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Modeling and Recognizing Human Activities from Video

Kris M. Kitani†1,†2 and Yoichi Sato†2

This paper presents a complete computational framework for discovering hu-
man actions and modeling human activities from video, to enable intelligent
computer systems to effectively recognize human activities. A bottom-up com-
putational framework for learning and modeling human activities is presented
in three parts. First, a method for learning primitive actions units is pre-
sented. It is shown that by utilizing local motion features and visual context
(the appearance of the actor, interactive objects and related background fea-
tures), the proposed method can effectively discover action categories from a
video database without supervision. Second, an algorithm for recovering the
basic structure of human activities from a noisy video sequence of actions is
presented. The basic structure of an activity is represented by a stochastic
context-free grammar, which is obtained by finding the best set of relevant ac-
tion units in a way that minimizes the description length of a video database
of human activities. Experiments with synthetic data examine the validity of
the algorithm, while experiments with real data reveals the robustness of the
algorithm to action sequences corrupted with action noise. Third, a compu-
tational methodology for recognizing human activities from a video sequence
of actions is presented. The method uses a Bayesian network, encoded by a
stochastic context-free grammar, to parse an input video sequence and com-
pute the posterior probability over all activities. It is shown how the use of
deleted interpolation with the posterior probability of activities can be used to
recognize overlapping activities. While the theoretical justification and experi-
mental validation of each algorithm is given independently, this work taken as
a whole lays the necessary groundwork for designing intelligent systems to au-
tomatically learn, model and recognize human activities from a video sequence
of actions.

1. Introduction

While the computing power of computers and the number of sophisticated al-

gorithms has grown, current research is far from closing the so called semantic

gap between physical observations and semantic expressions. Despite the seem-
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ingly insurmountable task of teaching a computer to learn as we do, the aim of

this work is to propose a computational framework for automatically discovering,

modeling and recognizing human activities.

In this paper the process of understanding human activities is divided into three

sub-tasks: (1) learning primitive actions (Section 2), (2) discovering the structure

of activities (Section 3) and (3) recognizing structured activities (Section 4). As

such, this paper presents a bottom-up computational framework activity analysis

by presenting the entire system in consecutive stages, where the output of each

task provides the input of the proceeding task.

The three contributions of this work are as follows:

• a bimodal learning approach that uses both motion and visual context

without the use of a priori scene knowledge to learn primitive inter-

active actions, whereas previous work used only motion or relied on a priori

knowledge of the appearance of objects or actors.

• a new unsupervised algorithm for learning syntactic structure from

noisy data (potentially all negative examples), whereas previous work on

grammatical induction used only training sets of positive examples.

• a probabilistic syntactic framework for robustly recognizing overlapped

human activities.

2. Learning action primitives

In this section, an unsupervised method for learning primitive actions from a

corpus of actions is proposed. It is shown that action categories can be discov-

ered effectively when both motion and visual appearance are used to represent

primitive action. Primitive actions are defined here as humans actions that can

be recognized over a very short period of time (a few seconds). For example,

grabbing a cup, typing on a keyboard or flipping the page of a book can be

recognized within a few seconds of observing the action. Learning primitive ac-

tions are important because they are the basic building blocks of many high-level

activities12),17),23).

Supervised learning techniques using such models as HMMs14),38), Bayesian

classifiers36) and temporal dynamics37) have been successful in describing primi-

tive actions but require labeled data or a considerable amount of prior knowledge.
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Fig. 1 Leveraging visual features for action recognition: Relevant visual features (green) in-
duced by using the telephone and irrelevant features (purple) produced by unrelated
background objects.

Recently, an approach of growing interest for unsupervised action discovery is

the use of generative latent variable models2),13),29),40) based on the bag-of-words

paradigm, originally developed for topic discovery from text.

Niebles28) proposed the application of a generative model to video to learn

action categories (topics) from a bag-of-features. They used exactly the same

framework as 13) by simply replacing document indices with video indices, and

words with spatial-temporal (ST) volumes. Their approach showed that similar

to text, the local features of an action can be treated as though they were ex-

changeable (an action can be treated as a bag of uncorrelated features) to learn

action categories. However, the conceptual problem with a straightforward use

of a language model for action discovery is that the models are uni-modal (e.g.

use only words).

It is known from experience that actions are composed of motions and visual

appearance. For example, the hands of a person playing a piano and typing on a

keyboard might have very similar motions but can easily be differentiated using

the visual context of a piano or a keyboard. In fact, findings from neural science

make it clear that actions are mentally perceived as a mix of motions and visual

features of present objects9). In the light of this fact, many previous approaches

to action discovery are limited by the fact that they only consider one mode,

namely, motion28),43).

While the joint use of appearance and motion to describe action is not en-

tirely new, this algorithm differs from previous algorithms in that the proposed

method does not use a priori information about the category, shape, size or

color of actors or objects in the scene10),11),24),27). Presented in this section is a

robust framework for primitive action discovery by leveraging both motion and

relevant visual context without the use of a priori information (e.g., an explicit

shape model or pre-defined object categories). Experiments show that the pro-

posed method properly leverages relevant visual appearance and is robust against

irrelevant visual features (Figure 1) when learning action categories.

