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Cheating Strategies

for the Gale-Shapley Algorithm

with Complete Preference Lists

Hirotatsu Kobayashi†1 and Tomomi Matsui†1

This paper deals with a strategic issue in the stable marriage model with
complete preference lists (i.e., a preference list of an agent is a permutation of
all the members of the opposite sex).

Given complete preference lists of all the men, a partial marriage, and com-
plete preference lists of unmatched women, we consider the problem of finding
preference lists of matched women such that the men-proposing Gale-Shapley
algorithm applied to the lists produces a (perfect) marriage which is an exten-
sion of a given partial marriage. We propose a polynomial time algorithm for
finding a desired set of preference lists, if theses exist.

We also deal with the case that complete preference lists of all the men and a
partial marriage are given. In this case, we consider a problem of the existence
of preference lists of all the women such that the men-proposing Gale-Shapley
algorithm produces a marriage including a given partial marriage. We show
NP-completeness of this problem.

1. Introduction

Given two sets of agents, men and women, Gale and Shapley2) discussed a
model, called the stable marriage model, in which each agent has preferences
over agents of the opposite sex. A stable marriage is a one-to-one mapping
between sets of men and women, such that there is no man-woman pair who
would agree to leave their assigned mates in order to marry each other. Gale
and Shapley showed that every set of preference lists admits at least one stable
marriage by describing an algorithm, called the deferred acceptance algorithm
(the Gale-Shapley algorithm), which always finds a stable marriage.

The Gale-Shapley algorithm is employed in a number of labor market clear-
inghouses and college admission systems. A notable version of the algorithm,
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called the men-proposing Gale-Shapley algorithm, works by having men make
proposals to women and produces men-optimal marriage, which every man likes
at least as well as any other stable marriage.

Since most applications of the Gale-Shapley algorithm involve the participation
of independent agents, it is natural to ask whether agents can benefit by being
dishonest about their preference lists. It is well-known that stating true pref-
erences is a dominant strategy for the men in the men-proposing Gale-Shapley
algorithm. In settings that allow incomplete preference lists, women on the other
hand have strong incentives to submit false preferences. By contrast, little is
known in the case of the stable marriage model with complete preference lists.

This paper deals with a strategic issue in the stable marriage model with com-
plete preference lists (i.e., the preference list of an agent is a permutation of
all the members of the opposite sex). In6), the authors discussed the following
problem; given complete preference lists of men and a marriage µ, find a set of
complete preference lists of women such that the men-proposing Gale-Shapley
algorithm applied to the lists produces µ. We established a simple necessary and
sufficient condition for the existence of such a set of complete preference lists.
The condition directly implies a polynomial time algorithm for the problem. In
this paper, we extend our result and discuss cases that a given marriage is not
perfect. More precisely, we consider the following two problems.

Given complete preference lists of all the men, a partial marriage, and complete
preference lists of the unmatched women, we consider the problem of finding
preference lists of matched women such that the men-proposing Gale-Shapley
algorithm applied to the lists produces a marriage which is an extension of the
given partial marriage. We propose a polynomial time algorithm for finding such
a set of preference lists, if they exist.

We also deal with the case that complete preference lists of all the men and a
partial marriage are given. In this case, we consider the problem of the existence
of preference lists of all the women such that the men-proposing Gale-Shapley
algorithm produces a (perfect) marriage including the given partial marriage.
Surprisingly, this problem is shown to be NP-complete.

In the next section, we establish some terminology and give background. Sec-
tion 3 gives definitions of the problems and our main result. In Section 4, we
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describe a polynomial time algorithm for the first problem. In Section 5, we show
that the second problem is NP-complete.

The issues of strategic manipulation in the stable marriage context are discussed
in many papers (see books5),9) and the references therein, for example). Roth8)

showed that when the men-proposing algorithm is used, none of the men benefits
by submitting a false preference list, regardless of how the other agents report
their preferences. Dubins and Freedman1) proved that no coalition of men could
collectively manipulate their preferences in such a way as to strictly improve all
of their mates in comparison to the men-optimal marriage. In settings that allow
incomplete preference lists, women on the other hand have incentives to cheat
in the men-proposing algorithm. Gale and Sotomayor3) showed that a woman
has an incentive to falsify her preference as long as she has at least two distinct
stable mates. In fact, the women can force the women-optimal marriage µ by
rejecting all the men except their mates in µ (see4)).

