

Concerning the integration of the inheritance relations of different systems,
Gong, et al. discuss complexity, composability, and conditions for integration in
Ref. 9). In Ref. 6), Dawson, et al. consider the conditions for which the integrated
inheritance relations do not include conflicts of inheritance relations and redun-
dant inheritance relations. Although these two works clarify the requirements
for integrating the inheritance relations, they do not offer a specific method for
generating integrated inheritance relations. In contrast with these two works,
Bonatti, et al. propose an algorithm for generating the integrated inheritance
relations in Ref. 4). In their work, they introduce a graph theoretic approach
and derive a logical programming based algorithm for integrating inheritance
relations. However, their algorithm seems rather complicated and is not easily
implementable. Another drawback of the above three works is that they only
deal with the inheritance relations in a single category.

The purpose of this paper is to provide an easily implementable algorithm for
integrating the inheritance relations of access control systems. In contrast with
previous works, the algorithm can deal with the inheritance relations in subject,
resource, and action categories. Furthermore, since the algorithm is based on
basic matrix operations, it is easily implementable.

The procedure for generating integrated policies of access control systems is as
follows: first, integrate inheritance relations in a single category; second, integrate
inheritance relations of all categories; third, establish fundamental policies by
administrators, and generate related policies automatically by referring to the
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integrated inheritance relations. The first and second steps are for generating
integrated inheritance relations, and these operations can be accomplished by
matrix operations. The derivation of the algorithm is based on graph theoretic
approach, where a useful property of adjacency matrices is exploited. It is also
shown that the elimination of conflicts and removal of redundant inheritance
relations are also carried out by matrix operations.

This paper is organized as follows: In Section 2, we introduce inheritance re-
lations of access rights for subject, resource, and action categories. Section 3
presents an overview of our proposed method, and indicates the direction for in-
tegrating inheritance relations using graphs. In Section 4, we provide a method
for generating an integrated inheritance relation using adjacency matrices. Sec-
tion 5 summarizes the results of this paper with some remarks.

2. Inheritance Relations

In policy specification languages, e.g., eXtensible Access Control Markup Lan-
guage (XACML) 15),16), every access control rule is essentially specified by three
elements, i.e., subject, resource, and action. Subjects are the entities that can
perform actions in systems (e.g., users, computers). Resources are the entities
that contain or receive information for which access is requested (e.g., files, de-
vices). Actions are the types of access that is being requested (e.g., edit, copy,
read, write).

In many practical situations, we can find inheritance relations of access rights
in each category of the above three elements. Examples of inheritance relations
in subject, resource, and action categories are shown in Fig. 1 (a), Fig. 1 (b) and
Fig. 1 (c), respectively.

In Fig. 1 (a), the arrow directed from “Staff” to “Manager” represents that
if staff can perform an action on a resource, managers can perform the same
action on the resource. Similarly, the arrow from “Confidential document” to
“Public document” in Fig. 1 (b) indicates that when a subject can perform an
action on confidential documents, the subject can perform the same action on
public documents. In the same way, the arrow from “Edit” to “Copy” in Fig. 1 (c)
implies that if a subject can edit a resource, the subject can also copy the resource.

In general, an inheritance relation is described by the following statement: if a

(a) Subject category (b) Resource category (c) Action category

Fig. 1 Examples of inheritance relations.

subject si can perform an action am on a resource rk, a subject sj can perform an
action an on a resource rl. We express this statement as (si, rk, am) → (sj , rl, an).
As shown in Fig. 1, we focus on the inheritance relations described in a single
category. Therefore, we only deal with the inheritance relations expressed by the
following forms:
inheritance relations in subject category:

(si, rk, am) → (sj , rk, am) (∀rk ∈ RES,∀am ∈ ACT)
inheritance relations in resource category:

(si, rk, am) → (si, rl, am) (∀si ∈ SUB,∀am ∈ ACT)
inheritance relations in action category:

(si, rk, am) → (si, rk, an) (∀si ∈ SUB,∀rk ∈ RES)
where RES, ACT, and SUB represent the sets of resources, actions, and subjects,
respectively.

In the first expression, the access right for subject si is inherited to subject sj

regardless of resources and actions. In this case, we simply express the inheritance
relation as si → sj . In such a case, we say that the inheritance relation is in-
dependent from resource and action categories. The independence of inheritance
relation in resource category and that in action category are similarly defined,
and we use notations rk → rl and am → an for the above cases. Throughout this
paper, we assume that all inheritance relations in each category are independent
from other categories.