2.1 Proposed method for learning action primitives

The goal is to learn the primitive action categories that occur within a video

corpus. First temporal features and spatial features are extracted from each

video segment, under the assumption that actions are defined by both temporal

motion and visual context. Then a description of a dimension reduction scheme

is given to create a codebook for each feature type . Finally, an explanation of a

bi-modal generative model is presented, that uses the histograms produced from

a video corpus to learn the latent action categories.

For each frame in the training corpus, a sparse set of spatial features is extracted

by finding SIFT key points20). Likewise, a sparse set of temporal features are

extracted from the video frames by extracting a 7×7×4 (a 7×7 spatial window

over 4 frames) spatiotemporal volume3) for pixels that detected as a good feature

to track35) and are tracked by optical flow4) for two consecutive frames. More

complex temporal keypoints can also be used, such as spatiotemporal cuboids8)

or space-time interest points18).

Compared to documents or images, the number of features that can be ex-

tracted from a video sequence can be very large (e.g., about 20 million temporal

features for 7 minutes of video). Therefore, an efficient two stage clustering pro-

cess that combines an online and offline algorithm is implemented to process the

descriptors generated by the video corpus.

An online clustering algorithm termed nearest representative point clus-

tering (NRPC) is used to cluster descriptors and generate a histogram

for all the videos in one pass. The NRPC algorithm is given as fol-

lows.
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for every video segment d in the corpus d do

Initialize segment histogram vd = 0

for every descriptor xdi extracted from segment d do

Find nearest representative point cj to xdi

if L2(xdi, cj) > θ then

Create new representative point ck ← xdi

Initialize count of centroid vdk = 1

else

Increment count vdj of nearest representative point cj

end if

end for

end for

The NRPC algorithm takes a single descriptor xdi from the set of all descrip-

tors extracted from segment d and decides whether to update the count of a

pre-existing cluster or create a new cluster, depending on a threshold θ. After

processing all descriptors, a set of n clusters c1, . . . , cn and a corresponding n di-

mensional histogram vector of counts vd = (vd1, · · · , vdn)T for the video segment

d are obtained.

Each video segment d ∈ d is processed in the same way to produce the set of

m = |d| histogram vectors of the histogram matrix V = (v1, · · · ,vm). Notice

that the number of clusters n can potentially increase each time a new video is

processed (i.e., new clusters are created). The histograms of previously processed

videos are simply padded with zeros to keep the same dimensionality n. This

clustering process is done once for each feature modality (i.e., spatial features and

temporal features). This type of online clustering is effective for video because

many nearly identical features are produced by a single action.

In the second stage, the dimensionality of the training data is further re-

duced using a more holistic approach called Non-negative matrix factorization

(NMF)19) . NMF decomposes the n ×m histogram matrix V (each column is a

histogram of descriptors for a video) into a n× r basis matrix W and the r×m

encoding matrix H, such that V ≈WH. NMF is executed twice independently,

once for spatial features and once for temporal features.

zs t

Fig. 2 Bi-modal latent variable model defined by the latent topic z, a spatial feature s and a
temporal feature t.

2.2 Merging motion and visual context via the action model

The proposed model (Fig. 2) is a bi-modal expansion of the standard mixture

of unigrams model29) that defines the probability of a video segment d ∈ d as

below,

p(d) =
∑

z

p(d|z)p(z) (1)

p(d|z) ∝
∏

s

p(s|z)n(s,d)
∏

t

p(t|z)n(t,d) (2)

where the term n(s, d) represents the number of times a spatial feature s has

occurred in a video segment d. The term n(t, d) is interpreted similarly for tem-

poral features. The parameters p(s|z), p(t|z) and p(z) are learned by maximizing

the log-likelihood of the entire video corpus d,

log p(d) =
∑

d

log
∑

z

[

∏

s

p(s|z)n(s,d)
∏

t

p(t|z)n(t,d)
]

p(z) (3)

. In the expectation step, the posterior of the latent variable is computed using

Bayes’ rule.

p(z|d) =
p(d|z)p(z)

∑

z′ p(d|z′)p(z′)
(4)

In the maximization step, the updates are computed.

p̂(s|z) ∝
∑

d

n(s, d)p(z|d) (5)

p̂(t|z) ∝
∑

d

n(t, d)p(z|d) (6)

p̂(z) ∝
∑

d

p(z|d) (7)

This process between the expectation step and the maximization step is repeated

until the log-likelihood function converges at a local optima.
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Fig. 3 The first motion and object corpus COBJ consists of 8 different primitive actions that
involve a related physical object.

2.3 Action datasets

Publicly available datasets used for human action recognition, like the KTH

dataset34), have very little background variation (i.e., a wall or a field) and usually

only involves an actor with no interactive objects8),44). In contrast, it is reasonable

to assume that many other objects will be visible in real world videos of human

actions, especially important visual features that help define the actions being

performed. Three primitive action (interaction) video datasets are presented

in Figures 3, 4 and 5 and are used to show how the proposed method is able

to leverage relevant visual context along with motion information to effectively

discover action categories. For each datatset, there are five video segments per

action and each action video segment is a three-second interval randomly spliced

from the original video. All videos were created at a resolution of 160× 120.

2.4 Experiments with hand action datasets

First a baseline experiment is performed using only temporal features as in 28).

Then three experiments are performed using the proposed framework and it is

shown how leveraging visual context improves learning performance. The stan-

dard AUC measure is given along with the probability of correct categorization

(PCC) which represents the degree to which a dataset is properly categorized.