A feature of this paper is that the agents are required to submit complete pref-
erence lists. Compared to the above results, little is known in the case of the
stable marriage model with complete preference lists. Gusfield and Irving (5),
page 65) point to the absence of any general results in this setting. Teo, Sethu-
raman, and Tan10) deal with the situation where there exists a specified woman
w who is the only deceitful agent, and she knows the reported preferences of all
the other agents. They proposed a polynomial time algorithm for constructing
woman w’s optimal cheating strategy. They also discussed the Singapore school-
admissions problem, where the stable marriage model with ‘complete’ preference
lists is a suitable representation of the problem.

2. Notations and Definitions

We denote two sets of agents by M and W, called men and women, both of
size n. Each agent in M ∪ W has a preference list which is a totally ordered list
of all the members of the opposite sex. Agent i prefers q to r if and only if, q

precedes r on i’s preference list. We consider the case with ‘complete’ preference
lists, i.e., a preference list of an agent includes all the members of the opposite
sex. We denote sets of preference lists of M and W by LM and LW , respectively.
A partial marriage is a mapping µ : (M ∪ W ) → (M ∪ W ) satisfying

(1) ∀m ∈ M, µ(m) ∈ W ∪ {m},
(2) ∀w ∈ W, µ(w) ∈ M ∪ {w}, and
(3) w = µ(m) if and only if m = µ(w).

If an agent i ∈ M ∪W satisfies µ(i) ̸= i, we say that i is matched and µ(i) is the
mate of i in partial marriage µ. We say that a pair of matched agents {m,µ(m)}
(satisfying m ̸= µ(m)) is a pair of mates. Every agent with µ(i) = i is called
unmatched. A (perfect) marriage is a partial marriage with no unmatched agent.
We say a partial marriage µ′ is an extension of µ, if every matched agent i in µ

satisfies µ(i) = µ′(i).
A pair (m,w) ∈ M ×W is called a blocking pair for a perfect marriage µ, if m

strictly prefers w to µ(m) and w strictly prefers m to µ(w). A perfect marriage
with no blocking pair is called a stable marriage. Gale and Shapley2) showed
that a stable marriage always exists, and a simple algorithm called the deferred
acceptance algorithm or the Gale-Shapley algorithm can find a stable marriage.
Here we briefly describe a version of their algorithm in which men propose to
women (these roles can naturally be reversed). In the following algorithm, we
introduce an iteration number which will be used in a later section.
Men-Proposing Gale-Shapley Algorithm (GS-algorithm)
Step 0: Set the iteration number q := 1 and unmarried men U := M .

Initially, every woman has no current mate.
Step 1: If U = ∅, then output the current mate of every woman and stop.
Step 2: Choose a man m ∈ U. Let w ∈ W be m’s most preferred woman who

hasn’t yet rejected m.
Step 3: (Create a proposal from man m to woman w.)

If woman w has no mate, then update U := U \{m} and set m be the current
mate of w.
Else if w prefers m to her current mate m′, then w rejects m′, update U :=
U \ {m} ∪ {m′} and set m to be the current mate of w.
Else, w rejects m.

Step 4: Update q := q + 1 and go to Step 1.
In the rest of this paper, the above algorithm is called the GS-algorithm. We
denote the perfect marriage obtained by the GS-algorithm applied to a pair of
lists (LM ,LW ) by GS(LM ,LW ).
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It is known that the order of proposals (choice of m ∈ U in Step 2) does
not affect the output of the GS-algorithm2),7). If a man m ∈ M proposed to a
women w ∈ W in an execution of the GS-algorithm, we say that m is a suitor
of w. For any woman w ∈ W , it is easy to see that any possible execution
of the GS-algorithm yields the same set of suitors of w. Conway showed that
the set of stable marriages can be partially ordered as a lattice with the pair of
extremal elements, called men-optimal and women-optimal marriages (see7) for
example). In fact, the GS-algorithm described above produces the men-optimal
marriage5),7).

