
IPSJ SIG Technical Report

On Generating Test Sets for Detecting Stuck-at Faults

in Reversible Circuits

Kaku Tabei†1 and Toshinori Yamada†1

Reversible circuits are quite attractive because of the possibility of nearly
energy-free computation. During constructing a reversible circuit, it is impor-
tant to test the circuit and detect faults in the circuit. However, very few
algorithms are known to generate a test set for detecting faults in a given re-
versible circuit.

In this paper, first of all, it is proved to be NP-hard to generate a minimum
test set for detecting stuck-at faults in a given reversible circuit even when
the circuit is restricted to use only three kinds of simple reversible gates, that
is NOT, 1-CNOT, and Toffoli gates. Next, the paper presents a randomized
algorithm to generate a test set for detecting stuck-at faults in a given reversible
circuit. As far as the authors know, the proposed algorithm is the first one to
guarantee that the expected time complexity is polynomial and that the size
of the obtained test size is bounded. Finally, the effectiveness of the proposed
algorithm is shown by experiments.

1. Introduction

Reversible circuits are quite attractive because of the possibility of nearly
energy-free computation. Landauer [4] showed that traditional irreversible cir-
cuits necessarily dissipate energy due to the erasure of information. On the other
hand, Bennett [1], and Fredkin and Toffoli [2] showed that reversible circuits can
be performed with arbitrarily small energy dissipation. Futhermore, reversible
circuits has potential applications in nanocomputing [5], digital signal process-
ing [8], and quantum computing [6]. These facts give motivation to the study of
reversible circuits.

During designing and constructing a reversible circuit, it is important to test the
circuit and detect faults in the circuit. Patel et al. [7] pointed out that testing

†1 Division of Mathematics, Electronics and Informatics, Graduate School of Science and
Engineering, Saitama University

of reversible circuits is relatively easier than conventional irreversible circuits.
However, it was shown by Tayu et al. [9, 10] that given a reversible circuit C, it
is NP-hard to generate a minimum complete test set for stuck-at faults, which
fix the values of wires in C to either 0 or 1. A large number of CNOT gates
with 7 inputs are used in their proof of NP-hardness. This paper proves that
it is NP-hard to generate minimum complete test sets even for NCT circuits,
which are reversible circuits consisting of only CNOT gates with 3 or less inputs,
that is NOT, 1-CNOT, and Toffoli gates. So, it seems to be quite difficult, or
even impossible, to generate minimum complete test sets for practical reversible
circuits.

On the other hand, very few algorithms for generating a complete test set for a
given reversible circuit are known. Patel et al. [7] proved that, for any reversible
circuit C, there exists a complete test set T with |T | = O(log |W (C)|), where
W (C) is the set of wires in C. However, the proof is non-constructive, and a
polynomial-time algorithm are not known to generate a complete test set T with
|T | = O(log |W (C)|) for a given reversible circuit C. Patel et al. [7] also presented
an algorithm for finding a complete test set for a given reversible circuit, based
on circuit decomposition and integer programming. The performance of their
algorithm was shown by experiments, but not by theoretical analysis. This paper
proposes an algorithm to generate a complete test set T with |T | = O(log |W (C)|)
for a given reversible circuit, and shows that the expected time complexity of the
proposed algorithm is polynomial. As far as the authors know, the proposed
algorithm is the first one whose performance is shown by theoretical analysis.
Moreover, by experiments, the performance of our algorithm is compared with
that of the algorithm proposed by Patel et al. [7].

The rest of the paper is organized as follows. Section 2 gives terminologies on
reversible circuits, CNOT circuits, and complete test sets for stuck-at faults.
Section 3 presents the relation between the problem of generating minimum
test sets for 1-target CNOT circuits and Not-All-Equal SAT, a variant of
SAT(SATisfiability), a very famous NP-complete problem, and shows several re-
sults obtained from this relation. In Section 4, NP-hardness of generating a
minimum complete test set for NCT circuits is proved. Section 5 proposes an
expected polynomial-time algorithm for generating a complete test set for a given

1 c© 2009 Information Processing Society of Japan

Vol.2009-AL-127 No.2
2009/11/27

IPSJ SIG Technical Report

reversible circuit, and analyzes the performance of the proposed algorithm theo-
retically. Furthermore, the proposed algorithm is compared with the algorithm
by Patel et al. [7] by experiments. Finally, the paper concludes with Section 6.

