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In general, standard benchmark suites are critically important for researchers
to quantitatively evaluate their new ideas and algorithms. This paper proposes
CHStone, a suite of benchmark programs for C-based high-level synthesis. CH-
Stone consists of a dozen of large, easy-to-use programs written in C, which
are selected from various application domains. This paper also analyzes the
characteristics of the CHStone benchmark programs, which will be valuable for
researchers to use CHStone for the evaluation of their new techniques. In addi-
tion, we present future challenges to be solved towards the practical high-level
synthesis.

1. Introduction

High-level synthesis (HLS), or behavioral synthesis, is the technology which
automatically translates behavioral level design descriptions into register-transfer
level (RTL) ones 1). HLS techniques have been extensively studied for more than
two decades, and a number of HLS tools have been developed so far not only in
academia but also in industry. Most of the commercial HLS tools developed by
the middle of the 1990s employed hardware description languages (HDLs) such as
VHDL and Verilog-HDL as their input languages. Since the late 1990s, however,
C-based programming languages such as ANSI-C and SystemC have become
popular rather than HDLs 2)–4). There exist several reasons for this trend, for
example: C-based languages facilitate hardware/software codesign since most
embedded software is written in C; C-level functional execution is faster than
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HDL simulation; a large number of existing algorithms are written in C; and the
number of C programmers is much larger than that of HDL designers.

Standard benchmark suites are critically important for researchers to quantita-
tively evaluate their new ideas and algorithms. From the late 1980s to the middle
of the 1990s, the HLS research community had made efforts to develop standard
benchmark suites for HLS, and as a result, two sets of benchmark designs, High
Level Synthesis Workshop 1992 Benchmarks 5) and 1995 High Level Synthesis
Design Repository 6), were released from the University of California, Irvine, in
1992 and 1995, respectively. The two benchmark suites cover a wide range of
application domains from tiny DSP kernels to relatively large microprocessors,
and most of the designs are written in VHDL. Indeed, these benchmarks had
contributed to the advancement of the HLS technology in the 1990s. As men-
tioned above, however, the language for HLS has shifted from HDLs to C-based
ones, and nowadays, to our knowledge, the HDL-based benchmarks are rarely
used.

In fact, the repository in Ref. 6) includes eight benchmark programs written
in C, but most of them are tiny DSP kernel loops which typically consist of
less than one hundred lines of C code. They are still useful for studies on loop
pipelining and memory access optimization. However, since HLS is expected
as a solution for the design productivity crisis, the HLS research community
should address synthesis of more complex circuits in order to make HLS a really
practical technology. Several recent studies such as Refs. 3), 7), 8) have addressed
synthesis from large sequential programs consisting of multiple hundreds of lines
of C code. The common problem shared among such researches is the lack of
standard benchmark suites. The C programs in Ref. 6) are too small, while
benchmark programs which are widely used in the fields of computer architectures
and compilers are too huge and complex for hardware synthesis. For example, C
programs in SPEC 9), EEMBC 10) and MediaBench 11) are not synthesizable even
by state-of-the-art HLS tools.

In this paper, we propose CHStone, a suite of benchmark programs for C-based
HLS. Key features of CHStone are as follows:
• CHStone is developed for HLS researchers to analyze the effectiveness of their

new techniques, not for LSI designers to evaluate commercial HLS tools.
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• CHStone consists of 12 programs which are selected from various application
domains such as arithmetic, media processing, and security.

• The programs in CHStone are relatively large compared with the DSP kernels
which have been widely used in the past literature on HLS.

• All the programs in CHStone have been confirmed to be synthesizable by a
state-of-the-art HLS tool.

• CHStone is very easy to use since test vectors are self-contained and no
external library is necessary.

• CHStone is available to the public 12).
To the best of our knowledge, CHStone is the first benchmark suite which

is composed of practically large programs with various characteristics, refined
so that CHStone users can easily and quickly conduct HLS from the CHStone
programs, and available to the public.

This paper also analyzes the characteristics of the CHStone benchmark pro-
grams, which will be valuable for researchers to use CHStone for the evaluation
of their new techniques. In addition, we present some challenges to be solved
towards the practical HLS.

This paper is organized as follows. Section 2 describes the overview of CHStone
and the brief explanation of each benchmark program in CHStone. Sections 3
and 4 analyze the source-level characteristics of the CHStone programs and sen-
sitivity to resource constraints, respectively. Section 5 discusses the novelty and
usefulness of CHStone. Section 6 concludes this paper with a summary and
current status.