We introduce two graphs which play an important role in this paper. Given a
set of preference lists LM of men over women and a partial marriage µ′, G(LM , µ′)
denotes a directed bipartite graph, called a suitor graph, with a pair of vertex
sets M , W and a set of directed edges A defined by

A = {(w, µ′(w)) ∈ W × M | w is a matched woman in µ′}

∪

{
(m,w) ∈ M × W

∣∣∣∣∣ m is a matched man in µ′ and
m strictly prefers w to µ′(m)

}
.

Here we note that if a man m ∈ M is matched in µ′, then vertex m ∈ M has
a unique incoming edge (µ′(m), m) in G(LM , µ′); else, m is an isolated vertex.
When a women w ∈ W is matched in µ′, vertex w has a unique outgoing edge
(w, µ′(w)). Let µ∗ = GS(LM ,LW ) be the perfect marriage obtained by the GS-
algorithm. Then, it is easy to see that a man-woman pair {m,w} forms a directed
edge (either (m,w) or (w,m)) in the suitor graph G(LM , µ∗), if and only if, m

is the suitor of w.
Given the suitor graph G(LM , µ′), we also define a directed graph G(LM , µ′),

called a rooted suitor graph, as follows. We introduce an artificial vertex r,
called the root, to G(LM , µ′) and add directed edge (r, w) for each woman vertex
w ∈ W that has no incoming edge. When a vertex v of the (rooted) suitor graph
corresponds to a man (woman), we say that v is a man vertex (a woman vertex),
respectively.

When a given directed graph has a directed path from u to v, we say that v

is reachable from u. An outgoing spanning tree of a rooted directed graph is a
subset of directed edges T such that every vertex v except the root has a unique

incoming edge in T and a directed path Pv ⊆ T from the root vertex to v. It is
easy to see that a given rooted directed graph has at least one outgoing spanning
tree if and only if every vertex is reachable from the root.

Lastly, we show a property of a rooted suitor graph defined by the stable
marriage obtained by the GS-algorithm.

Lemma 2.1 Given a pair of sets of preference lists LM and LW, the rooted
suitor graph G(LM , µ∗) corresponding to the perfect marriage µ∗ = GS(LM ,LW )
has an outgoing spanning tree.
Proof. The definition of the GS-algorithm implies that for any woman w ∈ W ,
w has at least one suitor and her mate µ∗(w) is her most preferred suitor. For
any women vertex w ∈ W , we define a parent vertex prt(w) of w as follows. If
w has more than one suitor, the parent vertex of w is the second favorite with
w in the set of suitors of w. If w has a unique suitor, the parent vertex of w

is the root vertex r. For each man vertex m ∈ M , we define prt(m) = µ∗(m).
Let T be the subset of edges of the rooted suitor graph G(LM , µ∗) defined by
T = {(prt(v), v)|v ∈ M ∪ W}. We show that T forms an outgoing spanning tree
in the rooted suitor graph.

Clearly from the definition, every vertex v ∈ M ∪ W has a unique incoming
edge (prt(v), v) in T . Thus, we need to show that every vertex v ∈ M ∪ W has
a directed path Pv ⊆ T from the root r to v. Assume on the contrary that there
exists a vertex v ∈ M ∪ W such that v is not reachable from the root in the
directed graph induced by T . Since every vertex except the root has a unique
incoming edge, we can find a directed cycle C ⊆ T by traversing incoming edges
in the opposite direction from vertex v. Let V (C) be the set of vertices induced
by C. For any woman vertex w ∈ V (C), a man corresponding to her parent
vertex prt(w) is rejected by w in an arbitrary execution of the GS-algorithm.
Suppose that (prt(w), w) is a directed edge in C such that, the corresponding
rejection was the first occasion, during an execution of the GS-algorithm, that a
woman in V (C) rejected a man corresponding to her parent vertex. This rejection
took place because of a proposal of µ∗(w) to w. If w rejected prt(w) at the q-
th iteration, man µ∗(w) proposed to w at the q-th or an earlier iteration. Let
w′ ∈ V (C) be the woman with prt(w′) = µ∗(w). Then, man µ∗(w) prefers w′ to
w and thus w′ rejected µ∗(w) at the q′-th iteration with q′ < q. This contradicts
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with the assumption that the rejection corresponding to (prt(w), w) was the first
such rejection. ¤

Given a pair of preference lists (LM ,LW ), the outgoing spanning tree T of
the rooted suitor graph defined in the above proof is called the tree of second
favorites.