2. Reversible Gates, Reversible Circuits, and Complete Test Sets

2.1 Reversible Gates
A logic gate is reversible if the mapping of inputs to outputs is bijective, that

is, every distinct input yields a distinct output, and the number of output bits
is equal to that of input ones. A reversible gate with k input bits and k output
bits is called a k × k reversible gate.

2.2 Reversible Circuits
A circuit is reversible if the circuit consists of reversible gates and the mapping

of inputs to outputs is bijective. A (reversible) circuit is called an identity circuit
if its input is equal to its output.

Let n be a positive integer. An n-wire well-formed reversible circuit C is
constructed recursively as follows.

(1) A circuit consisting of only n wires is a n-wire well-formed reversible cir-
cuit. One and the other ends of each wire is the input and output of the wire,
respectively. Then, C is represented by ε[1, 2, . . . , n], or simply empty sequence.
See Fig. 1(a).

(2) Let C be a circuit obtained from a n-wire well-formed reversible circuit C ′

and a k × k reversible gate G (k ≤ n) by connecting the input wires of G with
k of output wires of C ′, say i1, i2, . . . , ik. Then, C is also n-wire well-formed
reversible circuit, and is denoted by C = C ′, G[i1, i2, . . . , ik]. The input wires of
C are those of C ′, and the output ones of C are the k output wires of G together
with the n − k wires not connected with G. See Fig. 1(b).

(3) An n-wire well-formed reversible circuit is only constructed by (1) and (2).
An well-formed reversible circuit is an n-wire well-formed reversible circuit for

some n. In what follows, a reversible circuit means a well-formed reversible circuit
unless stated otherwise.

2.3 Complete Test Sets
Let C be an n-wire reversible circuit. Any T ⊆ {0, 1}n is called a test set for

C. T is said to be complete for C if T can detect all possible stuck-at faults on

1

2

n

input output

(a)

reversible

circuit

C’

reversible

gate

G

1
2

n

input outputreversible circuit C

(b)
Fig. 1 Reversible Circuit

the wires in C. The problem to be considered in this paper is the following:¶ ³
MIN-CTS

Instance: Reversible Circuit C

Question: Find a minimum test set T such that T is complete for C.µ ´
The following problem is a decision version of MIN-CTS.¶ ³

CTS

Instance: Reversible Circuit C and positive integer k

Question: Is there a test set T with |T | ≤ k such that T is complete for C?µ ´
A wire w in C is controllable by T if w(x) = 0 and w(x′) = 1 for some x,x′ ∈ T ,

where w(x) denotes the value of a wire w when x is given to C as an input. A set
of wires in C, denoted by S, is controllable by T if every wire in S is controllable
by T . C is controllable by T if every wire in C is controllable by T . The following
theorem is shown in [7]:

Theorem I [7] T is complete for C if and only if C is controllable by T . 2

2.4 CNOT Gates and CNOT Circuits
One of most known reversible gates is a CNOT gate. For any non-negative

integer k, a k-CNOT gate is a (k + 1) × (k + 1) reversible gate such that
if (x1, x2, . . . , xk, t) ∈ {0, 1}k+1 is given as an input then the gate outputs
(x1, x2, . . . , xk, t⊕ (1 ·x1x2 · · ·xk)), where ⊕ is the exclusive OR operation. Each
of x1, x2, . . . , xk is called a control bit of the gate, and t is the target bit. Fig. 2

2 c© 2009 Information Processing Society of Japan

Vol.2009-AL-127 No.2
2009/11/27

IPSJ SIG Technical Report

shows 0-CNOT, 1-CNOT, 2-CNOT, and k-CNOT gates. In this figure, the in-
put[output] wires of the gate is the left[right] ones. A CNOT gate is a k-CNOT
gate for some k, and denoted by Cnot.

x x 1 = x

(a)

x

y

x

y x

(b)

z z xy

x

y

x

y

.