3. Overview of the Integration of Inheritance Relations

As shown in Fig. 1, inheritance relations are expressed by directed graphs.
First, we introduce some notions in graph theory 3),5) to express inheritance re-
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lations.
A directed graph G(V,E) consists of a set of vertices denoted by V , and a set

of edges denoted by E. An edge e = (v, u) in E is an ordered pair of two different
vertices v and u in V , where v and u are called initial and terminal vertices of
the edge e, respectively. An edge is called a loop if its initial vertex and terminal
vertex are the same. We only deal with a directed graph that has no loops
throughout the paper. A path in a directed graph is defined as a finite sequence
e1e2 · · · en of multiple edges where the terminal vertex of each edge coincides with
the initial vertex of the succeeding edge, and we refer to the number of edges as
the length of the path. A path e1e2 · · · en is called a circuit if the initial vertex
of e1 coincides with the terminal vertex of en.

3.1 Integration of Inheritance Relations in a Single Category
The integration of inheritance relations is accomplished as follows: first, inte-

grate inheritance relations for each category; second, integrate inheritance rela-
tions for three categories. As stated in Section 2, we assume that all inheritance
relations in each category are independent from other categories. Therefore, in
this subsection, we only deal with inheritance relations such as am → an, and do
not consider general inheritance relations such as (si, rk, am) → (sj , rl, an).

3.1.1 Basic Operation for Integration
Here, we provide a method for integrating inheritance relations in action cat-

egory by using graphs. The integration in subject and resource categories is
carried out in a similar manner.

Let Gk(ACTk, IRACT
k ) be the graph which represents the inheritance relation

in action category of a system k (k ∈ {1, · · · , N}), where ACTk is a set of vertices
representing the actions of system k, and IRACT

k is a set of edges representing the
inheritance relations between the actions of system k. The basic operation for
integrating the inheritance relations is the operation taking the union of these
inheritance relations:

ACT = ACT1 ∪ ACT2 ∪ · · · ∪ ACTN , (1)

IRACT = IRACT
1 ∪ IRACT

2 ∪ · · · ∪ IRACT
N , (2)

where ACT is the set of actions of the integrated system, and IRACT is the set of
inheritance relations between the actions of the integrated system. By this, we

can obtain the graph which represents the integrated inheritance relation of the
integrated system as G(ACT, IRACT).

However, the above simple operations may cause problems due to the existence
of circuits and redundant edges 6). In the following subsections, we explain the
problems, and provide the ways to remove these problems.

3.1.2 Circuits
An example of a circuit in action category is shown in Fig. 2 (a). In this

example, the actions “Edit”, “Save”, and “Print” are cyclically dependent. In
this case, if the “edit” action is permitted to a subject on a resource, the “save”
and “print” actions are also permitted to the subject on the resource.

The problem due to the circuits caused by the integration of the inheritance
relations of all access control systems is that the integration yields conflicts be-
tween the integrated inheritance relations and the inheritance relations of some
access control systems. When circuits are generated, there are two different ways
to cope with this problem:
• If administrators think that the conflicts will cause serious problems, stop

the integration.
• If administrators think that the problems caused by the conflicts are not

serious, continue the integration.
In the latter case, we unify cyclically dependent actions as a single set of actions,
and eliminate the circuits. The methods for the detection and the elimination of
the circuits will be presented in Section 4.2.2, where it is shown that they can be
accomplished by some basic matrix operations.

Remark 1 In general, to determine whether the above conflicts are serious
or not is a difficult task because it depends on the situation. One of the way for

(a) A circuit (b) A redundant edge

Fig. 2 Examples of a circuit and a redundant edge.
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this determination is to refer to the security guidelines of the organization. If the
integrated inheritance relations contradict their security guideline, we must stop
the integration. Otherwise, we unify cyclically dependent inheritance relations.