2. The CHStone Benchmark Suite

In this section, we describe a brief overview of CHStone, and then features of
individual programs in CHStone are summarized.

2.1 Overview
The goal of the CHStone benchmark suite is to promote researches on C-based

HLS by providing HLS researchers a set of benchmark programs which are prac-
tically large but still easy to use. The past and present HLS researchers have
been working towards various goals and metrics (e.g., clock frequency, through-
put, area, power/energy consumption, and yield) at various synthesis steps (e.g.,

source-level transformation, allocation, scheduling, binding, and FSM synthesis).
Therefore, we do not define or assume how they use CHStone or what objective
they use it for. Also, recall that we do not intend to evaluate the performance of
commercial HLS tools with CHStone.

The CHStone suite consists of 12 programs which have been selected from
various application domains. CHStone includes four arithmetic programs, four
media applications, three cryptography programs, and one processor. Note that
many of the CHStone programs are brought from other benchmark suites and
are largely changed from their original ones so that the benchmark programs are
synthesizable by HLS tools.

The CHStone benchmark suite is very easy to use mainly because of the fol-
lowing three reasons. First, the CHStone benchmark programs are written in
a limited set of the C language. For example, the following data types and
constructs, which are not supported by most of the existing HLS tools, are not
used: floating-point data, composite data types such as struct, dynamic memory
allocation, and recursive functions.

Second, the CHStone benchmark programs are written in the standard C lan-
guage without any extensions. Note that most of the existing C-based HLS tools
extend the C language in order to specify tool-specific optimization options, but
the syntax of the extensions is not standardized among the tools. Since such
tool-specific extensions are not used in the CHStone benchmark suite, CHStone
is highly portable.

Finally, the CHStone benchmark programs are self-contained. Each program
has a main function which serves as a testbench. Test vectors are also contained
in the source code. Furthermore, no external library function is called.

2.2 CHStone Programs
The benchmark programs in CHStone are brought from widely-used applica-

tions in the real world. Table 1 summarizes the brief descriptions and the sources
of the programs. The additional explanation of each program is as follows.

DFADD: DFADD implements IEC/IEEE-standard double-precision floating-
point addition using 64-bit integer numbers. A number of the control statements
such as if and goto statements are used. No loop exists except one for state-
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Table 1 Brief description and source of the CHStone benchmark programs.

Application Name Description Source
domain

DFADD Double-precision floating-point addition SoftFloat 13)

DFDIV Double-precision floating-point division SoftFloat 13)

Arithmetic DFMUL Double-precision floating-point multiplication SoftFloat 13)

DFSIN Sine function for double-precision Authors’ group,

floating-point numbers SoftFloat 13)

Microprocessor MIPS Simplified MIPS processor Authors’ group

ADPCM Adaptive differential pulse code modulation SNU 14)

decoder and encoder

Media GSM Linear predictive coding analysis of MediaBench 11)

processing global system for mobile communications

Authors’ group,
JPEG JPEG image decompression The Portable Video

Research Group 15)

MOTION Motion vector decoding of the MPEG-2 MediaBench 11)

AES Advanced encryption standard AILab 16)

Security BLOWFISH Data encryption standard MiBench 17)

SHA Secure hash algorithm MiBench 17)

ment used as a testbench which is added by the authors. This program can be
pipelined.
DFDIV: DFDIV implements IEC/IEEE-standard double-precision floating-
point division using 64-bit integer numbers. A number of the control statements
such as if and goto statements are used. DFDIV has several common functions
with DFADD. DFDIV contains data-dependent loops, which make it difficult to
be pipelined.
DFMUL: DFMUL implements IEC/IEEE-standard double-precision floating-
point multiplication using 64-bit integer numbers. A number of the control state-
ments such as if and goto statements are used. No loop exists except one for
statement, used as a testbench, which is added by the authors. DFMUL has
several common sub-functions which are also used in DFADD and DFDIV. This
program can be pipelined.
DFSIN: DFSIN implements double-precision floating-point sine function using
64-bit integer numbers. A number of the control statements such as if and
goto statements are used. It calls DFADD, DFMUL and DFDIV, which are also