(c)

t t (1 x1x2 xk)

x1

x2

xk

x1

x2

xk

....

(d)
Fig. 2 (a) 0-CNOT gate, (b) 1-CNOT gate, (c) 2-CNOT gate, and (d)k-CNOT gate

A CNOT circuit is a reversible circuit consisting of only CNOT gates. A k-
CNOT circuit is a CNOT circuit consisting of only k′-CNOT gates with k′ ≤ k.
A 2-CNOT circuit is also called a NCT circuit. Fig. 3 illustrates a 4-wire 3-CNOT
circuit, denoted by Cnot[; 2],Cnot[1, 2, 3; 4], Cnot[4; 2], Cnot[3; 1], Cnot[1, 4; 3].

1

2

3

4

Fig. 3 Example of CNOT Circuit

3. Minimum Test Sets for 1-target CNOT Circuits

A 1-target CNOT circuit is a CNOT circuit in which the target bit of every
k-CNOT gate with k 6= 0 is on the same wire in the circuit. The wire is called the
target bit of the 1-target CNOT circuit. The other wires are called the control
bits of the circuit. For example, see Fig. 4. Note that any combinatorial circuit
can be expressed with a 1-target CNOT circuit because of the expression of Reed
Muller.

Tayu et al. [9, 10] proved the following theorem:
Theorem II [9,10] CTS is NP-complete even for 1-target 6-CNOT circuits.

1

2

3

4

Fig. 4 Example of 1-target CNOT Circuit

2

This paper shows that CTS is NP-complete even for 1-target 3-CNOT circuits.
The proof is by the relation between CTS for 1-target CNOT circuits and Not-

all-Equal SAT, which is described as follows.
Let U be the set of Boolean variables ui (i ∈ {1, 2, . . . , n}). For any

i ∈ {1, 2, . . . , n}, ui and ui are called the positive and negative literals of ui,
respectively. A clause is a set of literals, and a clause with k literals is called a
k-clause.

A truth-assignment of U is a mapping t : U → {0, 1}. If t(ui) = 0[t(ui) = 1]
then t(ui) = 1[t(ui) = 0]. A literal x with t(x) = 1[t(x) = 0] is called a true[false]
literal.¶ ³

Not-All-Equal SAT

Instance: Set U of Boolean variables, collection C of clauses over U

Question: Is there a truth assigment of U such that each clause in C has
at least one true literal and at least false literal?µ ´
It is easy to see the following two lemmas.
Lemma 1 Let C be a CNOT circuit. If T is complete for C then |T | ≥ 2.
Lemma 2 Let C be an n-wire 1-target CNOT circuit, and let T =

{(0, 0, . . . , 0), (0, . . . , 0, 1), (1, 1, . . . , 1)}. Then, T is complete for C. 2

From Lemmas 1 and 2, it is important to decide whether a given CNOT circuit
C has a comlete test set T with |T | = 2 or not, and to find such an test if any.

Let x = (x1, x2, . . . , xn) ∈ {0, 1}n be an input of a circuit C. If C is a 1-target
CNOT circuit and w is the input wire of a control bit of a CNOT gate in C then
w(x) is either xj or xj for some j. For any i, let Cnoti be the i-th CNOT circuit,
and let w1, w2, . . . , wk be the input wires of the control bits of Cnoti. Then, if

3 c© 2009 Information Processing Society of Japan

Vol.2009-AL-127 No.2
2009/11/27

IPSJ SIG Technical Report

xj is viewed as a Boolean variable for every j ∈ {1, 2, . . . , n} then wl(x) can be
viewed as a literal of some variable xjl

for any l ∈ {1, 2, . . . , k}. Let Li be the set
of such literals for any i ∈ {1, 2, . . . , g}, where g is the number of CNOT gates in
C. In Fig. 4,

