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On Two-Directional Orthogonal Ray Graphs

Anish Man Singh Shrestha ,†1 Satoshi Tayu , †1

and Shuichi Ueno†1

An orthogonal ray graph is an intersection graph of horizontal and vertical
rays(half-lines) in the xy-plane. An orthogonal ray graph is a 2-directional or-
thogonal ray graph if all the horizontal rays extend in the positive x-direction
and all the vertical rays extend in the positive y-direction. We show sev-
eral characterizations of 2-directional orthogonal ray graphs. We first show
a forbidden submatrix characterization of 2-directional orthogonal ray graphs.
A characterization in terms of a vertex ordering follows immediately. Next,
we show that 2-directional orthogonal ray graphs are exactly those bipartite
graphs whose complements are circular arc graphs. This characterization pro-
vides polynomial-time recognition and isomorphism algorithms for 2-directional
orthogonal ray graphs. It also leads to a characterization of 2-directional or-
thogonal ray graphs by a list of forbidden induced subgraphs. Our results settle
an open question on the recognition of certain forbidden submatrices.

1. Introduction

A bipartite graph G with a bipartition (U, V ) is called an orthogonal ray graph

if there exist a family of non-intersecting rays (half-lines) Ru, u ∈ U , parallel

to the x-axis in the xy-plane, and a family of non-intersecting rays Rv, v ∈ V ,

parallel to the y-axis such that for any u ∈ U and v ∈ V , (u, v) ∈ E(G) if

and only if Ru and Rv intersect. An orthogonal ray graph G is called a 2-

directional orthogonal ray graph if Ru = {(x, bu) | x ≥ au} for each u ∈ U , and

Rv = {(av, y) | y ≥ bv} for each v ∈ V , where aw and bw are real numbers for any

w ∈ U ∪ V . We introduced orthogonal ray graphs14) in connection with defect

tolerance schemes for nano-programmable logic arrays13),17). In this paper, we

provide several characterizations of 2-directional orthogonal ray graphs and their

consequences on the recognition and isomorphism problems of such graphs and
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an open question posed by Klinz, Rudolf, and Woeginger6).

Let G be a bipartite graph with a bipartition (U, V ). A (0, 1)-matrix M = [mij ]

is called a bipartite adjacency matrix of G if the rows of M correspond to the

vertices of U , the columns of M correspond to the vertices of V , and mij = 1 if

and only if (ui, vj) ∈ E(G), where ui ∈ U is a vertex corresponding to row i and

vj ∈ V is a vertex corresponding to column j. Let A and B be matrices. A is

said to be B-free if A does not contain B as a submatrix. For a set S of matrices,

A is said to be S-free if A is M -free for every M ∈ S. A is said to be S-freeable if

there exist a permutation of rows of A and a permutation of columns of A such

that the permuted matrix is S-free. Let

γ =

{[

1 0

0 1

]

,

[

1 0

1 1

]}

.

We show in Section 3.1 that a bipartite graph G is a 2-directional orthogonal ray

graph if and only if a bipartite adjacency matrix of G is γ-freeable.

A bipartite graph G with bipartition (U, V ) is said to be weakly orderable if there

exist an ordering (v1, v2, . . . , v|V |) of V and an ordering (u1, u2, . . . , u|U|) of U such

that for every i, i′, j, j′ (1 ≤ i < i′ ≤ |U |, 1 ≤ j < j′ ≤ |V |), (ui, vj′ ) ∈ E(G) and

(ui′ , vj) ∈ E(G) imply (ui, vj) ∈ E(G). We show in Section 3.2 that a graph G

is a 2-directional orthogonal ray graph if and only if G is weakly-orderable.

A graph G is a circular arc graph if there exists a collection of circular arcs

Au, u ∈ V (G) on a fixed circle, such that two arcs Av and Aw intersect if and

only if (v, w) ∈ E(G). We show in Section 3.3 that a bipartite graph G is

a 2-directional orthogonal ray graph if and only if the complement of G is a

circular arc graph. This characterization implies polynomial-time recognition and

isomorphism algorithms for 2-directional orthogonal ray graphs, thereby settling

an open question of deciding whether a matrix is γ-freeable raised by Klinz,

Rudolf, and Woeginger6).