included in CHStone.
MIPS: This program describes instruction-level behaviors of a simplified MIPS
processor which has 30 types of instructions. A sorting program is served as test
vectors. Depending on synthesis options, HLS tools may synthesize a sequential
processor or a pipelined one from the program.
ADPCM: ADPCM (Adaptive Differential Pulse Code Modulation) implements
the CCITT G.722 ADPCM algorithm for voice compression. It includes both
encoding and decoding functions, which can be pipelined. The two functions can
be also used as independent benchmark programs.
GSM: This is a program for LPC (Linear Predictive Coding) analysis of GSM
(Global System for Mobile Communications), which is a communication protocol
for mobile phones. Only lossy sound compression of GSM is implemented.
JPEG: JPEG (Joint Photographic Experts Group) transforms a JPEG image
into a bit-mapped image. This program is mainly composed of three parts:
huffman, idct, and inverse quantization. An intelligent behavioral synthesis tool
may pipeline the three functions. Alternatively, the three functions can be used
as individual benchmark programs.
MOTION: MOTION decodes a motion vector formatted according to the
MPEG-2 standard, which is one of the decompression method of video, audio,
and so on.
AES: AES (Advanced Encryption Standard), also known as Rijndael, is a sym-
metric key cryptosystem. The AES program includes both encryption and de-
cryption functions, which can be also used as two benchmark programs.
BLOWFISH: BLOWFISH implements a symmetric block cipher. The BLOW-
FISH program contains only the encryption function.
SHA: SHA (Secure Hash Algorithm) is a cryptosystem consisting of a set of hash
functions. This SHA program is written so as to conform with the Netscape SSL
standard.

3. Source-Level Analysis

This section discusses the various features of the programs at the source level.
This source-level analysis will be useful for HLS researchers to analyze the ef-
fectiveness of their new techniques in experimental results using the CHStone
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Table 2 Source-level characteristics.

Representative Lines of Variables Operations Statements

data type C code Functions Scalar Array Addition/Subtraction Multiplication Division Comparison Shift Logic if switch while for goto/break assignment

DFADD 64-bit integer 526 17 121 4 38 78 65 146 87 1 26 299

DFDIV 64-bit integer 436 19 111 4 45 8 2 50 56 73 47 2 1 11 220

DFMUL 64-bit integer 376 16 92 4 28 4 34 41 61 38 1 9 159

DFSIN 64-bit integer 755 31 285 3 141 17 2 196 214 357 216 3 1 58 864

MIPS 32-bit integer 232 1 32 5 17 2 12 22 23 3 3 1 3 34 66

ADPCM Array of 32-bit integers 541 15 269 26 156 69 2 73 81 24 52 24 25 97 792

GSM Array of 16-bit integers 393 12 150 10 251 53 110 44 41 95 1 17 30 492

JPEG Array of 32-bit integers 1,692 30 390 48 1,029 148 6 242 277 132 213 64 27 90 228 2,666

MOTION 3D array of 32-bit integers 583 13 146 12 299 155 127 55 115 65 6 12 1,100

AES Array of 32-bit integers 716 11 345 11 510 22 36 48 758 370 26 10 24 37 909

BLOWFISH Array of 8-bit characters 1,406 6 112 12 280 15 159 370 5 8 5 5 16 385

SHA Array of 8-bit characters 1,284 8 66 6 134 3 32 59 87 2 9 20 315

programs. Table 2 summarizes the source-level characteristics of the CHStone
benchmark programs such as the representative data type, the number of lines
of C code, the number of functions, and the types and the numbers of opera-
tions and statements �1. As seen in Table 2, the representative data types of
the CHStone programs are distributed from 8-bit characters to 64-bit integers,
and from scalar variables to a three-dimensional array variable. The lines of C
code in Table 2 do not include comment lines or empty lines, so the actual sizes
of the source files are much larger �2. Thus, we see that the CHStone bench-
mark programs are realistic applications consisting of multiple hundreds lines of
code. Most of the CHStone programs call a lot of functions and form complicated
function-call structures such as a function called by multiple functions and the
deep function-call hierarchy. Also, the numbers of operations and statements
show the complexity of the CHStone programs.

Figures 1 and 2 display the more detailed characteristics of the programs at

�1 The numbers of variables, operations, and statements described in Table 2 are generated
after several parser-level optimizations such as function inlining, dead code elimination,
constant propagation, and common subexpression elimination.

�2 The number of lines in each program is counted after reformatting the program’s coding
style with GNU indent.

Fig. 1 Incidence of operations per benchmark program.

the source level. Figures 1 and 2 depict the incidence of operations and statements
in the programs, respectively.