3.1.3 Redundancy
First, we give the definition of a redundant edge.
Definition 1 Let V = {v1, v2, · · · , vp} denote a set of vertices in a directed

graph without circuits. Let eij be an edge directed from vi to vj . The edge eij

is redundant if there exists another path directed from vi to vj .
An example of a redundant edge is shown in Fig. 2 (b), where a redundant edge

is denoted by a dashed arrow.
The inheritance relations corresponding to the redundant edges are not needed

for integrated inheritance relations since such relationships can be obtained by
tracing the corresponding paths. Therefore, we need to detect and remove all
redundant edges. The procedures for the detection and the removal of the re-
dundant edges using basic matrix operations are given in Section 4.2.3.

Summarizing this subsection, the integration of inheritance relations in a single
category can be accomplished by the following steps:
1. Take a union of inheritance relations for all systems.
2. Detect and eliminate circuits by unifying cyclically dependent inheritance

relations.
3. Detect and remove redundant edges.

3.2 Integration of Inheritance Relations for Different Categories
In this subsection, we present a basic idea for integrating inheritance relations of

different categories through a simple example. A general method using adjacency
matrices will be presented in Section 4.3.

Here, we consider the integration of the inheritance relations of subject, re-
source, and action categories given by graphs GS(VS, ES), GR(VR, ER), and
GA(VA, EA), respectively, where

VS = {s1, s2}, VR = {r1, r2}, VA = {a1, a2},
ES = {s1 → s2}, ER = {r1 → r2}, EA = {a1 → a2}.

First, we integrate the inheritance relations of resource and action categories.
By the inheritance relations r1 → r2 and a1 → a2, and from the assumption
that inheritance relations are independent from other categories, the integrated

inheritance relations are obtained as follows:
(si, r1, a1) → (si, r1, a2), (si, r2, a1) → (si, r2, a2),
(si, r1, a1) → (si, r2, a1), (si, r1, a2) → (si, r2, a2) (i = 1, 2). (3)

For simplicity, we rewrite the above relations as r1a1 → r1a2, r2a1 → r2a2,
r1a1 → r2a1, r1a2 → r2a2. From this, it is observed that these inheritance
relations can be regarded as the edges of the graph defined on the vertex set
{r1a1, r1a2, r2a1, r2a2}.

Next, we integrate the inheritance relation s1 → s2 in subject category, and
the inheritance relations given by Eq. (3). Since Eq. (3) holds for i = 1, 2, we
obtain the following eight inheritance relations:

s1r1a1 → s1r1a2, s1r2a1 → s1r2a2, s1r1a1 → s1r2a1, s1r1a2 → s1r2a2,

s2r1a1 → s2r1a2, s2r2a1 → s2r2a2, s2r1a1 → s2r2a1, s2r1a2 → s2r2a2,

(4)
where sirkam is an abbreviation of (si, rk, am). In addition, since inheritance
relation in subject category is independent from action and resource categories,
the access right for s1 is inherited to s2 whatever resources and actions may be.
Therefore, we obtain four inheritance relations as

s1r1a1 → s2r1a1, s1r1a2 → s2r1a2, s1r2a1 → s2r2a1, s1r2a2 → s2r2a2.

(5)
From this, it is observed that the graph representing the integrated inheritance
relations is composed of the set of the edges given by Eqs. (4) and (5), and the
set of the vertices {s1r1a1, s1r1a2, s1r2a1, s1r2a2, s2r1a1, s2r1a2, s2r2a1, s2r2a2}.

As shown above, the integration of inheritance relations of different categories
is too complicated to implement even for the above simple case. In Section 4.3,
we present a general procedure for integrating inheritance relations of different
categories, and show that the procedure can be easily implemented by using
adjacency matrices.

4. Integration of Inheritance Relations Using Adjacency Matrices

In this section, we present a matrix based algorithm for integrating inheritance
relations in a single category, as well as a method for integrating inheritance
relations of all categories. The expressions of graphs via adjacency matrices play
crucial roles.
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4.1 Adjacency Matrices and Their Properties
Here, we give the definition of adjacency matrices, as well as the definitions of

summation and multiplication of matrices. We also introduce a useful property
of adjacency matrices.

Definition 2 Let G be a directed graph with a vertex set V = {v1, v2, · · · ,

vn}. The adjacency matrix R of the graph G is defined as R = [rij ] (i = 1, · · · , n;
j = 1, · · ·n) where each element rij is given by

rij =

{
1 (if there is an edge from vi to vj)
0 (otherwise)

. (6)

The summation and multiplication of adjacency matrices are the same as the
usual matrix operations except for the elementwise summation.