An edge-asteroid is a set of edges e0, e1, . . . , e2k such that for each i =

0, 1, . . . , 2k, there is a path joining ei and ei+1, and containing both ei and ei+1,

that avoids the neighbors of ei+k+1( mod 2k+1). We obtain from a result by Feder,

Hell, and Huang2) that a graph G is a 2-directional orthogonal ray graph if and

only if it contains no induced cycles of length at least 6 and no edge-asteroids.
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Let (X,≤) be a partially ordered set (poset). For x, y ∈ X , we shall use the

notation x < y to mean x ≤ y and x 6= y. The interval dimension of a poset

(X,≤) is the least positive integer k for which there exists a function F which

assigns to each x ∈ X , a sequence {F (x)(i) : 1 ≤ i ≤ k} of k closed intervals on

the real line so that x < y if and only if F (x)(i) lies completely to the left of

F (y)(i) for all 1 ≤ i ≤ k. A bipartite poset is a triple (X, Y,≤) where X and Y

are disjoint sets and ≤ is a partial order on X ∪ Y with {(x, y)|x < y} ⊆ X × Y .

With a bipartite graph G with bipartition (X, Y ), we associate a bipartite poset

PG = (X, Y,≤), where x < y if and only if (x, y) ∈ E(G), for every x ∈ X and

y ∈ Y . We obtain from a result by Trotter and Moore18), that G is a 2-directional

orthogonal ray graph if and only if PG is a bipartite poset of interval dimension

at most 2. This connection allows us to characterize two-directional orthogonal

ray graphs by a list of forbidden induced subgraphs.

The 3-claw is a tree obtained from a complete bipartite graph K1,3 by replacing

each edge with a path of length 3. In our earlier work14), we showed that a tree

T is a 2-directional orthogonal ray graph if and only if T does not contain 3-claw

as a subtree. It follows that we can decide in linear time whether a given tree is

a 2-directional orthogonal ray graph.

2. Related Graph Classes

A bipartite graph G with a bipartition (U, V ) is called a grid intersection graph

if there exist a family of non-intersecting line segments Lu, u ∈ U , parallel to the

x-axis in the xy-plane, and a family of non-intersecting line segments Lv, v ∈ V ,

parallel to the y-axis such that for any u ∈ U and v ∈ V, (u, v) ∈ E(G) if and

only if Lu and Lv intersect. Let

X =

















w 1 x

1 0 1

y 1 z







∣

∣

∣

∣

∣

∣

∣

w, x, y, z ∈ {0, 1}











.

Hartman, Newman, and Ziv3) showed that a bipartite graph G is a grid inter-

section graph if and only if a bipartite adjacency matrix of G is X-freeable.

Kratochvil8) showed that the recognition problem for grid intersection graphs is

NP-complete.

A grid intersection graph is said to be unit if all the line segments corresponding

to the vertices have the same length. Otachi, Okamoto, and Yamazaki12) showed

that a bipartite graph G is a unit grid intersection graph if a bipartite adjacency

matrix of G is γ-freeable.

A bipartite graph is chordal bipartite if it contains no cycle of length at least 6

as an induced subgraph. A graph G is chordal bipartite if and only if a bipartite

adjacency matrix of G is Γ-freeable (see for example6)), where

Γ =

{[

1 0

1 1

]}

.

Lubiw9) showed a polynomial-time recognition algorithm for chordal bipartite

graphs based on Γ-free matrices.

A graph G with vertex set V (G) = {v1, v2, . . . , vn} is called a permutation

graph if there exists a pair of permutations π1 and π2 on N = {1, 2, . . . , n} such

that for all i, j ∈ N , (vi, vj) ∈ E(G) if and only if

(π−1
1 (i) − π−1

1 (j))(π−1
2 (i) − π−1

2 (j)) < 0.