As stated in the previous section, the CHStone programs are selected from var-
ious application domains, and we see from Fig. 1 that each application domain
of CHStone has different characteristics in terms of operations. The arithmetic
programs have the low proportion of arithmetic operations compared with the
programs of media processing and security. This is because the arithmetic pro-
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Fig. 2 Incidence of statements per benchmark program.

grams of CHStone deal with 64-bit integer numbers transformed from double-
precision floating point numbers and mainly consist of bit operations. Also,
the microprocessor application program, MIPS, has the similar feature with the
arithmetic programs. This is because MIPS mainly has controls of MIPS in-
structions rather than operations in an arithmetic logic unit (ALU). The media
processing programs, on the other hand, have a high proportion of arithmetic
operations, whilst having a low proportion of logic operations, because of the
encoding and/or decoding processing to compress or decompress a set of data,
such as discrete cosine transform. We see no common characteristics through
the security application programs, and the different characteristics among the
security programs are observed.

Next, let us look at Fig. 2. Figure 2 shows that each application domain of
also has the different characteristics in terms of statements. Except assignment,
which is usually dominant in every program, the arithmetic application programs
largely consist of condition statements, especially if statements. This is because
these programs are mainly composed of bit manipulations such as the underflow
and overflow handling, as explained in the discussion on Fig. 1. MIPS has the
highest proportion of goto/break statements due to a few large switch statements
for 30 types of MIPS instructions. The media processing programs have the
high proportion of loop statements since they usually need to repeat the same
processing to a set of data. The security application programs have different

features on statements as well as explained in the discussion on Fig. 1.
In addition, if we look at Fig. 1 and Fig. 2 more carefully, it can be recog-

nized that the CHStone programs have different characteristics on operations
and statements even amongst the programs in the same application domain.

4. Analysis of Synthesis Results

In this section, first the synthesizability of the CHStone benchmark programs is
confirmed. Secondly, after we analyze the characteristics in terms of resource uti-
lization, we discuss sensitivity to resource constraints. Finally, future challenges
to be solved towards the practical HLS are mentioned.

4.1 Synthesizability
As stated in Section 2, one of the key features in CHStone is that the CHStone

benchmark programs are easy to use since CHStone excludes the unsynthesizable
data types and constructs by most of the existing C-based HLS tools, such as
composite data types, dynamic memory allocations, and recursive functions �1.
In addition, test vectors are self-contained and no external libraries are needed.
Also, no tool-specific extensions are used.

Let us discuss the synthesizability of programs in more detail.
The CHStone programs are written in the standard C language. Most of the

C-based HLS tools, however, cannot handle the CHStone programs as-is. This
is because the tools extend the C language in order to describe some important
concepts for hardware design, which are lacking in the standard C language, such
as cycle accurate timing for communication and bit-width and direction of I/O
ports. The extension varies depending on the tool. We call the extension tool-
specific extension. If we want to synthesize from a standard C program, we need
to modify the program according with the tool-specific extension of the HLS tool
to make the program acceptable by the tool.

In this paper, we say that a program is synthesizable by an HLS tool if the HLS
tool can generate an RTL circuit from the program without modifying the pro-
gram except for the tool-specific extension. According to the definition, programs

�1 Although C-based HLS tools take C-like programs as input, they do not completely comply
with the ANSI/ISO C standard. Only a subset of the C language is acceptable by the HLS
tools.
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Table 3 Ratio of the tool-specific lines to the total lines of code.

Lines of code Lines of code Ratio of
in CHStone after modification tool-specific extension

DFADD 526 517 4.75%

DFDIV 436 426 5.50%

DFMUL 376 366 6.38%

DFSIN 755 747 3.18%

MIPS 232 233 3.02%

ADPCM 541 546 1.66%

GSM 393 399 2.54%

JPEG 1,692 1,664 2.48%

MOTION 583 588 1.54%

AES 716 708 3.35%

BLOWFISH 1,406 1,412 0.71%

SHA 1,284 1,289 0.70%

are synthesizable even if modification according with the tool-specific extension
is necessary. The definition also implies that except for the tool-specific exten-
sion, synthesizability of programs still depends on the HLS tool. This is because
the synthesizable subset of the C language is different between tools. A mature
state-of-the-art HLS tool can accept a large subset of the C language, while an
immature tool can accept a very small subset.

We confirmed the synthesizability of the CHStone programs with a commercial
HLS tool eXCite from YXI 18), which generates an RTL code in Verilog-HDL
or VHDL from a C program. Although the vendor says that eXCite takes a
standard C program as input, eXCite requires tool-specific extensions such as
I/O declarations. Thus, we modified the CHStone programs so that the CHStone
programs become acceptable by eXCite. Table 3 describes the lines of code in
the CHStone benchmark suite and the lines of code after the modification in the
second and third columns, respectively. The rightmost column represents the
ratio of the lines modified according with the tool-specific extension to the total
lines of the CHStone programs. The modification of the CHStone programs was
on average approximate 3.0%, all of which were for the tool-specific extension
such as I/O declarations. It is then confirmed that all the CHStone programs
are synthesizable by eXCite.