L1 = ∅, L2 = {x1, x2, x3}, L3 = {x2}, L4 = {x3}, L5 = {x1, x2}.
Lemma 3 Let C be an n-wire 1-target CNOT circuit. For any T ⊆ {0, 1}n

with |T | = 2, T is complete for C if and only if the following two conditions are
satisfied: (1) T = {α, ᾱ} for some α ∈ {0, 1}n, and (2) given α as an input to C,
for any i ∈ {1, 2, . . . , g}, Li has at least one true literal and false one if Li 6= ∅.
Proof: (Sufficiency) By (1), every wire of each control bit in G is controlable.
Since, by (2), the control bits of each k-CNOT gate with k ≥ 1 contain input 0
in either case of inputs, we conclude by (1) that every wire of the target bit in
G is controlable. Hence, T is complete for G.

(Necessity) The proof is by contradiction. If (1) does not hold then the input
wire of some bit is not controrable, which is a contradiction. So, assume that
(2) does not hold, that is Li has either all true literals or false ones in Li under
input α for some i ∈ {1, 2, . . . , n}. If the input wire of the target bit of the i-th
CNOT gate is controlable then the inputs of the CNOT gate are either

(1) (0, 0, . . . , 0) and (1, 1, . . . , 1) or (2) (0, . . . , 0, 1) and (1, . . . , 1, 0).
So, the output wire of the target bit of the i-th CNOT gate is not controlable in
either case, and hence T is not complete for G, which is a contradiction. 2

Lemma 3 shows the relation between CTS and Not-All-Equal SAT. When
an instance of CTS is restricted to 1-target CNOT circuits, it is trivial to give a
polynomial-time reduction from CTS to Not-All-Equal SAT by Lemma 3. It
is also easy to give a polynomial-time reduction from Not-All-Equal SAT to
CTS. For example, let us be given a collection of clauses

{{u1, u2, u3}, {u1, u4}, {u2, u4, u5}}
over U = {u1, u2, . . . , u5}. Then, we transform each clause into a CNOT subcir-
cuit as follows:

{u1, u2, u3} → Cnot[; 2], Cnot[; 3], Cnot[1, 2, 3; 6], Cnot[; 3], Cnot[; 2]
{u1, u4} → Cnot[; 1], Cnot[1, 4; 6], Cnot[; 1]

{u2, u4, u5} → Cnot[; 4], Cnot[2, 4, 5; 6],Cnot[; 4].

An instance of CTS is obtained by concatenating the subcircuits (See Fig. 5).
This transformation is a polynomial-time reduction from Not-All-Equal SAT

to CTS.

u1

u2

u3

u4

u5

t

{u1,u2,u3} {u1,u4} {u2,u4,u5}

Fig. 5 Reduction from Not-All-Equal SAT to CTS

The following theorems are proved on Not-All-Equal SAT (For example,
see [3]).

Theorem III Not-All-Equal SAT is NP-complete even if every clause is
3-clause. 2

Theorem IV Not-All-Equal SAT is solvable in polynomial time if every
clause is 2- or 1-clause. In addition, we have a polynomial time algorithm for
finding a truth assigment of the boolean variables such that each clause has at
least one true literal and at least false literal. 2

These theorems present the following theorems:
Theorem 1 CTS is NP-complete even for 1-target 3-CNOT circuits. 2

Theorem 2 CTS, and CTS-MIN, are solvable in polynomial time for 1-target
2-CNOT circuits. 2

4. NP-completeness of CTS for NCT Circuits

In the previous section, CTS is proved to be NP-complete even for 1-target
3-CNOT circuits, and so even for (general) 3-CNOT circuits. In this section, it is
proved that CTS is NP-complete even for NCT circuits, that is 2-CNOT circuits,
by giving a polynomial-time reduction from 3-Colorability.