A bipartite graph G with bipartition (U, V ) is said to be strongly orderable if there

exist an ordering (u1, u2, . . . , u|U|) of U and an ordering (v1, v2, . . . , v|V |) of V such

that for any integers i, i′, j, j′ (1 ≤ i < i′ ≤ |U |, 1 ≤ j < j′ ≤ |V |), (ui, vj′ ) ∈

E(G) and (ui′ , vj) ∈ E(G) imply (ui, vj) ∈ E(G) and (ui′ , vj′ ) ∈ E(G). Spinrad,

Brandstadt, and Stewart15) showed that a bipartite graph G is a permutation

graph if and only if G is strongly orderable, and gave a linear-time recognition

algorithm for bipartite permutation graphs based on this characterization. Let

β =

{[

1 0

0 1

]

,

[

1 0

1 1

]

,

[

1 1

0 1

]}

.

It also follows from the characterization that a bipartite graph G is a permutation

graph if and only if a bipartite adjacency matrix of G is β-freeable as shown by

Chen and Yesha1).

A bipartite graph G with a bipartition (U, V ) is called an interval bigraph if

every vertex w ∈ U ∪V can be assigned an interval Iw on the real line so that for

all u ∈ U and v ∈ V , (u, v) ∈ E(G) if and only if Iu and Iv intersect. The class

of interval bigraphs, which properly contains the class of bipartite permutation
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graphs, have been extensively studied. Muller11) noted that the class of interval

bigraphs is a proper subset of the class of chordal bipartite graphs and provided

a polynomial-time recognition algorithm for interval bigraphs. Hell and Huang4)

showed that G is an interval bigraph if and only if the complement of G is a

circular arc graph which has a circular arc representation in which no two arcs

together cover the whole circle. They showed that an interval bigraph contains

no induced cycles of length at least 6 and no edge-asteroids. They also provided

a characterization of interval bigraphs in terms of a vertex ordering.

3. Characterizations of Two-Directional Orthogonal Ray Graphs

In this section, we give several characterizations of 2-directional orthogonal ray

graphs.

3.1 Bipartite Adjacency Matrix Characterization

The following is obvious from the definition of γ.

Lemma 1 An m×n matrix M = [mij ] is γ-free if and only if for any integers

i, i′, j, j′ (1 ≤ i < i′ ≤ m, 1 ≤ j′ < j ≤ n), mij′ = 1 and mi′j = 1 imply

mij = 1. �

We can characterize the 2-directional orthogonal ray graphs as follows.

Theorem 1 A bipartite graph G is a 2-directional orthogonal ray graph if

and only if a bipartite adjacency matrix of G is γ-freeable.

Proof: Let G be a bipartite graph with a bipartition (U, V ). Suppose that a

bipartite adjacency matrix of G is γ-freeable, and let M = [mij ] be a bipartite

adjacency matrix of G which is γ-free. We denote by ui ∈ U the vertex corre-

sponding to row i, and by vj ∈ V the vertex corresponding to column j. For

each row i of M , define l(i) to be the column which contains the leftmost 1 in

that row. Then define ray Rui
= {(x, |U | − i + 1) | x ≥ l(i)}. Similarly for each

column j, define b(j) to be the row which contains the bottommost 1 in that

column. Define ray Rvj
= {(j, y) | y ≥ |U | − b(j) + 1}. Note that from this

definition, two rays Rui
and Rvj

intersect if and only if l(i) ≤ j and b(j) ≥ i.

(See Figure 1.) We are now ready to show that Rui
and Rvj

intersect if and only

if (ui, vj) ∈ E(G). Suppose first that (ui, vj) ∈ E(G). Then mij = 1, which

means that l(i) ≤ j and b(j) ≥ i. Therefore, rays Rui
and Rvj

intersect. Suppose

next that (ui, vj) /∈ E(G). Then mij = 0. Since M is γ-free, we have mi′j = 0 for

x-axis

y-axis

Rui

Rvj

(j, |U| − i + 1)

l(i)

|U| − i + 1

j

|U| − b(j) + 1

Fig. 1 Rays Rui
and Rvj

intersect if and only if l(i) ≤ j and b(j) ≥ i.

every i′ > i or mij′ = 0 for every j′ < j, by Lemma 1. This means that l(i) > j or

b(j) < i, which implies that Rui
and Rvj

do not intersect. Thus we conclude that

G is a 2-directional orthogonal ray graph for rays {Rui
|ui ∈ U} ∪ {Rvj

|vj ∈ V }.