Definition 3 Sum of elements a and b is defined as the logical sum, that is,

a + b =

{
0 (a = b = 0)
1 (otherwise)

. (7)

The following lemma concerns the condition for the existence of a path con-
necting two vertices, and is exploited for detecting circuits and redundant edges.

Lemma 1 Let R be an adjacency matrix of a directed graph G whose vertex
set is given by V = {v1, v2, · · · , vn}. Then, there exists a path of length p directed
from vi to vj if and only if the (i, j) element of Rp is equal to 1 3),5).

Remark 2 As mentioned in Section 3, we only deal with a directed graph
without loop. Therefore, the diagonal elements of all adjacency matrices are
equal to zero.

4.2 Integration in a Single Category Using Adjacency Matrices
In this section, we give a matrix based method for integrating inheritance

relations in a single category. Although we derive the method for action category,
the method can be applied for other categories in a similar way.

Let the number of systems be N , and inheritance relations in action category
of a system k be represented by the graph Gk(ACTk, IRACT

k ) (k = 1, · · · , N). In
integrating these inheritance relations, the size of the corresponding adjacency
matrices of all systems must be the same, since matrix operations include matrix
summation. Therefore, we first rewrite graphs by replacing the vertex set ACTk

by ACT given by Eq. (1).
In the following, we give a matrix based algorithm for the integration according

to the procedure at the end of Section 3.
4.2.1 The First Operation: Taking a Union
The first operation is to take a union of inheritance relations. This is accom-

plished by adding adjacency matrix corresponding to the inheritance relations of
each system. Let Ak be an adjacency matrix expressing the inheritance relations
in action category of system k. Then, the adjacency matrix A corresponding to
the integrated inheritance relation in action category is given by

A = A1 + A2 + · · · + AN . (8)
4.2.2 The Second Operation: Detection and Elimination of Circuits
We can detect and eliminate all circuits by repeated use of the following pro-

cedure until all circuits in the graph are eliminated.
1. remove all vertices composing a circuit and introduce a new vertex instead.
2. connect the edges associated with removed vertices to the new vertex.
For this procedure, the following theorems are useful:

Theorem 1 Let G be a directed graph with n vertices and R be an adjacency
matrix of G. Then, G does not include circuits if and only if Rn = 0.

Theorem 2 Let G be a directed graph and R be its adjacency matrix. Then,
there exists a circuit of length l including vi if and only if (i, i) element of Rl is
equal to 1.
These theorems are easily proved by Lemma 1, so they are omitted.

Based on the above two theorems, the procedure is carried out by the following
matrix operations:
Step. 1 Let l = 2.
Step. 2 Compute Al.
Step. 3 If some diagonal elements of Al are equal to 1, at least one circuit exists.

In this case, go to the following steps. Otherwise, go to Step. 4.
Step. i Choose a circuit and select a vertex vi consisting the circuit.
Step. ii Replace the i-th column by the logical sum of the columns

corresponding to the vertices of the circuit for A. Similar op-
eration is applied for rows.

Step. iii Replace the (i, i) element of A by 0.
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Step. iv Remove all columns and rows corresponding to the vertices of
the circuit except for the i-th column and i-th row.

Step. v Redefine the new generated matrix as A and return to Step. 1.
Step. 4 If Al = 0, the graph does not include any circuits, and the algorithm is

finished. Otherwise, add 1 to l and return to Step. 2.
The implication of Step. 3 in this algorithm is as follows: In Step. i, a selected
vertex is regarded as a new vertex. In Step. ii, add every edge of each vertex
in a circuit to the selected vertex in the circuit. In Step. iii, remove all loops
because we have assumed that every graph has no loop. in Step. iv, remove all
the vertices in the circuit except for the selected vertex.

Remark 3 One may think that the graph obtained by the above algorithm
depends on the choice of a vertex in Step. i, and the graph is not determined
uniquely. However, as seen from Step. ii to Step. iv, the graph is uniquely deter-
mined whatever a chosen vertex of a circuit may be, since the newly generated
vertex has every edge of each eliminated vertex.

4.2.3 The Third Operation: Detection and Removal of Redundant
Edges

The following theorem is used for detecting redundant edges, which is easily
derived from Lemma 1.

Theorem 3 Let G be a directed graph without circuits and R be an adjacency
matrix of G. Then, the edge directed from vi to vj is redundant if and only if
the (i, j) element of Rl is equal to 1 for some l ≥ 2.