Let H be a graph, and let f be a mapping from V (H) to Z+, where Z+ is the
set of positive integers. f is called a coloring of H if f(u) 6= f(v) for every edge

4 c© 2009 Information Processing Society of Japan

Vol.2009-AL-127 No.2
2009/11/27

IPSJ SIG Technical Report

e = (u, v) ∈ E(H). A k-coloring of H is a coloring of H with max f(V (H)) ≤ k.¶ ³
3-Colorability

Instance: Connected graph H

Question: Is there a 3-coloring of H?µ ´
3-Colorability is a well-known NP-complete problem (For example, see [3]).
Theorem V 3-Colorability is NP-complete. 2

4.1 Preliminaries
Let G1[1, 2] = Cnot[1; 2],Cnot[1; 2], as in Fig. 6. It is easy to see the following

lemma:
Lemma 4 T ⊆ {0, 1}2 is complete for G1 if and only if |T | ≥ 3. 2

Let G2[1, 2, 3] = Cnot[1, 2; 3], Cnot[3; 1], Cnot[3; 2], Cnot[3; 2], Cnot[3; 1],
Cnot[1, 2; 3], as in Fig. 7.

x

y

Fig. 6 Circuit G1

x

z

y

w1

w2

w3

Fig. 7 Circuit G2

Lemma 5 Let T be a subset of {0, 1}3 with |T | = 3 and |T ′| = 3, where
T ′ = {(x, y) : (x, y, z) ∈ T}. If T is complete for G2 then (0, 0) ∈ T ′.
Proof: Assume that (0, 0) 6∈ T ′, that is T ′ = {(0, 1), (1, 0), (1, 1)}. Then,
T = {(0, 1, z1), (1, 0, z2), (1, 1, z3)} for some z1, z2, z3 ∈ {0, 1}. Then, the values
of wires w1, w2, and w3 in Fig. 7 are as in Table 1 Therefore, if these three wires

Table 1 Values of w1, w2, w3 in G2

inputs wires
x y z w1 w2 w3

0 1 z1 z1 z1 z1

1 0 z2 z2 z2 z2

1 1 z3 z3 z3 z3

are controlable then we conclude that z1 = z2 = z3, which is a contradiction to

the fact that the third input wire is controlable. Then (0, 0) ∈ T ′. 2

Lemma 6 Let T ′ = {(0, 0), (x2, y2), (x3, y3)} be a subset of {0, 1}2 with
|T ′| = 3. Then, there exist z1, z2, z3 ∈ {0, 1} such that T = {(0, 0, z1),
(x2, y2, z2), (x3, y3, z3)} is complete for G2.
Proof: It follows the lemma that the following three sets T1, T2, T3 are complete
for G2:
• T1 = {(0, 0, 0), (0, 1, 1), (1, 0, 1)};
• T2 = {(0, 0, 0), (0, 1, 1), (1, 1, 1)};
• T3 = {(0, 0, 0), (1, 0, 1), (1, 1, 1)}.

2

Let G3[1, 2, 3, 4, 5] = G1[1, 2], G2[1, 2, 3], Cnot[; 2], G2[1, 2, 4], Cnot[; 2], Cnot[; 3],
G2[1, 2, 5], Cnot[; 3], as in Fig. 8. From Lemmas 4, 5, and 6, we have the following
two lemmas.

x

y

z1

z2

z3

Fig. 8 Circuit G3

Lemma 7 Let T be a subset of {0, 1}5 with |T | = 3, and let T ′ = {(x, y) :
(x, y, z1, z2, z3) ∈ T}. If T is complete for G3 then T ′ = {(0, 0), (0, 1), (1, 0)}.

Lemma 8 There exist (z11, z12, z13), (z21, z22, z23), and (z31, z32, z33) ∈
{0, 1}3 such that T = {(0, 0, z11, z12, z13), (0, 1, z21, z22, z23), (1, 0, z31, z32, z33)}
is complete for G3.

4.2 Tranformation
Let H be a connected graph with V (H) = {1, 2, . . . , n}. Let ej = (uj , vj)

denote the j-th edge in H for any j ∈ {1, 2, . . . ,m}, where m is the number of

5 c© 2009 Information Processing Society of Japan

Vol.2009-AL-127 No.2
2009/11/27

IPSJ SIG Technical Report

edges in H. Then, GH is the (n + 3m)-wire NCT circuit defined as
GH = G3[u1, v1, a11, a12, a13], G3[u2, v2, a21, a22, a23],

. . . , G3[um, vm, am1, am2, am3],
where ajk = n+3(j−1)+k for any j ∈ {1, 2, . . . ,m} and k ∈ {1, 2, 3}. It is easy
to see the following lemma.