We also tested the synthesizability of C programs of the benchmark suites
mentioned in Section 1, i.e., 1995 High Level Synthesis Design Repository
(HLSynth95) 6), SPEC 9), EEMBC 10), and MediaBench 11). HLSynth95 has in
total 23 programs written in VHDL, Verilog-HDL, C, and so on, and eight out
of them are C programs. We ran eXCite for the eight C programs and con-
firmed that six of them were synthesizable by eXCite �1, while the other two
were not synthesizable because they include the unsynthesizable data types and
constructs by eXCite. For the C programs in SPEC, EEMBC, and MediaBench,
instead of actually running eXCite, we examined these source programs against
the users manual of eXCite. We confirmed that these C programs include the
unsynthesizable data types and constructs by eXCite and are not synthesizable.

Since eXCite was the only HLS tool available to us, in this paper we confirmed
the synthesizability of the CHStone programs by eXCite. It does not mean that
eXCite is the only HLS tool by which the CHStone programs are synthesizable.
CHStone excludes the unsynthesizable data types and constructs by most of the
existing HLS tools so that the CHStone programs are synthesizable by other
state-of-the-art HLS tools. To extensively evaluate the synthesizability of the
CHStone programs, more HLS tools should be used. We expect CHStone users
to test the synthesizability of the CHStone programs with various HLS tools in
future.

4.2 Resource Utilization
This section analyzes the characteristics on resource utilization of the circuits

synthesized from the CHStone benchmark programs with eXCite. In order not
to depend on the specific clock frequency or target library, HLS was conducted
in the following conditions; No resource constraint was specified; The constraint
on the clock frequency was specified so that each functional unit completes in a
single clock cycle; Operation chaining was disabled; No aggressive optimization
was applied such as pipelining, loop unrolling, memory access optimizations, and
so on. Table 4 describes the number of states and the types and the num-
bers of hardware resources for each benchmark program. For ROM, SRAM,

�1 These synthesizable C programs consist of only 10-20 lines of code, which is considerably
smaller than the CHStone programs.
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Table 4 The number of states and resource utilization in RTL description.

DFADD DFDIV DFMUL DFSIN MIPS ADPCM GSM JPEG MOTION AES BLOWFISH SHA

No. of states 35 52 25 121 19 155 236 815 306 451 351 136

32-bit Adders/Subtracters 4 4 4 4 3 16 18 14 11 10 9 10
Multipliers 1 4 1 4 1
Dividers 1 1 1 1
Comparators �1 9 8 6 13 33 9 4 10 5 5 6 5
Shifters 2 1 2 2 4

64-bit Adders/Subtracters 5 3 3 6
Multipliers 4 4 4 2 �2

Dividers 1 1
Comparators 8 5 5 10
Shifters 6 2 2 6

ROMs (bits) 17,024 12,416 12,032 12,800 1,920 17,664 7,296 65,712 17,600 18,368 116,544 131,296

SRAMs (bits) 3,072 9,408 3,408 160,448 16,768 19,584 34,240 3,232

Registers (bits) 1,917 1,862 574 4,935 491 3,698 1,409 5,032 890 3,202 2,031 1,054

and registers, the total number of bits is depicted. The number of resources is
small considering the size of the source code. This is because no parallelization
technique was used such as pipelining and loop unrolling. If such optimization
is applied, the designs require more resources and improve performance. Also,
Fig. 3 more clearly displays the resource utilization in each programs.

Table 4 depicts that the CHStone programs have different features on the
synthesized circuits. First, the number of states varies from 19 to 815. This means
that the CHStone programs have the different features in terms of the complexity
of the synthesized circuits. Also, we observe that the CHStone programs are not
small application programs as traditionally used in the past literature on HLS,
but rather large applications.

Next, we see from Table 4 and Fig. 3 that the resource utilization widely varies.
For example, BLOWFISH uses only two types of resources, while DFSIN uses
eight types. The arithmetic programs use a lot of 64-bit resources, since as
explained in the previous section these programs have many operations dealing

�1 In case of eXCite, 32-bit comparators are allocated not only to comparison operations shown
in Table 2, but also to case statements.

�2 A MIPS multiplication instruction takes two 32-bit operands and generates a 64-bit result.
eXCite allocates a 64-bit multiplier to the MIPS multiplication instruction.