Conversely, suppose that G is a 2-directional orthogonal ray graph, and {Ru |

u ∈ U} ∪ {Rv | v ∈ V } is the set of rays corresponding to the vertices. Let

(u1, u2, . . . , u|U|) be the ordering of U such that for any integers i, i′ (1 ≤ i <

i′ ≤ |U |), Rui
is above Rui′

in the xy-plane. Similarly, let (v1, v2, . . . , v|V |) be

the ordering of V such that for any integers j, j′ (1 ≤ j < j′ ≤ |V |), Rvj
is to

the left of Rvj′
. Construct a bipartite adjancency matrix M = [mij ] of G such

that mij = 1 if and only if (ui, vj) ∈ E(G). We shall show that M is γ-free. For

some integers i, i′, j, j′,(1 ≤ i < i′ ≤ |U |, 1 ≤ j′ < j ≤ |V |), suppose mi′j = 1 and

mij′ = 1. Since ray Rui
is above ray Rui′

and Rv′

j
is to the left of Rvj

, Rui
must

intersect with Rvj
implying that mij = 1. Thus from Lemma 1, M is γ-free. �

3.2 Vertex Order Characterization

The following corollary is immediate from Theorem 1.

Corollary 1 A bipartite graph G is a 2-directional orthogonal ray graph if

and only if G is weakly orderable. �

3.3 Characterization in Terms of Circular Arc Graphs

An arc A on a circle O can be denoted by a pair of its endpoints (s(A), t(A)),

where A is obtained by traversing O clockwise from its counterclockwise endpoint

s(A) to its clockwise endpoint t(A).

Lemma 2 The complement of a 2-directional orthogonal ray graph is a cir-

cular arc graph.
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Proof: Suppose a bipartite graph G with bipartition (U, V ) is a 2-directional

orthogonal ray graph. G has a γ-free bipartite adjacency matrix M = [mij ], by

Theorem 1. For each row i(1 ≤ i ≤ |U |) of M , define l(i) to be the column which

contains the leftmost 1 in that row, and for each column j(1 ≤ j ≤ |V |), define

b(j) to be the row which contains the bottommost 1 in that column. Let O be a

circle and let

p, r′1, c1, r
′
2, c2, . . . , r

′
|U|, c|U|, q, c

′
|V |, r|V |, c

′
|V −1|, r|V −1|, . . . , c

′
1, r1 (1)

be 2|U | + 2|V | + 2 distinct points on O in the order of their occurrence in a

clockwise traversal of O starting from p. Corresponding to each row i, define

arc Ri to be (rl(i), r
′
i) and corresponding to each column j, define arc Cj to be

(cb(j), c
′
j). (An example is shown in Figure 2.) We shall now show that two arcs

Ri and Cj intersect if and only if mij = 0. Suppose first that mij = 1, which

implies i ≤ b(j) and l(i) ≤ j. Since i ≤ b(j), we can see that r′i precedes cb(j)

in Sequence (1). Since we have defined the clockwise endpoint of Ri to be r′i
and the counterclockwise endpoint of Cj to be cb(j), we can deduce that they

do not intersect on arc (p, q). Similarly, we can show that l(i) ≤ j implies Ri

and Cj do not intersect on arc (q, p) either. Next suppose mij = 0. Since M





1 1 1

1 0 1

0 0 1





p

q

r′1

r′2

r′3

c1

c2

c3

c′1

c′2

c′3

r1

r2

r3

Fig. 2 An example of a family of circular arcs corresponding to a γ-free bipartite adjacency
matrix.

is γ-free, we have mi′j = 0 for every i′ > i or mij′ = 0 for every j′ < j, by

Lemma 1. This means that l(i) > j or b(j) < i. Then from Sequence (1), we

can see that both Ri and Cj contain the arc (rl(i), c
′(j)) or the arc (cb(j), r

′(i)).

Finally, all Ri intersect at p, and all Cj intersect at q, and therefore we can

conclude that the complement of G is a circular arc graph for the family of arcs

{Ri|1 ≤ i ≤ |U |} ∪ {Cj|1 ≤ j ≤ |V |}. �

Spinrad16) showed the following.