Lemma 9 GH can be constructed from H in a polynomial time. 2

Lemma 10 If H is 3-colorable then there exists some T with |T | = 3 such
that T is complete for GH .
Proof: Let f be a 3-coloring of H. Then,

T = {(x11, x12, . . . , x1(n+3m)), (x21, x22, . . . , x2(n+3m)),
(x31, x32, . . . , x3(n+3m))}

is defined as follows. For any i ∈ {1, 2, 3} and v ∈ {1, 2, . . . , n}, let

xiv =

{
1 if f(v) = i,

0 if f(v) 6= i
Fix any j ∈ {1, 2, . . . ,m}. Let

Tj = {(x1uj , x1vj , x1aj1 , x1aj2 , x1aj3), (x2uj , x2vj , x2aj1 , x2aj2 , x2aj3),
(x3uj , x3vj , x3aj1 , x3aj2 , x3aj3)},

and let
T ′

j = {(x1uj , x1vj), (x2uj , x2vj), (x3uj , x3vj)}.
Consider the j-th edge ej = (uj , vj), Since f(uj) 6= f(vj), we obtain that
T ′

j = {(0, 0), (0, 1), (1, 0)}. As proved in Lemma 8, we can define (x1aj1 ,

x1aj2 , x1aj3), (x2aj1 , x2aj2 , x2aj3), (x3aj1 , x3aj2 , x3aj3) ∈ {0, 1}3 so that Tj is com-
plete for G3[uj , vj , aj1, aj2, aj3]. Hence, there exists some T with |T | = 3 such
that T is complete for GH . 2

Lemma 11 If there exists some T with |T | = 3 such that T is complete for
GH then H is 3-colorable.
Proof: Let

T = {(x11, x12, . . . , x1(n+3m)), (x21, x22, . . . , x2(n+3m)),
(x31, x32, . . . , x3(n+3m))}

Since H is connected and T is complete for GH , we conclude by Lemma 7 that
exactly two of x1v, x2v, x3v is 0 and the other is 1 for every v ∈ {1, 2, . . . , n}. So,
we define f(v) = i for any v ∈ {1, 2, . . . , n}, where xiv = 1. Consider the j-th

edge ej = (uj , vj) in H for any i ∈ {1, 2, . . . ,m}. Let
Tj = {(x1uj , x1vj , x1aj1 , x1aj2 , x1aj3), (x2uj , x2vj , x2aj1 , x2aj2 , x2aj3),

(x3uj , x3vj , x3aj1 , x3aj2 , x3aj3)},
and let

T ′
j = {(x1uj

, x1vj
), (x2uj

, x2vj
), (x3uj

, x3vj
)}.

Since T is complete for GH , Tj is complete for G3[uj , vj , aj1, aj2, aj3], so T ′
j =

{(0, 0), (0, 1), (1, 0)} by Lemma 7, which implies that f(uj) 6= f(vj). Hence, we
conclude that f is a 3-coloring of H. 2

From Theorem V and Lemmas 9, 10, and 11, we have the following theorem.
Theorem 3 CTS is NP-complete even for NCT circuits.

5. Randomized Algorithm for Smaller Test Sets of CNOT Circuits

This section gives a randomized algorithm for finding a complete test set for
CNOT circuits. This algorithm can be easily extended to one for reversible cir-
cuits, and the results in the section can be also generalized for reversible circuits.