All the results are summarized in Table 1 and more details regarding the imple-

Fig. 4 The second motion and background corpus CBG consists of 9 actions composed from
3 different motions and 3 different background objects. Direction of motion is shown
in white.

Fig. 5 The third motion with objects and background (messy desktop) corpus CBGOB con-
tains the same actions as the first corpus COBJ but also includes varied random back-
ground objects for each video segment.

mentation and evaluation measures can be found in 15).

The proposed method using both motion and visual context is utilized to learn

action categories from the same motion and object corpus COBJ . In comparison

to the strict use of only temporal features (Figure 6), it is observed from the bar

graph (Figure 7) of the posterior probability that all actions contained in the

video corpus have been accurately discovered with high confidence. Leveraging

the visual appearance of the action and related objects significantly increased the

confidence of classification performance.

Next the action and background corpus CBG is utilized to test whether the
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Table 1 PCC and AUC values for differing configurations.

Temporal Spatial Bimodal
Dataset PCC AUC PCC AUC PCC AUC
COBJ 85.12% 1.000 92.18% 1.000 99.05% 1.000
CBG 44.96% 0.878 91.35% 1.000 92.29% 1.000

CBGOB 77.32% 0.998 82.68% 1.000 93.62% 1.000

Fig. 6 Baseline results using only temporal features for corpus COBJ . The horizontal axes
gives the ground truth for each video d and the discovered action category z. The
vertical axis is the posterior probability p(z|d).

proposed method is able to distinguish between actions with very similar (same)

motions, that can only be differentiated by their visual context. Notice that each

combination of visual context and motion have been correctly categorized with

high PCC 92% (Table 1). Since there are only three differentiable motions in the

database, the decomposition of the temporal feature histograms is very difficult

resulting the low PCC of 44%.

In reality, primitive actions occur in various types of visual contexts and it is

important to be able to leverage only the relevant visual features that should

Fig. 7 Posterior probabilities using the proposed bi-modal method with the corpus COBJ ,
which contained 8 different actions.

be associated with an action (Figure 1). In the last experiment, the proposed

method is applied to the motion with object and background corpus CBGOB

and it is shown how the proposed method can leverage relevant visual features

to discover actions categories, even with various cluttered backgrounds (visual

noise). Results show that the proposed approach is able to learn the actions of

the corpus CBGOB with an average PCC of 93.62%.

2.5 Summary

A novel framework for discovering action categories by leveraging relevant vi-

sual context and motion features has been presented in this section. In the

proposed framework, a fast two stage clustering algorithm was implemented via

nearest representative point clustering and non-negative matrix factorization, to

generate a term-by-document matrix as the input to the bimodal mixture model.

The bi-modal mixture model used both visual features and temporal features to

discover latent action categories. Through the experiments it was shown that

the proposed approach is able to accurately classify actions by leveraging rele-
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vant visual appearance to disambiguate similar motions. It was also shown that

the proposed method is robust against irrelevant visual features generated by

the background while at the same time leveraging relevant visual features to

accurately discover primitive action categories.

3. Learning the structure of activities

In this section a new framework for discovering the basic temporal structure

(grammar) within an action symbol string is proposed. To find the optimal gram-

mar in an information-theoretic sense, the minimum description length principle

is used to identify a set of primitive actions that defines an optimal stochastic

context-free grammar (SCFG). The SCFG is a model that has been widely uti-

lized for natural language processing and in recent years, has also been shown

to be effective in modeling human activities extracted from video14),22),23),33).

Other non-hierarchical sequential state-based models (finite-state automata, hid-

den Markov models, n-grams, etc.) have also been successfully applied to human

activity recognition but are limited by the fact that they do not explicitly describe

the hierarchical structure of human activities.

One important task involved in using an SCFG for activity analysis is the task

of learning the grammar. In fact, all of the aforementioned work uses manually

designed grammars created from the a priori knowledge of the target domain and

thereby avoid the issue of grammar learning. In comparison to work that used

pre-defined grammars, research dealing with the issue of automated learning has

been minimal and always assumes a pure data set for learning. Wang42) used

an experimental scenario similar to Ivanov and implemented HMMs to produce

primitive action symbols from a video segment of a conductors hand motions. The

primitive actions produced by the HMMs were then fed into a pre-existing CFG

learning algorithm COMPRESSIVE25) to learn the activity grammar. Due to the

fact that COMPRESSIVE requires positive examples to generate the CFG, it can

be shown that their system is very sensitive to noise in the input symbol string.

While a noise-less input stream may be a reasonable assumption when learning

a grammar from a string of words, it is a naive assumption when attempting to

learn an activity grammar from a symbol string produced by stochastic detectors

from a highly variable action sequence created by human actors.

In contrast to previous works, this section proposes a new grammar learning

method that works even in the presence of noise. The proposed method places

an assumption of noise on different combinations of terminal symbols and tests

that assumption using the minimum description length (MDL) principle. Then

using the results of the MDL evaluation, the proposed method finds the best

set of terminal symbols that yields the most compact and descriptive activity

grammar.