Based on Theorem 3, a procedure for detecting and removing redundant edges
via matrix operations is obtained as follows:
Step. 1 Let l = 2.
Step. 2 Compute Al.
Step. 3 If (i, j) elements of A and Al are equal to 1, replace the (i, j) element of

A by 0, add 1 to l, and return Step. 2.
Step. 4 If Al = 0, the graph does not include any redundant edges, and the

algorithm is finished. Otherwise, add 1 to l and return to Step. 2.
Here, we note that Theorem 1 ensures that the algorithms for detection and

removal of circuits and redundant edges finish within finite steps.
Remark 4 The graph obtained by the above algorithm is uniquely deter-

mined since the above algorithm is free from the problem due to the choice of a
vertex, which appears in the elimination of a circuit.

4.3 Integration of Inheritance Relations for Different Categories Us-
ing Adjacency Matrices

Before presenting a method for integrating inheritance relations of three cate-
gories, we present a method for integrating inheritance relations of two different
categories using adjacency matrices. Let G(RES, IRRES) and G(ACT, IRACT)
be the graphs associated with the inheritance relations in subject category
and action category, respectively, where RES = {r1, · · · , rnR

} and ACT =
{a1, · · · , anA

}, and corresponding adjacency matrices be R and A, respectively.
Now, we generate the adjacency matrix XRA associated with the integrated

inheritance relations of resource and action categories. As seen from the obser-
vation in Section 4.2, the graph representing the integrated inheritance relation
of resource and action categories is defined on the vertex set given by

RES × ACT = {r1a1, · · · , r1anA , · · · , rnRa1, · · · , rnRanA}.
Therefore, the order of the adjacency matrix associated with the integrated in-
heritance relation of resource and action categories is nR × nA.

First, note that the inheritance relations in resource category hold whatever
action may be. Therefore, we can obtain the following adjacency matrix XRA1 ,
which corresponds to the dashed line of Fig. 3:

XRA1 = R ⊗ InA =

⎡
⎢⎣

r11InA · · · r1nRInA

...
. . .

...
rnR1InA · · · rnRnRInA

⎤
⎥⎦ , (9)

where rij is the (i, j) element of the matrix R, InA is the identity matrix of order
nA, and ⊗ denotes Kronecker product defined as follows: For a matrix X = [xij ]
of the size k-by-l and a matrix Y , the Kronecker product of X and Y is defined as

X ⊗ Y :=

⎡
⎢⎣

x11Y · · · x1lY
...

...
xk1Y · · · xklY

⎤
⎥⎦ . (10)

Next, since inheritance relations in resource category hold whatever action may
be, we can obtain the following adjacency matrix XRA2 , which corresponds to
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Fig. 3 An example of IR product between resource and action categories.

the solid line of Fig. 3:

XRA2 = InR ⊗ A =

⎡
⎢⎣

A 0
. . .

0 A

⎤
⎥⎦ . (11)

By Eqs. (9) and (11), we can obtain the adjacency matrix XRA of the integrated
inheritance relation of resource and action categories as follows:

XRA = XRA1 + XRA2 = R ⊗ InA + InR ⊗ A. (12)
Example 1 Consider the integration of inheritance relations of resource and

action categories shown in Fig. 3. The adjacency matrix R associated with the
inheritance relation of resource category defined on {a,b, c}, and the adjacency
matrix A for the action category defined on {E,P,S} are given, respectively by

R =

⎡
⎢⎣0 1 1

0 0 0
0 0 0

⎤
⎥⎦ , A =

⎡
⎢⎣0 0 1

0 0 1
0 0 0

⎤
⎥⎦ . (13)

In this case, the integrated inheritance relations are defined on the vertex set
RES × ACT = {aE, aP, aS,bE,bP,bS, cE, cP, cS}, (14)

and corresponding XRA1 , XRA2 , and XRA are obtained as follows:

XRA1 =

⎡
⎢⎣0 I3 I3

0 0 0
0 0 0

⎤
⎥⎦, XRA2 =

⎡
⎢⎣A 0 0

0 A 0
0 0 A

⎤
⎥⎦, XRA =

⎡
⎢⎣A I3 I3

0 A 0
0 0 A

⎤
⎥⎦.

(15)

The matrix operation in Eq. (12) plays a central role for integrating inheritance
relations of different categories. We refer to the matrix operation as IR product.