3. Problems and Main Result

In this paper, we consider the following four problems. The first problem is a
fundamental problem discussed in our paper6) and a special case of the other three
problems. The second problem deals with the case that preference lists of some
women are fixed, which plays an important role for solving the third problem.
The third and fourth problems correspond to the two problems described in
Section 1.

Problem Q1(LM , µ):
Input: A set of preference lists LM of men M over women W and a perfect

marriage µ.

Question: If there exists a set of preference lists LW of women W over men M

such that GS(LM ,LW ) = µ, then output LW. If not, say ‘none exists.’

Next, we consider a case with a perfect marriage µ and a set of preference lists
LW ′

of a given subset W ′ of women.

Problem Q2(LM , µ,LW ′
):

Input: A set of preference lists LM of men M over women W, a perfect marriage
µ, and a set of preference lists LW ′

of a (given) subset of women W ′ ⊆ W

over men M.

Question: If there exists a set of preference lists LW of W over men M such
that LW includes LW ′

and GS(LM ,LW ) = µ, then output LW. If not, say
‘none exists.’

The above problem gives an insight for solving the third problem described below.
We assume that preference lists of men, a partial marriage µ′, and preference lists
of unmatched women are given. We consider the problem of finding a cheating

strategy for a coalition of matched women such that the GS-algorithm produces
a perfect marriage with a particular mate in µ′ for each matched woman.

Problem Q3(LM , µ′,LW ′
):

Input: A set of preference lists LM of men M over women W, a partial marriage
µ′ and a set of preference lists LW ′

(over men M) of women W ′ unmatched
in µ′.

Question: If there exists a set of preference lists LW of W over men M such
that LW includes LW ′

and the perfect marriage GS(LM ,LW ) is an extension
of µ′, then output LW. If not, say ‘none exists.’

Lastly, we consider a problem of the existence of cheating strategy for coalition
W to achieve a given partial marriage.

Problem Q4(LM , µ′):
Input: A set of preference lists LM of men M over women W and a partial

marriage µ′.
Question: Is there a set of preference lists LW of W over men M such that the

perfect marriage GS(LM ,LW ) is an extension of µ′?

The aim of this paper is to show the following theorem.
Theorem 3.1 Problems Q1(LM , µ), Q2(LM , µ,LW ′

) and Q3(LM , µ′,LW ′
)

are polynomial time solvable. Problem Q4(LM , µ) is NP-complete.

4. Polynomial Time Solvability

In this section, we show that Problems Q1, Q2 and Q3 are polynomial time
solvable.

4.1 Polynomial Time Solvability of Problem Q1
Recently, we discussed Problem Q1(LM, µ) in6) and showed a necessary and

sufficient condition for the existence of preference lists LW of women with
GS(LM ,LW ) = µ. The following theorem also gives a necessary and sufficient
condition which is essentially the same as that obtained in6).

Theorem 4.1 Given an instance of Problem Q1(LM , µ), there exists a set
LW of preference lists of W over M such that GS(LM ,LW ) = µ if and only if
the rooted suitor graph G(LM , µ) has an outgoing spanning tree.
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The proof is omitted.

The above theorem directly implies that we can check the existence of prefer-
ence lists LW such that GS(LM ,LW ) = µ by searching the rooted suitor graph
G(LM , µ), which requires O(n2) time11). Algorithm Q2 appearing in the next
subsection also solves Problem Q1(LM , µ), since Problem Q1(LM , µ) is a special
case of Problem Q2(LM , µ,LW ′

).
4.2 Polynomial Time Solvability of Problem Q2
We propose a polynomial time algorithm for solving Problem Q2(LM , µ,LW ′

)
where LW ′

is a set of preference lists of a (given) subset of women W ′ ⊆ W over
men M.

Algorithm Q2
Step 1: Construct the suitor graph G(LM , µ) and the rooted suitor graph

G(LM , µ).
Step 2: For each woman w ∈ W , construct a set δ(w) of incoming edges of

woman vertex w in G(LM , µ).
Step 3: For each woman w′ ∈ W ′ with δ(w′) ̸= ∅, let prt(w′) be a man who is

the top favorite with w′ in the set {m ∈ M | (m,w) ∈ δ(w′)} with respect to
her preference list in LW ′

.