3.1 Preliminaries

When considering the task of learning an activity from a string of action sym-

bols, it is reasonable to expect different types of noise that might hide the basic

structure of the activity that is to be learned. The first type of noise is inher-

ent to human activities which is termed here as inherent noise. Inherent noise

is caused by superfluous actions that do not play an important role in defining

the activity to be learned. These secondary action symbols (noise symbols) tend

to appear with irregular frequency and order, and fill in the gaps between the

important action symbols. The second type of noise is system noise caused by

the instability of the image processing system. System noise can be attributed

to changes in appearance that cause the image processing system to insert, sub-

stitute or delete (miss) random symbols from the symbol string. Symbols that

are inserted, substituted or deleted with a high frequency should not be used for

learning because they introduce much randomness to the symbol string. While

the primary assumption is that of inherent insertion noise, it is also shown in sec-

tion 3.4 how the proposed method also shows robust performance against system

noise when these assumptions are violated.

As mentioned before a context-free grammar (CFG) is used here to model hu-

man activity because of its ability to explicitly and compactly describe hierarchal

structure. A CFG is defined by the 4-tuple G = {T,N, S,R}, where T is a finite

set of terminal symbols, N is a finite set of non-terminal symbols, S is the start

symbol (a special non-terminal symbol) and R is the set of production rules. The

production rules take the form A → λ∗, which states that non-terminal symbol

A produces the string λ∗ of one or more symbols. When a probability p(A→ λ∗)

that satisfies the condition
∑

i p(A → λ∗

i ) = 1, is associated to each rule, the

grammar becomes a stochastic context-free grammar (SCFG).
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3.2 Proposed method

3.2.1 Setting up noise hypothesis

To learn the true grammar from noisy training data, the noise must be removed

from the training data. However, since it is not know a priori which symbols are

noise, it is proposed to set up various hypothesis (noise or not noise) against each

unique primitive symbol and evaluate the assumptions using a MDL criterion.

Formally, given the training data W = {W1, . . . , Wl}, a concatenation of l ac-

tivity sequences Wi, where each activity sequence Wi = {w1, . . . , wp} is a string

of primitive action symbols wj ∈ T, the objective is to identify the symbols that

are not useful (noise) for learning the true grammar.

A single hypothesis divides the set of primitive actions (terminal symbols) into

two sets: the set of noise symbols wf = {wf
1 , . . . , wf

v} and the set of non-noise

symbols wt = {wt
1, . . . , w

t
u}. Next, an initial grammar is constructed to reflect

the hypothesis.

The first rule of the form S →W′ is the start production rule. S is a nonter-

minal symbol that represents all possible symbol strings produced by the gram-

mar and in the initial stage W′ is the concatenated training data encoded by

the other production rules of the initial grammar. To attain the encoded input

symbol string W′, a plain input symbol string W is encoded to reflect the pre-

suppositions made about each terminal symbol. This is done by replacing each

terminal symbol wi with the appropriate nonterminal symbol using the preter-

minal production rules, which are defined next.

The set of production rules of the form Ni → wt
i is created for each presupposed

non-noise symbol, where wt
i is a non-noise terminal symbol and Ni is a newly

created nonterminal. These preterminal rules effectively preserve the unique

identity of the symbol in the training data.

The set of generic preterminal production rules of the form η → w
f
j is created

for each noise terminal symbol, where w
f
j is a noise terminal symbol and the

nonterminal η is a generic nonterminal representing all noise symbols. The generic

absorption rule η → η η is also created, which encodes a series of adjacent noise

symbols.

3.2.2 Learning the hypothesis grammar

Now that the presuppositions on the primitive action symbols have been en-

coded into the initial grammar, the next step is to learn the hypothesis gram-

mar. The heuristic CFG learning algorithm COMPRESSIVE25) is implemented

to learn the hypothesis grammar. Upon completion of grammatical induction

the string W′′ is reverted back to its original l activity sequences and sequences

that have the same structure are grouped together and left the grammar h ≤ l.

3.2.3 Testing using the MDL principle

The next goal is to find a hypothesis on the primitive action symbols that yields

both a compact yet expressive grammar that describes the input symbol string.

Reworded in the framework of MDL, the goals it is find an optimal selection of

non-noise symbols that will yield a grammar G that minimizes the sum of the

description length of the grammar DL(G) and the description length of the data

encoded by the grammar DL(W|G) (data log-likelihood).

Ĝ = argmin
G

{ DL(G) + DL(W|G) } (8)

= argmin
G

{− logP (G)− log P (W|G)}. (9)

The encoding technique proposed by Stolcke39) is implemented to find the de-

scription length of the grammar and the dynamic programming algorithm intro-

duced by Pynadath32) is implemented to calculate the description length of the

data likelihood via inside probabilities.

The first term of the MDL equation is the description length of the grammar

DL(G). DL(G) is a measure of the compactness of the grammar and is an

indicator of the regularity found in the training data. Decomposing the prior

over the grammar as the joint probability of the parameters θG and structure GS

gives

p(G) = p(GS , θG) = p(θG|GS)p(GS), (10)

where the prior over the grammar parameters is a uniform Dirichlet distribution

pN (θG|GS) =
1

B(α1, . . . , αq)

q
∏

i=1

θαi−1
i (11)

such that θ = (θ1, . . . , θq) is a multinomial distribution and B is a multinomial

Beta function. Since there is no prior knowledge about the distribution of the
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grammar parameters, the rule parameters θi and prior weights αi are set to be

uniform.