Lemma 3 For a circular arc graph G that can be partitioned into cliques U

and V , there exist two points p, q on a circle and a representation by arcs Aw,

w ∈ V (G) on the same circle such that for every u ∈ U , Au contains p but not q

and Av contains q but not p. �

Lemma 4 A bipartite graph is a 2-directional orthogonal ray graph if its

complement is a circular arc graph.

p

q

(p, q)

(q, p)

t(Ri)

t(Ri′)

s(Cj)

t(Cj)
t(Cj′ )

s(Ri)

Fig. 3 Arcs Ri, Ri′ , Cj , and Cj′ .

Proof: Let G be a bipartite graph with bipartition (U, V ). Suppose G, the

complement of G, is a circular arc graph. Let p and q be two points on a circle

O, and let RU and CV be the set of arcs on O corresponding to the vertices in

U and V , respectively, such that all arcs in RU contain p but not q, and all arcs

in CV contain q but not p, by Lemma 3. Let R1, R2, . . . , R|U| be the arcs in RU

in the order of the occurrence of their clockwise endpoints when moving around

O in the clockwise direction starting from p, and let C1, C2, . . . , C|V | be the arcs

in CV in the order of the occurrence of their clockwise endpoints when moving

around C in the counterclockwise direction starting from p. Let M = [mij ] be a
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|U |×|V | (0, 1)-matrix defined as mij = 1 if and only if Ri and Cj do not intersect.

Obviously, M is a bipartite adjacency matrix of G. We shall show that M is γ-

free. For some integers i, i′, j, j′, (1 ≤ i < i′ ≤ |U |, 1 ≤ j′ < j ≤ |V |), suppose

mi′j = 1 and mij′ = 1. From the definition of M , mi′j = 1 means that R′
i and

Cj do not intersect. Since they do not intersect, t(Ri′ ),the clockwise endpoint

of Ri′ , must be counterclockwise from s(Cj), the counterclockwise endpoint of

Cj .(See Figure 3). Also, since i < i′, t(Ri) must be counterclockwise from t(Ri′ ),

and therefore Ri and Cj do not intersect on arc (p, q). Similarly we can show

that mij′ = 1 implies that Ri and Cj do not intersect on arc (q, p) either. Since

Ri and Cj do not intersect anywhere on O, the corresponding matrix entry mij is

1. Therefore, M is γ-free by Lemma 1, and thus G is a 2-directional orthogonal

ray graph, by Theorem 1. �

From Lemmas 2 and 4, we have the following

Theorem 2 A bipartite graph G is a 2-directional orthogonal ray graph if

and only if its complement is a circular arc graph. �

Theorem 2 leads to some interesting consequences as follows. Since Mc-

Connell10) showed a linear-time recognition algorithm for circular arc graphs,

we have the following.

Theorem 3 It can be decided in O(n2) time whether an n-vertex graph is a

2-directional orthogonal ray graph. �

From Theorems 1 and 3, we have the following theorem which settles the open

problem of recognizing γ-freeable matrices6).

Theorem 4 It can be decided in O((m + n)2) time whether an m×n matrix

is γ-freeable. �

Feder, Hell, and Huang2) showed the following:

Theorem 5 A graph G which can be partitioned into two cliques is a circular

arc graph if and only if the complement of G contains no induced cycles of length

at least 6 and no edge-asteroids. �

From Theorems 2 and 5, we have

Corollary 2 A bipartite graph G is a 2-directional orthogonal ray graph if

and only if G is chordal bipartite and contains no edge-asteroids. �

Since Hsu5) showed that graph isomorphism can be solved in O(mn) time for

n-vertex m-edge circular arc graphs, we have the following.

Corollary 3 The graph isomorphism problem can be solved in O(n3) time

for n-vertex 2-directional orthogonal ray graphs. �

On the other hand, Uehara, Toda, and Nagoya19) showed that the isomor-

phism problem is GI-complete for chordal bipartite graphs. Thus the class of

2-directional orthogonal ray graphs provides a boundary case for the complex-

ity of graph isomorphism. This is an improvement from the earlier boundary

class, the interval bigraphs, which is a proper subset of the class of 2-directional

orthogonal ray graphs, as we shall show in Section 4 .

3.4 Forbidden Subgraph Characterization

Trotter and Moore18) showed the following.