Step 4: For every woman w′ ∈ W ′ with δ(w′) ̸= ∅, delete edges of G(LM , µ) in
δ(w′) \ {(prt(w′), w′)} and obtain a directed graph G′.

Step 5: If G′ does not have an outgoing spanning tree, then output ‘none exists’
and stop. Else, let T be an outgoing spanning tree in G′.

Step 6: For each woman w ∈ W , we set prt(w) to the man m such that (m, w)
is the unique incoming edge in T . (Here we note that when w′ ∈ W ′ satisfies
δ(w′) ̸= ∅, prt(w′) defined in this step coincides with that defined in Step 3,
since w′ has a unique incoming edge in G′.) Construct preference lists LW of
women as follows.
(1) For each woman w′ ∈ W ′, we use her preference list in LW ′

.

(2) For each woman w ̸∈ W ′ with prt(w) = r, we construct a preference list
(a total order of men M) such that the most preferred man is µ(w).
(3) For each woman w ̸∈ W ′ with prt(w) ̸= r, we construct a preference list
(a total order of men M) of w such that woman w’s first choice is µ(w) and

her second choice is prt(w).
Step 7: If the given perfect marriage µ is stable with respect to the pairs of

preference lists (LM ,LW ), then output the preference list LW . Else, output
‘none exists.’

Theorem 4.2 Algorithm Q2 solves Problem Q2(LM , µ,LW ′
) correctly.

Proof. Consider the case that Q2(LM , µ,LW ′
) has a set of preference lists L̃W

of women such that L̃W includes LW ′
and µ = GS(LM , L̃W ). We show that

Algorithm Q2 outputs such a set of preference lists of women.
Lemma 2.1 implies that the rooted suitor graph G(LM , µ) has a tree T ∗

of second favorites (a specified outgoing spanning tree defined in the proof of
Lemma 2.1). Clearly from the definition of G′ obtained in Algorithm Q2, T ∗

is contained in the edge set of G′ and thus Algorithm Q2 does not terminate
at Step 5. Assume on the contrary that Algorithm Q2 terminates at Step 7,
because perfect marriage µ is not stable with respect to preference lists LM and
LW obtained in Step 6. Then µ has a blocking pair (m∗, w∗) ∈ M ×W . For any
woman w ̸∈ W ′, her mate µ(w) is her top favorite in LW and thus we have that
w∗ ∈ W ′. For any woman w′ ∈ W ′, her preference list in LW is the same as that
in LW ′

. Since L̃W includes LW ′
, the preference list of w′ ∈ W ′ in LW is also the

same as that in L̃W . Thus, the pair (m∗, w∗) is also a blocking pair of µ with
respect to the pair of preference lists (LM , L̃W ). Contradiction.

Next, consider the case that Algorithm Q2 produced a set of preference lists
LW . Then, we only need to show that the GS-algorithm applied to preference
lists LM and LW produces the given marriage µ. Let µ∗ be a perfect marriage
obtained by the GS-algorithm applied to the lists in LM and LW , i.e., we set
µ∗ = GS(LM ,LW ). In the following, we show that µ = µ∗.

Since Algorithm Q2 checked the stability of µ at Step 7, µ is a stable mar-
riage with respect to lists LM and LW . It is well-known that the GS-algorithm
produces the men-optimal marriage. Thus, for every man m ∈ M , either
µ∗(m) = µ(m) holds or m prefers µ∗(m) to µ(m). This implies that, if man
m proposed to woman w in an execution of the GS-algorithm, then the graph
G(LM , µ) includes a directed edge ((m,w) or (w,m)) between m and w.

Let T be an outgoing spanning tree obtained in Step 5. In the rest of this
proof, we show that µ = µ∗ by induction on heights of vertices defined by T. For
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any vertex i ∈ M ∪ W , h(i) denotes the height of i in T , i.e., h(i) is equal to
the length of the unique path from r to i in the tree induced by T . We define
h(r) = 0.