By Theorem 3 in the previous section, it seems to be quite difficult, or even
impossible, to design a polynomial time algorithm for finding a minimum test
set for a given CNOT circuit, so we propose an approximation algorithm. Let w

be any wire in an n-wire CNOT circuit C, let x ∈ {0, 1}n be an input of C. If
w(x) = b for some b ∈ {0, 1} then x is said to cover (w, b). For any S ⊆ {0, 1}n,
wire w in C, and b ∈ {0, 1}, S covers (w, b) if some x ∈ S covers (w, b). Our
algorithm is based on the following fact shown in [7]:

Fact 1 [7] Let C be an n-wire CNOT circuit. For each wire w in C and value
b ∈ {0, 1}, there exist exactly 2n−1 inputs each of which covers (w, b). 2

The following key lemma is obtained from the fact:
Lemma 12 Let C be an n-wire CNOT circuit, and S ⊂ {0, 1}n. Then, there

exist at least 2n−2 inputs x ∈ {0, 1}n such that x covers at least 1/3 of the pairs
(w, b) not covered by S.
Proof: Assume for that the lemma does not hold. Let N be the number of
inputs x such that x covers at least 1/3 of pairs (w, b) not covered by S. Then,
N < 2n−2. From Fact 1, the following inequality must hold:

m2n−1 < mN +
1
3
m(2n − N) =

1
3
m(2n + 2N), (1)

6 c© 2009 Information Processing Society of Japan

Vol.2009-AL-127 No.2
2009/11/27

IPSJ SIG Technical Report

where m is the number of pairs not covered by S. However, since 4N < 2n−2, the
right-hand side is less than m2n−1, which is a contradiction. Hence, the lemma
must hold. 2

Lemma 12 presents a simple randomized algorithm, as shown in Fig. 9, for
finding a test set of any given CNOT circuit.

Algorithm Random(C)

Input: n-wire CNOT circuit C;

Step 0: S ← ∅;
Step 1: If S covers all pairs of wires in C and binary values then
output S and halt;
Step 2: Select x ∈ {0, 1}n randomly until x satisfies the condition
in Lemma 12;
Step 3: S ← S ∪ {x}, and goto Step 1;

Fig. 9 Randomized Algorithm for Finding a Test Set of a CNOT circuit

5.1 Theoretical Analysis
Theorem 4 Given an n-wire CNOT circuit C, let SC be the output of Algo-

rithm Random in Fig. 9. Then,
|SC | ≤ O(log(n + g)),

where g is the number of gates in C.
Theorem 5 For an n-wire CNOT circuit with g CNOT gates, Algorithm

Random in Fig. 9 runs in O((n + kg) log(n + g)) expected time, where k is the
maximum number of control bits over all CNOT gates in the circuit.
Proof: By Lemma 12, the expected number of times x is selected is at most 4
in Step 2 for each S. It takes O(n + kg) time to check whether x covers at least
1/3 of the pairs not covered by S. So, each repetition runs in O(n+kg) expected
time. By Theorem 4 and the linearity of expectation, Algorithm Random in
Fig. 9 runs in O((n + kg) log(n + g)) expected time. 2

5.2 Experimental Results
We have implemented the proposed algorithm and the algorithm by Patel et

al. [7] in C programming language. All the experiments are performed on a
PC machine with Intel Core 2 Duo SU9300 processor and 2GB memory, whose
OS is Ubuntu Linux 9.04. GLPK 4.29 is used as a C library to solve integer
programming in the algorithm by Patel et al. [7].

In the experiments, we generated randomly at least 50 k-wire NCT circuits
with g gates for each k ∈ {16, 64} and g ∈ {100, 1000, 10000, 100000}. Table 2
shows the average results on executed time and the size of test sets obtained,
where “—” means that the results cannot be obtained for lack of memory. In
this table, RA and IP represents the algorithms proposed by the paper and Patel
et al. [7], respectively, and “+compact.” means that the compaction operation
proposed by Patel et al. [7] is performed as post-processing.

As Table 2 shows, RA and RA+compact. are much faster than IP and
IP+compact. Furthermore, RA requires less memory space than the other algo-
rithms. In fact, RA can run even for 1024-wire CNOT circuits with 1 million gates
while the other cannot for 16-wire CNOT circuits with 100, 000 gates. On the
other hand, the size of the test set obtained by RA(+compact.) is almost same
as that by IP(+compact.). Compact operation can be used to reduce the size of
obtained test set obtained by RA or IP. However, compaction operation needs
much more memory space, and hence cannot be used for large scale reversible
circuits.