The structural probability P (GS) is calculated by

DL(GS) =
∑

R∈R

(− log p(rR − 1; µ) + rR log |Σ|) . (12)

where r log2 |Σ| is the description length the r symbols in the grammar and

− log p(r− 1; µ) is the log of a Poisson distribution which represents the descrip-

tion length of the length of a rule R ∈ R. Further explanation and justification

of the formulation of the description length of the grammar can be found in the

original work39).

It is not enough to evaluate the description length of the grammar because a

grammar chosen purely based on grammar size will favor a very small grammar

which may not explain the data well. The second term in the MDL equation

is the description length of the data likelihood DL(W|G). DL(W|G) works to

balance the effect of the first term by quantifying the expressive power of the

grammar.

First, the data likelihood is calculated and then converted into a description

length using Shannon’s coding theory (negative log of the probability). The

data likelihood is calculated using a chart of β probabilities created using the

procedure outlined in the original work32). Once a chart has been constructed

for a sequence W = {w1, . . . , wjmax
}, the data likelihood can be computed as a

sum of β probabilities for all strings of length jmax produced by the root node S.

Due to the insertion of abstraction rules when constructing the initial grammar

and the possible creation of abstraction rules at post-processing, the maximum

abstraction level kmax is two.

P (Wi|G) =

kmax
∑

k=1

β(S, jmax, k), (13)

The total likelihood for all the sequences W is computed by equation (14) as

a product of likelihoods for each sequence Wi. After the total likelihood has

been computed, it is converted into a description length by taking the minus

logarithm.

P (W|G) =

n
∏

i=1

P (Wi|G). (14)

In summary, by calculating the description length of the grammar and the

description length of the data likelihood, a framework for evaluating the quality of

a presupposition made on the terminal symbols has been created. By identifying

the hypothesis grammar that minimizes the total description length, the grammar

that optimally describes the data is acquired.

3.3 Experiments with synthetic data

This section explores the conditions under which the proposed method is valid

through experiments with synthetic data generated by a known grammar. Later

it is also shown through an experiment with real data that the proposed method

is able to produce intuitive results that aligns well with a human understanding

of the target activity.

The synthetic data for each experiment was created using a pre-defined stochas-

tic context-free grammar written according to a set of conditions. A set of d

sample strings was generated by the artificial grammar and was used to analyze

the proposed method. After the analysis, each hypothesis grammar was ranked

according to its description length. Throughout this section, the grammar which

uses the correct non-noise symbols is termed as the true grammar and use the

rank of the grammar as a measure of the success of the proposed method. The

desire is for the rank of the true grammar to always be first (i.e., the global

solution of the MDL criterion).

3.3.1 Inherent insertion noise

Three different grammar parameters were varied to examine the performance

of the proposed method to different types of inherent noise. First, three types of

artificial grammars with different numbers of patterns were defined to evaluate

the response of the proposed method to grammars with increasing complexity.

Second, for each type of synthetic grammar, the number of terminal symbols

were varied from 6 to 10. Third, to evaluate the effect of the sample size on the

results, several training sets consisting of d = 50, 150, 300, 500, 1000 randomly

produced strings were analyzed for each artificial grammar. The parameters and

results for a subset of the artificial grammars are given in Table 2.
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Table 2 Results with synthetic data (inherent insertion noise).

d = 50 d = 150 d = 300 d = 500 d = 1000
Type Non-noise Noise Rank of the true grammar

1 3 3 3 1 1 - -
1 3 4 3 1 1 - -
1 4 5 11 4 1 1 1
1 4 6 14 4 1 1 1
1 5 4 34 15 5 1 1
1 5 5 54 15 5 1 1
2 3 3 11 4 1 1 -
2 3 4 12 4 1 1 -
2 4 5 28 11 5 1 1
2 4 6 65 13 5 1 1
2 5 4 91 43 16 6 1
2 5 5 242 34 16 6 1
3 3 3 23 5 1 1 -
3 3 4 28 5 1 1 -
3 4 5 102 43 11 4 1
3 4 6 213 89 10 3 1
3 5 4 87 80 30 16 5
3 5 5 181 136 27 17 5

The results show that the proposed method has identified the correct set of non-

noise symbols when the sample size is sufficiently large (Table 2). Equivalently,

the proposed method has been shown to produce sub-optimal results when the

size of the training set was too small. In fact in the experiments with synthetic

data, the true grammar was always outranked by smaller grammars when the

sample size was insufficient. The results also show that complex grammars require

more training samples than do simple grammars.

3.4 Synthetic system noise

Despite the fact that the method proposed thus far has been designed to address

inherent insertion noise, it has been shown in preliminary experiments that the

proposed method is also able to deal with system noise. In particular, the results

show that the proposed method is able to cope with random insertion, deletion

and substitution errors. Table 3 shows that the new modes of noise introduced

by system noise increased the complexity of the task, which resulted in a need

for more training samples to identify the true grammar.

3.5 Experiments with real data

A surveillance system in a local convenience store was setup to test the proposed

method on real data. The system consisted of a single overhead CCD camera

Table 3 Results with synthetic data (inherent insertion and system noise).

d = 50 d = 150 d = 300 d = 500 d = 1000
Type Non-noise Noise Rank of the true grammar

1 3 3 12 3 1 1 1
2 3 3 15 7 4 2 1
3 3 3 23 17 7 4 1

Fig. 8 Overhead view of the CCD camera mounted above the counter showing the results of
the image processing to detect hands and tray.