(1) Let i ∈ M ∪ W be an agent with h(i) = 1. This implies that i is a woman
vertex satisfying prt(i) = r. Clearly from the definition of the rooted suitor graph,
vertex i does not have any incoming edge in the suitor graph G(LM , µ) and has
a unique outgoing edge (i, µ(i)). Since man µ∗(i) proposed to i in an execution of
the GS-algorithm, the suitor graph G(LM , µ) has an edge between i and µ∗(i).
From the above, equality µ(i) = µ∗(i) is obtained.

(2) Assume that for any vertex j ∈ M ∪ W , h(j) = h′ yields µ(j) = µ∗(j). Let
i ∈ M ∪ W be a vertex satisfying h(i) = h′ + 1 ≥ 2.

(2-1) If h′ + 1 is an even number, i corresponds to a man, denoted by m ∈
M . Since man vertex m has a unique incoming edge (µ(m),m), µ(m) is the
parent vertex of m, whose height is h′. The induction hypothesis yields that
µ∗(µ(m)) = µ(µ(m)) = m. From the definition of marriage, µ∗(µ(m)) = m

implies that µ(m) = µ∗(m).

(2-2) When h′ + 1 is an odd number and i corresponds to a woman w ̸∈ W ′, we
denote w’s parent vertex prt(w) by m ∈ M , for simplicity. Since the rooted suitor
graph includes directed edge (m,w), man m strictly prefers w to µ(m). From the
induction hypothesis, µ∗(m) = µ(m) and thus man m proposed to woman µ(m)
in an execution of the GS-algorithm. Consequently, man m proposed to woman
w and w rejected m in an execution of the GS-algorithm. In the preference lists
LW , man m is w’s second choice. Since w rejected her second choice m, w’s mate
obtained in an execution of the GS-algorithm is her first choice µ(w). Thus,
we obtained the desired result that w’s mate obtained in an execution of the
GS-algorithm, denoted by µ∗(w), is µ(w).

(2-3) Lastly, consider the case that h′+1 is an odd number and i corresponds to a
woman w′ ∈ W ′. We denote her parent vertex prt(w′) by m′ ∈ M , for simplicity.
From induction hypothesis, µ∗(m′) = µ(m′) and thus man m′ proposed to woman
w′ and w′ rejected m′ in an execution of the GS-algorithm. From the definition
of G′, man m′ is the top favorite of w′ in the set {m ∈ M | (m,w′) ∈ δ(w′)}
with respect to her preference list in LW ′

. The rejection of m′ by w′ implies

that µ∗(w) satisfies two conditions (1) w′ strictly prefers µ∗(w′) to m′ and (2)
G(LM , µ) includes a directed edge between µ∗(w′) and w′. If G(LM , µ) includes
directed edge (µ∗(w′), w′), then (µ∗(w′), w′) ∈ δ(w′) and thus w′ strictly prefers
m′ to µ∗(w′), which contradicts with condition (1). Consequently, G(LM , µ)
includes directed edge (w′, µ∗(w′)) and thus we have µ∗(w′) = µ(w′). ¤

Since the complexity of every step in Algorithm Q2 is bounded by O(n2), the
total computational time is also bounded by O(n2).

When we solve Problem Q1(LM , µ), we do not need Steps 2-4 of Algorithm Q2,
since G′ is equivalent to the rooted suitor graph G(LM , µ). At Step 7, we only
need to output LW , since µ(w) is w’s first choice in LW and thus µ is always
stable with respect to the pair (LM ,LW ).

4.3 Polynomial Time Solvability of Problem Q3
Lastly, we show a technique to reduce Problem Q3(LM , µ′,LW ′

) to Problem
Q2(LM , µ,LW ′

) with a certain perfect marriage µ.

Given an instance of Problem Q3(LM , µ′,LW ′
), we construct a stable marriage

instance obtained by restricting to unmatched agents in µ′. More precisely, con-
struct the set M ′ of unmatched men and the set W ′ of unmatched women, first.
For each man m ∈ M ′, we construct a preference list of m from his list in LM by
deleting all the women not in W ′. For every woman w ∈ W ′, we also construct
her preference list from the given preference list in LW ′

similarly. We denote the
obtained preference lists of agents M ′ and W ′ by KM ′

and KW ′
, respectively. Let

N be the set of all the stable marriages defined on M ′ ∪ W ′ with respect to the
pair of preference lists (KM ′

,KW ′
). (We do not need to construct N explicitly.)