6. Conclusion

This paper considered the problem of generating a minimum complete test set
for stuck-at faults in a given reversible circuit. First of all, the paper proved that
the problem is NP-hard even for 3-CNOT circuits, and that any 1-target CNOT
circuit has a complete test set with size 3. Next, in this paper, the problem is
shown to be NP-hard even for NCT circuits, that is, circuits consisting of only
k-CNOT gates with k ≤ 2. Finally, the paper proposed a simple randomized
algorithm for this problem, and showed the performance of the algorithm both
by theoretical analysis and by experiments.

The following two problems are still open:

7 c© 2009 Information Processing Society of Japan

Vol.2009-AL-127 No.2
2009/11/27

IPSJ SIG Technical Report

Table 2 Comparison of Algorithms RA(proposed) and IP(by Patel et al. [7])

(a) 16-Wire NCT Circuits

#gates 100 1000 10000 100000
#Tests Time[s] #Tests Time[s] #Tests Time[s] #Tests Time[s]

RA 7.1 8.8 × 10−5 10.2 6.6 × 10−4 13.5 8.1 × 10−3 16.8 9.8 × 10−2

RA+Compact. 5.9 8.9 × 10−4 8.5 8.0 × 10−3 11.6 1.4 × 10−1 — —
IP 6.2 9.8 10.4 9.9 13.4 13.0 — —
IP+Compact. 5.6 10.7 8.5 10.9 11.6 13.3 — —

(b) 64-Wire NCT Circuits

#gates 100 1000 10000 100000
#Tests Time[s] #Tests Time[s] #Tests Time[s] #Tests Time[s]

RA 7.8 8.4 × 10−5 10.3 6.8 × 10−4 13.6 8.2 × 10−3 16.9 9.7 × 10−2

RA+Compact. 6.4 1.2 × 10−3 8.7 9.9 × 10−3 11.6 2.3 × 10−1 — —
IP 5.5 18.4 9.9 19.8 13.3 22.8 — —
IP+Compact. 4.8 18.5 8.6 21.1 11.7 27.5 — —

(1) The algorithm proposed in the paper guarantees an upper bound on the
size of the obtained test set. However, the approximation ratio of the algorithm
is O(log(n + g)), where n and g are the numbers of wires and gates in the
circuit, respectively. Does there exist a polynomial-time constant-approximable
algorithm for this problem?

(2) Does there exists a polynomial-time algorithm to generate a minimum com-
plete test set for stuck-at faults when a given reversible circuit consists of only
0-CNOT and 1-CNOT circuits?

References

1) C.Bennett, “Logical reversibility of computation,” IBM Journal of Research and
Development, vol.17, pp.525–532, 1971.

2) E.Fredkin and T.Toffoli, “Conservative logic,” International Journal of Theoretical
Physics, vol.21, pp.219–253, 1982.

3) M.Garey and D.Johnson, Computers and Intractability: A Guide to the Teory of
NP-Completeness. W. H. Freeman and Company, 1979.

4) R.Landauer, “Irreversibility and heat generation in the computing process,” IBM
Journal of Research and Development, vol.3, pp.183–191, 1961.

5) R.Merkle, “Two types of mechanical reversible logic,” Nanotechnology, vol.4, pp.
114–131, Feb. 1993.

6) M.Nielsen and I.Chuang, Quantum Computation and Quantum Information. Cam-
bridge University Press, 2000.

7) K. Patel, J. Hayes, and I. Markov, “Fault testing for reversible circuits,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.23,
no.8, pp.1220–1230, 2004.

8) V.Shende, A.Prasad, I.Markov, and J.Hayes, “Synthesis of reversible logic cir-
cuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol.22, pp.710–722, June 2003.

9) S.Tayu, S.Ito, and S.Ueno, “On the fault testing for reversible circuits,” Lecture
Notes in Computer Science, vol.4835, pp.812–821, 2007.

10) S.Tayu, S.Ito, and S.Ueno, “On fault testing for reversible circuits,” IEICE Trans-
actions on Information and Systems, vol.E91-D, no.12, pp.2770–2775, 2008.

8 c© 2009 Information Processing Society of Japan

Vol.2009-AL-127 No.2
2009/11/27