(Figure 8) that captured the hand movements of the employee and the customer.

In the experiment a total of more than 9700 frames were recorded and processed

offline according to the proposed method. For this experiment primitive actions

symbols were detected using simple image processing using application-specific

domain knowledge for simplicity (see Figure 8). For this experiment a total

of ten different types of primitive action symbols were extracted (see Table 4).

A simple rule-based image processing system was implemented to extract the

primitive action symbols in a top-down fashion. However, the proposed method

will also work with any low-level image processing system that produces a string

of primitive actions symbols.

A total of 369 symbols were automatically extracted from the convenience store

surveillance video. The longest symbol sequence was eleven symbols long and the

shortest sequence was three symbols long. Each sequence was concatenated into

one long symbol string as the input to the proposed algorithm. The size of the
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Table 4 Definition of the terminal symbols.

NO. TERMINAL SYMBOL DESCRIPTION

1 CUS AddedMoney Money found in tray after customer

comes in contact with the tray

2 CUS MovedTray Customer moves tray

3 CUS RemovedMoney Customer removes money from tray

4 EMP HandReturns Employee hand returns after long ab-

sence

5 EMP Interaction Employee interacts with customer

6 EMP MovedTray Employee moves the tray

7 EMP RemovedMoney Employee moves money from tray

8 EMP ReturnedScanner Employee returns scanner

9 EMP TookReceipt Employee takes the receipt from the

register

10 EMP TookScanner Employee picks up scanner

training data was d = 55 strings.

The grammar with the smallest overall description length was the hypothesis

grammar that used the three symbols EMP ReturnedScanner, EMP TookReceipt

and EMP TookScanner. The grammar learned with these three symbols is given

in Figure 9.

Notice that the symbols identified as non-noise symbols are all predictable

actions performed by the employee. Since the employee has been trained to

follow a certain protocol, his actions are predictable and ordered. In contrast,

the actions of the customers show less regularity. Therefore, it makes sense that

the MDL criterion identifies a grammar dependent only on the predicable actions

of the employee as the optimal grammar.

3.6 Summary

This section has introduced a new method for acquiring the basic structure of

an activity from a noisy symbol string produced by video. The proposed method

placed presuppositions on each combination of terminal symbols and tested that

hypothesis using an MDL criterion. The MDL equation measured the balance

between a compactness and expressiveness of a grammar to encode the data, and

provided a means of quantifying the quality of each presupposition. Experiments

with both artificial and real data showed the proposed method is able to correctly

identify an optimal grammar when the size of the training data was sufficient.

S → D (0.02) D → L η (1.000)

S → H (0.16) E → η C (1.000)

S → G (0.18) F → A η (1.000)

S → N η (0.04) G → C D (1.000)

S → J (0.13) H → E D (1.000)

S → Q (0.05) I → η B η (1.000)

S → η (0.02) J → C F (1.000)

S → N (0.02) K → η D (1.000)

S → R (0.05) L → F B (1.000)

S → J B (0.02) M → C η (1.000)

S → M L (0.04) N → E A B (1.000)

S → M A H (0.02) O → E η (1.000)

S → C K (0.04) P → E I (1.000)

S → C A M F (0.02) Q → E K (1.000)

S → O F (0.02) R → E L (1.000)

S → M (0.02)

S → O L (0.02) η → η η (0.309)

S → O (0.02) η → CUS AddMoney (0.153)

S → P (0.05) η → CUS MovedTray (0.006)

S → I (0.04) η → CUS RemMoney (0.003)

S → K (0.04) η → EMP HandReturn (0.080)

A → EMP ReturnedScanner (1.00) η → EMP Interaction (0.275)

B → EMP TookReceipt (1.00) η → EMP MovedTray (0.028)

C → EMP TookScanner (1.00) η → EMP RemMoney (0.147)

Fig. 9 Recovered optimal grammar using three non-noise symbols.

4. Recognizing structured human activities

In this section, a method for recognizing a string of primitive actions as an

activity is introduced. The proposed method uses a weighted set of Bayesian

networks, created from an underlying activity grammar, to detect activities oc-

curring in the action symbol string16).

According to findings in perceptual psychology46), show that activities are per-

ceived taxonomically and partonomically. At same time, activities can also be

temporally overlapped or co-occur. For example, the transition of a person walk-

ing through a room might overlap with the activity of the person departing from

the room. From the perspective of the system, it is difficult to identify the exact

time at which the activity walking through has ceased and when the activity de-

parting has started. Thus there is an inherent ambiguity at transitions between

human activities which should be represented by a cognitive system.

The contribution of the proposed method described in this section lies in the

novel application of deleted interpolation (DI) – a smoothing technique used in

natural language processing – for recognizing temporally overlapped activities.

c© 2009 Information Processing Society of Japan10

Vol.2009-CVIM-167 No.3
2009/6/9



IPSJ SIG Technical Report

The majority of models that have been proposed for activity analysis are models

that represent an activity as a sequential transition between a set of finite states

(e.g. NDA41), FSA1), HMM45), hybrid HMMs30),31)). However, due to the fact

that most simple activities do not have complex hierarchical structure, these

models have not explicitly incorporated the concept of hierarchy into the model

topology.