Definition 4 Let X and Y be the square matrices of order n and m, respec-
tively. The IR product of X and Y , denoted by X ⊗IR Y , is defined as follows:

X ⊗IR Y := X ⊗ Im + In ⊗ Y. (16)
IR product is also applied for integrating inheritance relations of three cate-

gories. Let S be the adjacency matrix of the corresponding inheritance relations
of subject category. Then, in a similar way to the above discussions, it is shown
that the adjacency matrix XSRA of the integrated inheritance relations of three
categories are given by

XSRA = S ⊗IR XRA = S ⊗IR R ⊗IR A. (17)
Using IR product, we can easily integrate all inheritance relations of three cate-
gories.

Remark 5 In matrix theory, the matrix operation in Eq. (16) is called Kro-
necker summation. In Eq. (17), one may think that the right-hand side of the
equation should be S ⊗IR (R ⊗IR A). However, Eq. (17) is correct since Kro-
necker product is associative, and thus, IR product is also associative, that is,
(S ⊗IR R) ⊗IR A = S ⊗IR (R ⊗IR A).

Remark 6 The graph obtained by IR Product is uniquely determined. By
this, together with Remark 3 and 4, it is concluded that the graph obtained by
our algorithm is uniquely determined.

Here, we have to check whether the integrated inheritance relation includes
circuits or redundant edges. Concerning these points, the following theorems
hold:

Theorem 4 Let Ga and Gb be graphs with adjacency matrices A and B,
respectively. If Ga and Gb do not include circuits, the graph associated with the
adjacency matrix A ⊗IR B does not include circuits.

Theorem 5 Let Ga and Gb be graphs with adjacency matrices A and B,
respectively. If Ga and Gb do not include circuits and redundant edges, the
graph associated with the adjacency matrix A⊗IR B does not include redundant
edges.
The proofs of Theorem 4 and Theorem 5 are given in Appendix A and B, respec-
tively. Combining the above theorems, the following corollary is obtained:
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Corollary 1 Let Ga and Gb be graphs with adjacency matrices A and B,
respectively. If both Ga and Gb include neither circuits nor redundant edges, the
graph associated with the adjacency matrix A⊗IR B include neither circuits nor
redundant edges.
By this corollary, it is assured that the inheritance relation obtained by IR prod-
uct does not have circuits and redundant edges provided that inheritance relations
of all categories do not include circuits and redundant edges.

5. Conclusion

In this paper, under the assumptions that inheritance relations in a single cat-
egory are independent from other categories, we have presented a matrix-based
algorithm for integrating inheritance relations of access rights for generating in-
tegrated access control policies. By applying our algorithm, we can generate
integrated inheritance relations automatically, and the results can be applied
to centralized access control management systems, such as Microsoft Windows
RMS, Adobe LiveCycle Rights Management ES, and PolicyComputing, where
administrators have to prepare integrated inheritance relations manually in the
current framework.

One of the most significant problem is that our algorithm will stop if an admin-
istrator thinks that the conflicts caused by the integration yield serious problems.
Therefore, we have to improve the algorithm so as to preclude the inheritance
relations which cause conflicts, and to continue the integration process without
the inheritance relations.

Our proposed method will be especially useful for unifying management of
access control systems which possess various inheritance relations satisfying in-
dependency assumption. However, we cannot apply the algorithm when we want
to set up complex access control policies which do not satisfy the independency
assumption.

In such a situation, Role-Based Access Control (RBAC) model 7),8) will be use-
ful. Using RBAC model, administrators can establish policies in detail. However,
RBAC model can deal with inheritance relations in subject category only, and
they have to address resources and actions individually. Therefore, it is desirable
to use our proposed method together with RBAC model in a mutually comple-

mentary manner. In this case, we have to check whether the policies established
by RBAC model and the policies generated by our proposed method do not
conflict by using policy conflict detection tools 2),10),11),17).
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Appendix

A.1 Proof of Theorem 4
Let A and B be square matrices of order n and order m, respectively. Since the

graphs associated with A and B do not include circuits, we obtain the following
equations by Theorem 1.

Al = 0 (∀l ≥ n), Bk = 0 (∀k ≥ m). (18)
In order to prove Theorem 4, it suffices to show that (A ⊗IR B)mn = 0. To this
end, we introduce the following lemma, which is derived by simple calculations.