Theorem 6 Let G be a graph which can be partitioned into two cliques and

let Gc be its complement. Then G is a circular arc graph if and only if the

interval dimension of the associated bipartite poset PGc is at most 2. �

From Theorems 2 and 8, we obtain the following.

Theorem 7 A graph G is a two-directional orthogonal ray graph if and only

if the interval dimension of the associated bipartite poset PG is at most 2. �

Trotter and Moore18) provided the minimum list P of posets so that a bipartite

poset has interval dimension at most two if and only if it does not contain a poset

from P as a subposet. It is straigthforward to derive from P the minimal list

of forbidden induced subgraphs for 2-directional orthogonal ray graphs. The list

shown in Figure 4 contains 6 infinite families of graphs and 3 odd examples.

Theorem 8 A graph G is a two-directional orthogonal ray graph if and only

if G does not contain any graph in Figure 4 as an induced subgraph. �

4. Class Hierarchy

In this section, we explore the relation among the classes of orthogonal ray

graphs, 2-directional orthogonal ray graphs, and the graph classes mentioned in

Section 2.

The following observation is implicit in a paper by Kostochka and Nesetril7),

and can be seen without difficulty.

Observation 1 A cycle C2n of length 2n is an orthogonal ray graph if and

only if 2 ≤ n ≤ 6. �

Observation 2 The class of orthogonal ray graphs is a proper subset of the
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For n ≥ 3,Edge set=
{(ci, aj)|i ∈ [n], j ∈ [i − 1]}∪
{(ci, bj)|i ∈ [n], j ∈ [i]}∪
{(di, aj)|i ∈ [n], j ∈ [i]}∪

{(di, bj)|i ∈ [n], j ∈ [i − 2]}∪
{(d1, bn)},

where
[k] = {i|i ∈ Z

+&1 ≤ i ≤ k}

a1

a1

a2

b1b1

b2

b2

b3

b4 c1c1

c2

c2

c3

c4

d1

d1

d2

d2 d3

an−1

an−1

bn−1

cn−1

dn−1

a3

bn
cn xx yy

a1 a2

b1

b2

b3 c1

c2

c3

d1
d2

xy

For n ≥ 3, Edge set=
{(ci, aj)|i ∈ [n], j ∈ [i − 2]}∪
{(ci, bj)|i ∈ [n], j ∈ [i]}∪

{(di, aj)|i ∈ [n − 1], j ∈ [i]}∪
{(di, bj)|i ∈ [n − 1], j ∈ [i − 1]}∪

{(y, bn), (x, c1)},
where

[k] = {i|i ∈ Z
+&1 ≤ i ≤ k}

Fig. 4 Forbidden Subgraphs for 2-directional Orthogonal Ray Graphs (Bold edges constitute an edge-asteroid).
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class of unit grid intersection graphs.

Proof: Let G be an orthogonal ray graph with bipartition (U, V ). We can find

a square S on the xy-plane with sides parallel to the x and y axes such that

all the cross points of rays Rw, w ∈ U ∪ V , lie inside S and such that each ray

intersects with only one side of S. Let l be the length of a side of S. Let Lw be

the line segment with one endpoint coinciding with the endpoint of Rw and the

other endpoint on Rw at a distance l from the endpoint of Rw. We can easily see

that G is a unit grid intersection graph for line segments Lw, w ∈ U ∪ V . Thus

the class of orthogonal ray graphs is a subset of the class of unit grid intersection

graphs.

It is easy to see that C2n is a unit grid intersection graph for any n ≥ 2. Thus

we conclude by Observation 1 that the class of orthogonal ray graphs is a proper

subset of the class of unit grid intersecion graphs. �

From Observation 1 and Corollary 2, we have the following.

Observation 3 The class of 2-directional orthogonal ray graphs is a proper

subset of the class of orthogonal ray graphs. �

Otachi, Okamoto, and Yamazaki12) showed that the class of graphs which have

a γ-freeable bipartite adjancency matrix properly contains the class of interval

bigraphs, and therefore we have the following.

Observation 4 The class of interval bigraphs is a proper subset of the class

of 2-directional orthogonal ray graphs. �

The relationship between the various graph classes mentioned in this paper can

be summarized as shown in Figure 5.

We conclude by noting that characterization and recognition of orthogonal ray

graphs remain open.
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