Fig. 3 Total resource utilization per benchmark program.

with 64-bit integers. Finally, we observe that a program with the large number of
states does not always use a large number of resources. For example, DFSIN uses
the various types and the large numbers of resources compared with JPEG even
though the number of states in DFSIN is smaller than that in JPEG. Note that
the number of resources for each operation type does not depend on the size of
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the input program, but depends on the operation-level parallelism. Also, ROM
and SRAM in BLOWFISH are much larger than those in AES even though the
number of states in BLOWFISH is smaller than that in AES.

The circuits synthesized from the CHStone programs have different character-
istics in terms of resource utilization. This means that the benchmark programs
in CHStone have the different characteristics at the source level.

4.3 Sensitivity to Resource Constraints
In general, the area and performance of the circuits generated by HLS are

sensitive to resource constraints (i.e., constraints on the number of functional
units) given to HLS tools. For example, by saving and sharing the resources, the
area can be reduced. On the other hand, the number of states is increased, which
leads to an increase in the execution cycles, i.e., performance degradation. In this
section, we examine the area/performance sensitivity of the CHStone programs
to resource constraints. Two resource constrains are given. One constraint is a
maximum resource constraint, which aims to maximize the performance by giving
sufficient resources. The other constraint is a minimum resource constraint, which
aims to minimize the area by giving a single resource for each operation type.
For logic synthesis and place-and-route, we used Synplify Pro from Synplicity 19)

and XST from Xilinx 20), respectively. Xilinx Virtex 4 20) was used as a target
device.

Table 5 summarizes synthesis results under the two resource constraints. The
number of states and hardware area such as the numbers of slices, built-in
DSPs �1, block-RAMs, and registers are described in Table 5. The hardware
area will be discussed in the next section. In the second column, min and max �2

represent the minimum resources and the maximum resources, respectively. We
cannot disclose the number of execution cycles due to the license agreement of
the synthesis tool. Instead, Fig. 4 depicts the relative area and the number of
execution cycles under the maximum resource constraint against those under the
minimum resource constraint �3.

As mentioned above, in general the performance of the circuits generated by

�1 DSPs are used to implement multipliers.
�2 Registers in max rows in Table 5 are larger than those in Table 4 since logic synthesis and

place-and-route tools duplicate registers to improve the performance.

Table 5 Synthesis results under different resource constraints.

Resource States Slices DSPs Block-RAMs Registers

const. 16 × 1 32 × 1 (bits)

DFADD min 45 5,056 1,857
max 35 5,903 1,986

DFDIV min 64 4,966 4 1,915
max 52 5,006 16 1,960

DFMUL min 31 2,292 4 730
max 25 2,240 16 599

DFSIN min 153 18,443 7 5,441
max 121 18,269 19 5,016

MIPS min 47 1,588 14 192 911
max 19 1,412 14 192 563

ADPCM min 227 8,445 3 320 64 3,866
max 155 8,066 12 320 64 3,776

GSM min 268 4,166 1 96 1,646
max 236 5,182 1 96 1,512

JPEG min 950 15,372 3 304 320 5,105
max 815 16,366 10 304 320 5,056

MOTION min 341 5,258 64 999
max 306 3,330 64 919

AES min 475 9,034 3 32 256 3,539
max 451 9,287 3 32 256 3,624

BLOWFISH min 357 5,629 96 96 2,369
max 351 4,604 96 96 2,116

SHA min 138 5,916 64 1,113
max 136 6,108 64 1,058

HLS is sensitive to resource constraint. Actually, Fig. 4 shows that the perfor-
mance of the CHStone programs is also sensitive to resource constraints. Fur-
thermore, Fig. 4 shows that the CHStone programs have the different sensitivity
to resource constraints. In general, if a program has the high operation-level
parallelism, the generated circuit uses a large number of resources sufficient to
minimize the number of execution cycles under a maximum resource constraint.
On the other hand, when synthesizing from the same program under the mini-
mum resource constraint, the number of execution cycles is increased. Figure 4

�3 The hardware area includes slices and DSPs. The area of DSPs is converted to an equivalent
slice count.
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Fig. 4 Sensitivity of area and execution cycles to resource constraint.

shows that in AES, BLOWFISH, and SHA the numbers of execution cycles un-
der the maximum resource constraint are hardly decreased compared with those
under the minimum resource constraint. This is because these programs have the
low operation-level parallelism and are not very sensitive to resource constraints.
On the other hand, MIPS is very sensitive to resource constraints. Figure 4 shows
that in MIPS the number of execution cycles under the maximum resource con-
straint is small by approximate 75% compared with that under the minimum
resource constraint. Also, MOTION is sensitive to resource constraints and has
an interesting feature as follows. In MOTION, when comparing the synthesis
results under the maximum resource constraint with those under the minimum
resource constraint, the number of execution cycles in Fig. 4 is reduced by approx-
imately 50% in spite of only 10% difference in the numbers of states in Table 5.
This is because the operation-level parallelism of a few kernel loops in MOTION
is rich.