There has also been other work that has proposed hierarchical models such

as context-free grammars and hierarchical HMM to recognize structured activi-

ties5),6),14),22),23),26) . However, these models uses domains with high-level activities

delineated by clear starting points and clear ending points, where the observed

low-level action primitives are assumed to describe a series of temporally con-

strained activities (with the exception of Ivanov14)). However, in this section

the focus is placed on a subset of human activities that have the possibility of

being temporally overlapped. It is shown that these types of activities can be

recognized effectively using the proposed framework.

4.1 Recognition system overview

The proposed recognition system consists of three major parts. The first is

the action grammar (a SCFG) that describes the hierarchical structure of all

the activities to be recognized. Second is the hierarchical Bayesian network that

is generated from the action grammar. Third is the final module that takes a

stream of input symbols (level 1 action symbols) and uses deleted interpolation to

determine the current probability distribution across each possible output symbol

(level 2 action symbol). The details of the proposed system are described here

based on the use of the CAVIAR data set7) to provide concrete explanation of

each aspect of the algorithm.

4.2 Action grammar

The set of all terminal and non-terminal symbols The set of terminals (level

1 action symbols) T, the set of action symbols (called level 2 actions) A and I

are given in Table 5 and 6). Accordingly, the set of nonterminals N is defined as

N = I ∪A. The set of production rules Σ and their corresponding probabilities

are given in Table 7. Although the grammar here is manually defined, it is clear

from section 3 that the grammar can also be learned.

Table 5 Definition of the level 1 actions (terminal symbols).

Level 1 Actions T Meaning

en enter : appears in the scene

ex exit: disappears from the scene

ne near exit/ entrance : moving near an exit / entrance

br browse : standing near landmark

in inactive: standing still

mp move in place : standing but moving

wa walk : moving within a certain velocity range

pd put down : release object

pu pick up : contact with object

Table 6 Definition of the level 2 actions and intermediate actions (nonterminal symbols).

Level 2 Actions A ∈ N Meaning

AR Arriving : Arriving into the scene

BI Being Idle : Spending extra time in the scene

BR Browsing : Showing interest in an object in the scene

TK Taking away : Taking an object away

LB Leaving behind : Leaving an object behind

PT Passing Through : Passing through the scene

DP Departing : Leaving the scene

Intermediate Actions I ∈ N Meaning

AI Action in Place: Taking action while in place

MV Moving : Moving with a minimum velocity

MT Move to : Moving in place after walking

MF Move from : Walking after moving in place

4.2.1 Hierarchical Bayesian network

Despite the expressive power of the SCFG, they were created to characterize

formal language and thus in general, syntactic parsers are not well-suited for

handling noisy data. Bayesian networks have the robustness needed to deal with

faulty sensor data, especially when dealing with human actions. In contrast

to standard parsing algorithms, the merit of using an BN is found in the wide

range of queries that can be executed over the network32). In addition, BNs can

deal with negative evidence, partial observations (likelihood evidence) and even

missing evidence, making it a favorable framework for vision applications that

deal with uncertain observations.

A previously proposed method32) is used to transform the action grammar

(level 2 grammar) into a hierarchical Bayesian network (HBN). The term HBN

is used here because information about hierarchy from the SCFG is embedded

in the BN. By converting the action grammar into a HBN, evidence nodes E
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Table 7 Level 2 action grammar.

S → BI 0.20 BR → br 0.20

S → BR 0.10 BR → MV br 0.20

S → TK 0.05 BR → br mp 0.30

S → LB 0.05 BR → MV br mp 0.30

S → PT 0.30

S → AR 0.15 LB → pd 0.50

S → DP 0.15 LB → MV pd 0.20

LB → pd mp 0.05

BI → AI 0.10 LB → pd wa 0.05

BI → MV AI 0.10 LB → pd mp wa 0.10

BI → AI MV 0.10 LB → mp pd mp 0.10

BI → mp AI MV 0.10

BI → mp 0.20 DP → ex 0.40

BI → MF mp 0.10 DP → wa ne ex 0.30

BI → MF 0.10 DP → ne ex 0.20

BI → MV ne MV 0.10 DP → wa ne 0.10

BI → AI wa ne 0.10

MV → MF 0.20

TK → pu 0.50 MV → MT 0.20

TK → MV pu 0.20 MV → wa 0.30

TK → pu mp 0.20 MV → mp 0.30

TK → pu wa 0.10

TK → MV pu MV 0.10 MF → mp wa 1.00

MT → wa mp 1.00

PT → en wa ex 0.70

PT → ne wa ne 0.30 AI → in 0.60

AI → br 0.20

AR → en 0.50 AI → pu 0.10

AR → en MV 0.50 AI → pd 0.10

contain subsets of terminal symbols T, query nodes Q contain subsets of level 2

actions A and hidden nodes H contain subsets of indexed production rules R.

The result of transforming the grammar in Table 7 into a HBN is depicted in

Figure 10.

The probability density function (PDF) for level 2 actions is denoted as p(A|e)

where A = {A1, A2, . . . , Av} is the set of all level 2 actions (states). The input

vector e = [e1, e2, . . . , eL] is a string of evidence at the evidence nodes of the

HBN where L is the maximum length of the HBN. The probability of a specific

level 2 action is defined as the sum of the probabilities from each of the query

nodes

p(Ai|E) = p(Q1 = Ai|E) + · · ·+ p(Qu = Ai|E). (15)
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Fig. 10 Hierarchical Bayesian Network (maximum length l = 3). The content of each node
type is depicted by a bar chart.