Lemma 2
(Im ⊗ A)k = Im ⊗ Ak, (19)
(B ⊗ In)k = Bk ⊗ In, (20)
(A ⊗ Im) · (In ⊗ B) = (In ⊗ B) · (A ⊗ Im), (21)

(A ⊗IR B)k =
k∑

l=0

(A ⊗ Im)l · (In ⊗ B)k−l. (22)

By Lemma 2, the following equations are obtained.
Āl = 0 (∀l ≥ n), B̄k = 0 (∀k ≥ m), (23)

(A ⊗IR B)mn =
mn∑
l=0

ĀlB̄mn−l, (24)

where Ā = A ⊗ Im and B̄ = In ⊗ B. Here, note that mn − n + 1 ≥ m since
(m − 1)(n − 1) ≥ 0. Hence, from Eq. (18), we obtain:

(A ⊗IR B)mn =
n−1∑
l=0

ĀlB̄mn−l =
mn∑

k=mn−n+1

Āmn−kB̄k = 0. (25)

A.2 Proof of Theorem 5
Let A = [aij ] and B = [bij ] be square matrices of order n and order m,

respectively. In this proof, a
(k)
ij and b

(k)
ij denote the (i, j)-element of Ak and

Bk, respectively.
Since the graphs associated with A and B do not include circuits and redundant

edges, the following equations are obtained from Theorem 1 and Theorem 2:

a
(k)
ii = 0 (1 ≤ i ≤ n, k ≥ 1), (26)

b
(k)
ii = 0 (1 ≤ i ≤ m, k ≥ 1). (27)

By Theorem 3, we obtain:

if aij = 1 (i 	= j) then a
(k)
ij = 0 (k ≥ 2), (28)

if bij = 1 (i 	= j) then b
(k)
ij = 0 (k ≥ 2). (29)

By Lemma 2, (A ⊗IR B)k (k ≥ 2) is calculated as follows:

(A ⊗IR B)k =
k∑

l=0

(A ⊗ Im)l(In ⊗ B)k−l =
k∑

l=0

(Al ⊗ Im)(In ⊗ Bk−l)

=
k∑

l=0

⎡
⎢⎢⎣

a
(l)
11 Im · · · a

(l)
1nIm

...
. . .

...
a
(l)
n1Im · · · a

(l)
nnIm

⎤
⎥⎥⎦ ×

⎡
⎢⎣

Bk−l 0
. . .

0 Bk−l

⎤
⎥⎦

=
k∑

l=0

⎡
⎢⎢⎣

a
(l)
11Bk−l · · · a

(l)
1nBk−l

...
. . .

...
a
(l)
n1B

k−l · · · a
(l)
nnBk−l

⎤
⎥⎥⎦ .

On the other hand, (A ⊗IR B) is calculated as

(A ⊗IR B) = (A ⊗ Im) + (In ⊗ B)
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=

⎡
⎢⎢⎢⎢⎢⎣

B a12Im · · · a1nIm

a21Im B
...

...
. . . an−1nIm

an1Im · · · ann−1Im B

⎤
⎥⎥⎥⎥⎥⎦ .

Therefore, in order to prove Theorem 5, it suffices to show the following propo-
sitions:
(i) if bij = 1 (i 	= j), then the (i, j) element of

∑k
l=0 a

(l)
ppBk−l is equal to zero for

p = 1, · · ·n and k ≥ 2.
(ii) if aij = 1 (i 	= j), then the diagonal elements of

∑k
l=0 a

(l)
ij Bk−l are equal to

zero for k ≥ 2.
Concerning proposition (i), we obtain

∑k
l=0 a

(l)
ppBk−l = Bk from Eq. (26), since

for every p, a
(l)
pp = 1 if and only if l = 0. From Eq. (29), when bij = 1(i 	= j), the

(i, j) element of Bk is equal to zero for k ≥ 2. Therefore, we can conclude that
proposition (i) is true.

Concerning proposition (ii), we obtain
∑k

l=0 a
(l)
ij Bk−l = Bk−1 from Eq. (28),

since for i 	= j, a
(l)
ij = 1 if and only if l = 1. From Eq. (27), the diagonal elements

of Bk−1 are equal to zero for k ≥ 2. Therefore, we can conclude that proposition
(ii) is also true.

This completes the proof.
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