We have seen above that the CHStone benchmark programs have different
characteristics in sensitivity to resource constrains as well as resource utilization,
as shown in Section 4.2.

4.4 Challenges for Practical High-Level Synthesis
Our experimental analysis in Section 4.3 implies a few challenges to be solved

in the future in order for HLS to be a really practical technology.

Table 5 and Fig. 4 indicate that resource sharing by giving tight resource con-
straints does not always reduce the overall area. Indeed, resource sharing reduces
the number of functional units. However, the overall area is increased in some
cases. This fact is mainly due to two reasons as follows. One reason is additional
multiplexers. In order to share hardware resources, multiplexers often need to be
inserted at the input ports of the shared resources. The other one is the increased
control-path area. As shown in Table 5, the tight resource constraint leads to an
increase in the number of states in the controller, and in general the control-path
area heavily depends on the number of states. The area of multiplexers and
control-path is negligible when input behavioral descriptions are small, and in
actual fact, most of the research efforts on HLS in the 1980s and the early 1990s
aimed at the minimization of the number of resources. If we synthesize hard-
ware from large behavioral descriptions, however, the area of multiplexers and
control-path is not negligible, and inexpensive resources should not be shared
aggressively. Future HLS technology should find the optimal balance between
resource sharing and unsharing in order to reduce the overall hardware cost.

Through our experiments using CHStone, we found that the overall critical path
delay of the HLS-generated circuits is often much longer than the functional unit
delay on the critical path of the datapath. We cannot disclose the actual critical
path delay because of the license agreement of the synthesis tools. Instead,
Fig. 5 shows the relative critical path delay against the functional unit delay
on the longest datapath. The critical path delay in the figure is based on static
timing analysis after logic synthesis and place-and-route. The logic synthesis and
place-and-route are performed with the goal of critical path delay minimization.
Figure 5 shows that the overall critical path delay is up to 5.3 times longer
than the functional unit delay �1. This means that delays of other components
such as multiplexers, control-path and interconnections are significant �2. In our
experiments presented in this paper, we could not analyze the delays of individual

�1 For logic synthesis, we used commercial IPs of functional units written in HDL. In case of
SHA, comparators had the longest functional unit delay of all the hardware components.

�2 One may think that the difference between the critical path delay and the functional unit
delay in Fig. 5 changes depending on the constraint on the clock frequency given to the HLS
tool. In Fig. 5, however, we specified some constraints to the HLS tool so that generated
circuits do not depend on the constraint on the clock frequency.
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Fig. 5 Relative critical path delay against the longest functional unit delay.

components in detail since we flattened all the components (except DSPs) into
the gate level and then optimized the gate-level circuit together with retiming
enabled �1. In future, we should analyze the critical path delay in detail. Still,
it should be noted that although a reasonable amount of prior works on HLS
exist, which consider the interconnect and multiplexer delays, few works focus
on the controller delay. Since the controller delay cannot be ignored when input
behavioral descriptions are large 8),21), this should be taken into account together
with delays of functional units, multiplexers, and interconnections in the future.

Although the two problems mentioned above are known problems, they have
not been taken into account sufficiently in the past. Indeed, the problems used to
be trivial when the input programs were small. The experimental results in this
section quantitatively reveal the importance of the two problems by using the
CHStone programs. CHStone will contribute to the further advance of the HLS
technology so that HLS can be a really practical solution for designing complex
SoCs in a short time.

�1 This is why the overall critical path delay is shorter than the functional unit delay in a few
cases.

5. Discussion

This section discusses the novelty and usefulness of CHStone.
At present, it is difficult to objectively evaluate the novelty and usefulness of

CHStone. This is due to two reasons as follows. One reason is that there are no
C-based HLS benchmark suites with which CHStone should be compared. The
other is that the HLS community has not established a common recognition yet
on what are sufficient and necessary requirements for C-based HLS benchmark
programs to meet. Instead, when developing CHStone, we emphasized (1) diver-
sity, (2) size, (3) synthesizability, and (4) usability since we believe that these
four features are significantly important for C-based HLS benchmark programs.