Consider the case that Problem Q3(LM , µ′,LW ′
) has a set of preference lists

LW of W over men M such that LW includes LW ′
and the perfect marriage

GS(LM ,LW ) is an extension of µ′. Let ν∗ be a perfect marriage on M ′ ∪ W ′

obtained from the perfect marriage GS(LM ,LW ) by restricting to agents M ′∪W ′.

Then, it is obvious that ν∗ is a stable marriage with respect to (KM ′
,KW ′

) i.e.,
ν∗ ∈ N . In the following, we show that ν∗ is easily obtained without a knowledge
of preference lists in LW of matched women W \ W ′.

Let us consider the suitor graph G(LM , µ′) defined by a given partial marriage
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µ′. For each woman w ∈ W , δ′(w) denotes the set of incoming edges of w in
G(LM , µ′). We define a subset N of stable marriages N by

N = {ν ∈ N | ∀w′ ∈ W ′,∀(m, w′) ∈ δ′(w′), w′ strictly prefers ν(w′) to m}.
We show that ν∗ ∈ N . For any woman w′ ∈ W ′, a man m with (m,w′) ∈ δ′(w′)
is rejected by w′, when we apply the GS-algorithm to the pair of lists (LM ,LW ).
Thus, for any pair (m, w′) ∈ δ′(w′) with w′ ∈ W ′, woman w′ strictly prefers
ν∗(w′) to m. Consequently, ν∗ ∈ N holds. Next, we show that N has a unique
minimal element with respect to a dominance relation defined by KW ′

. A stable
marriage ν1 ∈ N is said to dominate a stable marriage ν2 ∈ N , written ν1 ≽ ν2,
if every woman in W ′ has at least as good a mate in ν1 as she has in ν2 with
respect to KW ′

, i.e., every woman in W ′ prefers ν1 to ν2 or is indifferent between
them. A stable marriage ν ∈ N is called minimal, if {ν′ ∈ N | ν ≽ ν′} = {ν}
holds.

Lemma 4.3 The poset of stable marriages (N ,≽) has a unique minimal ele-
ment.
Proof. Assume that the poset (N ,≽) has a mutually distinct pair of minimal
stable marriages ν1 and ν2. It is well-known that N has a lattice structure and
there exists a stable marriage, denoted by ν3 ∈ N , in which each woman in W ′

receives the poorer of her mates in ν1 and ν2. Obviously, ν3 ∈ N holds. The
dominance relation ν1 ≽ ν3 and minimality of ν1 implies ν1 = ν3. Similarly, we
have ν2 = ν3. Thus, ν1 = ν2 holds giving a contradiction. ¤

The following theorem uniquely determines stable marriage ν∗.
Theorem 4.4 Assume that Problem Q3(LM , µ′,LW ′

) has a set of preference
lists LW of W over men M such that LW includes LW ′

and the perfect marriage
µ∗ = GS(LM ,LW ) is an extension of µ′. Let ν∗ be a marriage obtained from µ∗

by restricting to unmatched agents of µ′. Then ν∗ is the unique minimal element
of a poset (N ,≽).
Proof. Obviously, ν∗ is a stable marriage in N . We denote a unique minimal
element of the poset (N ,≽) by νmin and show that νmin = ν∗. Let µmin be the
perfect marriage on M ∪W obtained by forming the union of νmin and µ′. Then,
we only need to show that µmin = µ∗.

Recall that M ′ and W ′ denote the sets of unmatched men and women of µ′,

respectively. First, we show that µmin is a stable marriage with respect to the
pair of preference lists (LM ,LW ). Assume on the contrary that µmin is unstable.
Then µmin has a blocking pair (m∗, w∗) ∈ M × W.

( 1 ) Since νmin is a stable marriage with respect to (KM ′
,KW ′

), it is obvious
that (m∗, w∗) ̸∈ M ′ × W ′.

( 2 ) Both µ∗ and µmin are extensions of µ′ and thus we have (m∗, w∗) ̸∈ (M \
M ′) × (W \ W ′).