4.3 Deleted interpolation

The concept of deleted interpolation (DI) involves combining two (or more)

models of which one provides a more precise explanation of the observations but is

not always reliable and the another which is more reliable but not as precise. It is

called deleted interpolation because the models which are being interpolated use

a subset of the conditioning information of the most discriminating function21).

In the proposed system it is assume that the analysis of a long sequence of
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evidence is more precise than that of a shorter length because a long sequence

takes into consideration more information. However, when analysis over a long

(more precise) input sequence fails one would like to fall back on analysis based

on a shorter (more reliable) subsequence.

To implement this the current probability distribution S across level 2 actions,

at each time instance, is calculated as a weighted sum of models,

S =
L

∑

i=1

λip(A|Oi), (16)

where Oi is the string of full evidence when i = 1 and represents smaller subsets

of the evidence sequence as the index i increases. The weights are constrained

by
∑L

i=1 λi = 1. This is the mechanism that effectively allows the system to

represent overlapped activities.

4.4 Experiments

Since the ground truth for each agent in each frame is labeled in XML (in-

formation about position, appearance, movement, situation, roles, and context),

the ground truth data is used directly as the low-level input into the system for

practical reasons. Each video sequence was processed to create a sequence of level

1 action symbols by applying the logic equations to the XML data. It is noted

here that as presented in section 2, the actions symbols can also be produced by

a probabilistic classifier.

The following experiments show that the proposed method is well-suited for

recognizing sequential and overlapped single-agent activities. In the first two

experiments it is shown that the use of DI improves performance as opposed

to not using DI. In the latter two sections, the effect of the values chosen for

grammar rule probabilities and the mixture weights are examined. It is shown

that the parameters of the grammar and the parameters of the mixture weight

have only a minimal impact on the results.

The video data used for this experiment was taken in a lobby environment

(Figure 11) and the sequence of level 1 actions were generated using the labeled

CAVIAR data. Analysis was run on six video sequences (Walk1, Walk2, Browse1,

Browse2, Leave1 and Leave2) to test the performance of the system. The results

for the Leave1 sequence is given here (Figure 12) where the ground truth is

300 428 504

644 741 884

970 1057 1025

Fig. 11 Key frames for the ”Leave Behind and Pick Up” (Leave1) sequence.

given along with the results for each of the four different experimental setups.

The ground truth was compiled from multiple users, as a normalized sum of the

interpretations of the video data.

The overall precision rate was 88% after filtering out a common problem. An

instance of temporal concurrence between activities is depicted in Figure 12(b)

between Being Idle and three other activities. The recall (capture) rate was 59%

(equivalently, a miss rate of 41%) which indicates that the system was not able

to detect the activity for the complete duration of the level 2 action as described

by the ground truth data. The false alarm rate was 3% (not including the effects

of Passing Through). The low false alarm rate is expected because the input

symbols (level 1 actions) only change when there is a significant change in an
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agents visual characteristics.

To understand the advantage of using DI, an experiment was performed again

on the same sequences but without the use of DI (Figure 12(b)). Since subse-

quences of the evidence are not used to interpolate the results, several level 2

actions based on smaller strings were not detected by the system.

To examine the effect of the grammar parameters, the grammar probabilities

were set to be uniform. It is interesting to observe that the proportion of the

probabilities between activities remain virtually unchanged after rule probabili-

ties have been changed (Figure 12(d)). Likewise the DI weight were also set to be

uniform to evaluate the effect of the weights. The results remained similar to the

results of using the original weighting scheme (Figure 12(e)). From these two ex-

periments, it is observed that the structural analysis of a symbol sequence plays

a larger role in determining the results compared to the role of the probabilities

of the rules or the weights of the interpolation.

4.5 Summary

This section has proposed an activity recognition framework robust to over-

lapped activities based on interpolation between hierarchical activity models. In

particular, a stocastic context-free activity grammar was converted into a HBN

to allow the system to make complex probabilistic queries. The HBN was then

used to discover overlapped activities over a string of discrete primitive action

symbols via DI. Through a set of preliminary experiments, it was shown that the

proposed methodology is well-suited for detecting the co-occurrence of simple

single-agent activities.

5. Conclusion

This paper has presented a bottom-up computational framework for model-

ing, learning and recognizing human activities. In the first section, it was shown

that by describing primitive actions as a combination of both motion and visual

context, the proposed algorithm is able to correctly categorize actions from a

video database of actions. As a result, the segments of an action sequence were

labeled according to the respective class yielding a string of action symbols. In

the second section it was shown that by testing various hypothesis using an MDL

criterion enabled the proposed system to discover the basic structure of an ac-
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Fig. 12 Leave bag sequence (a) ground truth (b) no DI (c) DI with user defined rule probabil-
ities (d) DI with uniformly distributed rule probabilities (e) DI with uniform mixture
weights
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tivity sequence from a symbol string of primitive actions corrupted by noise. As

a result, an optimal SCFG expressing the grammar of the activities contained

in the action string was acquired. In the third section it was shown that given

a stochastic context-free grammar that describes human activity, the activities

occurring within a stream of observations (a string of action symbols) can be

detected, even when the activities are overlapped. Taken as a whole, the algo-

rithms presented in this paper describe a novel prototype system for learning and

recognizing human activities from video sequences.
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