On the four points above, in Sections 2, 3, and 4, we have analyzed CHStone
from the several aspects and shown that (1) the CHStone programs have the
various characteristics in terms of the application domains, the source-level char-
acteristics such as the types of operations and control structures, the required
resources in generated RTL circuits, and the sensitivity to resource constraints,
(2) CHStone has practically large programs as judged from the size of source-
level descriptions (the lines of code, the numbers of functions, variables, and
operations) and generated RTL circuits (the number of states, the types and
numbers of functional units, and the size of memories in generated circuits),
(3) the CHStone programs are synthesizable by a commercial HLS tool and the
modification of the programs was on average approximate 3.0% out of the total
lines of code, and (4) CHStone users can easily and quickly use the CHStone pro-
grams since test vectors are self-contained and no external library is necessary,
and CHStone users can freely change the descriptions of the CHStone programs
since the source code of the CHStone programs has been released to the public.

As stated above, this paper has shown quantitative analysis results of CHStone
from the several aspects. Here, the following questions may arise:
( i ) Does CHStone sufficiently meet the requirements on the aforementioned

four points?
( ii ) Are the analysis results reliable?
( iii ) Are there any other points to be taken into account for developing bench-

mark programs for C-based HLS?
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As mentioned above, in this paper, we have analyzed the CHStone programs
on diversity, size, synthesizability, and usability. It is still unclear if the CHStone
programs sufficiently meet the requirements on these four points. For example,
it might be better to include more benchmark programs in CHStone in order to
cover the wider diversity. The number of programs in CHStone is small compared
with benchmark suites in other fields. For example, the SPEC and EEMBC
suites, which are developed to evaluate general-purpose and embedded processors,
are composed of dozens of benchmark programs. Note that, in our review of the
recent literature on HLS, few works used more than 12 benchmark programs
which are as large as the ones in CHStone. Thus, considering the current status
of the world-wide researches on HLS, the CHStone programs are practically large
and diverse.

To the second question, it is reasonable to say that the analysis results shown
in this paper are reliable. This is because eXCite, which is a commercial HLS
tool that we used in this paper, is a proven HLS tool which has been widely used
not only in academia but also in industry �1. The analysis results might vary
depending on the tool but the difference is not so large from our experience.

The last question is whether there are other points to be taken into account
when developing benchmark programs for C-based HLS. For example, some
readers, especially LSI designers in industry, would like human-designed RTL
circuits and/or their data to be released with benchmark programs for C-based
HLS so that the synthesized circuits through HLS can be compared with the RTL
circuits. However, this is not always a necessary requirement for C-based HLS
benchmark programs to meet. CHStone users are mainly expected to be HLS
researchers. Most HLS researchers do not always need to compare the synthe-
sized circuits through HLS with human-designed RTL circuits. Instead, they are
interested in using benchmark programs for the evaluation of the effectiveness of
their proposed techniques, e.g., the comparison of results with their techniques
and those without their techniques. This is obviously shown in the fact that very

�1 It is preferable to use multiple tools for more objective analysis. At present, unfortunately,
no other HLS tool is available to us. Even if available, however, it would be difficult for
this paper to provide tangible data analyzed by multiple tools due to the license agreement
of each tool.

few works on HLS compare results of the synthesized circuits through HLS and
those of the human-designed RTL circuits in their papers. Also, there might re-
main some other points to be considered. As previously mentioned, however, at
present it is difficult to objectively discuss this matter since there is no common
recognition on the sufficient and necessary requirements for C-based HLS bench-
mark programs to meet. We expect that CHStone will be a first step for the HLS
community to establish such common recognition for C-based HLS benchmark
programs.

To the best of our knowledge, CHStone is the first benchmark suite which con-
sists of real-world applications, is large in size, presents various characteristics in
the source and RT levels, is refined in an HLS-friendly manner, and is available to
the public. Also, all of these features make the CHStone benchmark suite highly
useful. Additionally, the source- and RT-level analysis results presented in this
paper will be useful for HLS researchers to efficiently analyze their experimental
results using the CHStone programs.

6. Summary and Current Status

This paper proposed CHStone, a suite of benchmark programs for C-based
high-level synthesis. CHStone consists of a dozen of large and easy-to-use pro-
grams written in C, which are selected from various application domains. We
expect that CHStone will be widely used by HLS researchers and can contribute
to the further advance of the HLS technology. This paper also analyzes the
CHStone benchmark programs in terms of the source-level characteristics, the
resource utilization, the sensitivity to resource constraints, and so on. These
analysis results will be useful for HLS researchers to analyze the effectiveness
of their new techniques in experimental results using the CHStone programs. In
addition, we revealed future challenges towards the practical high-level synthesis.
CHStone has been already released for free at Ref. 12).
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