( 3 ) Consider the case that (m∗, w∗) ∈ M ′ × (W \ W ′). Every man m′ ∈ M ′

prefers νmin(m′) to ν∗(m′) or is indifferent between them, otherwise
(m′, ν∗(m′)) becomes a blocking pair of νmin. Thus, m∗ ∈ M ′ prefers
νmin(m∗) to ν∗(m∗) = µ∗(m∗). Since µ∗(w∗) = µmin(w∗), the pair (m∗, w∗)
is also a blocking pair of µ∗ giving a contradiction.

( 4 ) Consider the remaining case that (m∗, w∗) ∈ (M \M ′)×W ′. Since m∗ ̸∈ M ′

prefers w∗ to µmin(m∗) = µ′(m∗), the suitor graph G(LM , µ′) has a directed
edge (m∗, w∗) and thus (m∗, w∗) ∈ δ′(w∗). Then, the definition of N
implies that w∗ prefers νmin(w∗) = µmin(w∗) to m∗, which contradicts the
assumption that (m∗, w∗) is a blocking pair of µmin.

From the above discussion, µmin is a stable marriage with respect to (LM ,LW ).
If we assume µmin ̸= µ∗, there exists a man m′ ∈ M ′ satisfying µmin(m′) ̸=

µ∗(m′). Since every woman in W ′ prefers ν∗ to νmin or is indifferent between
them, m′ strictly prefers νmin(m′) = µmin(m′) to ν∗(m′) = µ∗(m′) (otherwise
(m′, ν∗(m′)) becomes a blocking pair of νmin). Then, µ∗ is not the men-optimal
marriage with respect to (LM ,LW ). This contradicts with the fact that the GS-
algorithm produces the men-optimal marriage. ¤

It is well-known that the poset (N ,≽) forms a distributive lattice, defined by a
‘rotation poset’ (see5) for example). By constructing the rotation poset, we can
find the unique minimal marriage of (N ,≽) in polynomial time. The required
computational effort is bounded by O(n4). In fact, we only need the set of all
the rotations and thus we can reduce the time complexity to O(n2) (details are
omitted).
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Then we can solve Problem Q3(LM , µ′,LW ′
) as follows.

Algorithm Q3
Step 1: Construct the suitor graph G(LM , µ′).
Step 2: Construct the sets of preference lists (KM ′

,KW ′
) from (LM ,LW ′

) by
restricting to unmatched agents of µ′.

Step 3: If N = ∅, then output ‘none exists’ and stop. Else, find the unique
minimal element νmin of N .

Step 4: Construct the perfect marriage µmin on M ∪ W by forming the union
of µ′ and νmin.

Step 5: Solve Problem Q2(LM , µmin,LW ′
) by Algorithm Q2.

Theorem 4.5 Algorithm Q3 correctly solves Problem Q3(LM , µ′,LW ′
).

Proof. Assume that Problem Q3(LM , µ′,LW ′
) has a set of preference lists

LW of W over men M such that LW includes LW ′
and the perfect marriage

GS(LM ,LW ) is an extension of µ′. Theorem 4.4 implies that GS(LM ,LW ) =
µmin. Thus, Algorithm Q2 applied to Problem Q2 (LM , µmin,LW ′

) at Step 5
outputs a desired solution.

The inverse implication is easy. If Algorithm Q2, executed at Step 5, produces
a set of preference lists LW of W over men M , then LW includes LW ′

and
GS(LM ,LW ) = µmin is an extension of µ′. ¤

5. NP-completeness of Problem Q4

In this section, we discuss the intractability of Problem Q4(LM , µ′).
Theorem 5.1 Problem Q4(LM , µ′) is NP-complete.
Here we describe the outline of our proof. The proof is by reduction from the

satisfiability problem (SAT) described as follows.
Satisfiability problem (SAT):
Input: A finite set X of Boolean variables and a collection C ⊆ 2X of clauses.
Question: Is there a satisfying truth assignment to X for C?

In the proof, we define sets of agents consisting of 2|C|+3|X| men and 2|C|+3|X|
women, a set of preference lists LM of men over women, and a partial marriage
µ′ with 2|C| + |X| pairs of mates, algorithmically.
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