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グラフの最小出次数最大化問題

朝 廣 　 雄 一†1 Jesper Jansson †2

宮 野 　 英 次†3 小 野 　 廣 隆†4

MaxMinO という無向グラフの向き付け問題の一種について考える．無向枝重みつ
きグラフの向き付けを与えることにより，重み付き出次数を定義する（枝重みは正整
数であるとする）．この問題は，グラフ中の最小重み付き出次数を最大化する問題で
ある．本研究ではまず，MaxMinO は枝重みを {1, 2} に限定し，かつ各頂点の（重
みなし）次数が高々3，さらにグラフが平面二部であるような場合でも強 NP 困難で
あり，P= NP でない限り，任意の定数 ε > 0 に対して多項式時間では 2 − ε 近似
不可能であることを示す．次にすべての枝重みが 1 である場合には，多項式時間で
解くことができることを示す．これにより，枝重みが wmin よりも大きい枝数が　
O(log n) であるときにも，多項式時間で解くことができる．さらに，この手法により
MaxMinO に対する単純な wmax/wmin 近似多項式時間アルゴリズムを得ることが
できる（wmax, wmin はそれぞれ枝重みの最大値，最小値). 最後に，入力グラフが
カクタスである場合にもMaxMinO は多項式時間で解くことができることを示す．

On Graph Orientation
to Maximize the Minimum Weighted Outdegree

Yuichi Asahiro ,†1 Jesper Jansson ,†2 Eiji Miyano †3

and Hirotaka Ono†4

We study a new variant of the graph orientation problem called MaxMinO
where the input is an undirected, edge-weighted graph and the objective is to
assign a direction to each edge so that the minimum weighted outdegree (taken
over all vertices in the resulting directed graph) is maximized. All edge weights
are assumed to be positive integers. First, we prove that MaxMinO is strongly
NP-hard and cannot be approximated within a ratio of 2− ε for any constant
ε > 0 in polynomial time unless P=NP, even if all edge weights belong to {1, 2},
every vertex has degree at most three, and the input graph is bipartite or pla-
nar. Next, we show how to solve MaxMinO exactly in polynomial time for the
special case in which all edge weights are equal to 1. This technique gives us a
simple polynomial-time wmax

wmin
-approximation algorithm for MaxMinO where

wmax and wmin denote the maximum and minimum weights among all the
input edges. Furthermore, we also observe that this approach yields an exact
algorithm for the general case of MaxMinO whose running time is polynomial
whenever the number of edges having weight larger than wmin is at most loga-
rithmic in the number of vertices. Finally, we show that MaxMinO is solvable
in polynomial time if the input is a cactus graph.

1. Introduction

An orientation of an undirected graph is an assignment of a direction to each of its

edges. Graph orientation is a well-studied area of graph theory and combinatorial opti-

mization and thus a large variety of objective functions have been considered so far. The

objective function of the present paper is the maximization of the minimum outdegree.

It is closely related to the classic job scheduling on parallel machines. In the parallel

machine scheduling scenario, our problem can be regarded as the restricted assignment

variant of the machine covering problem18), where its goal is to assign jobs to parallel

machines such that each machine is covered as much as possible. In the following, we

first define several terminologies and our objective function, then describe related work,

and summarize our results.

Problem definition. Let G = (V, E, w) be a given undirected, edge-weighted graph

with vertex set V and edge set E whose weights are numbers specified by a function w.

An orientation Λ of G is defined to be any function on E of the form Λ : {u, v} 7→
{(u, v), (v, u)}, i.e., an assignment of a direction to each undirected edge {u, v} in E.

Given an orientation Λ of G, the weighted outdegree dΛ(v) of a vertex v ∈ V is defined
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as the total weight of all edges leaving v, i.e., dΛ(v) =
∑

{u,v}∈E:
Λ({u,v})=(v,u)

w({u, v}), and

the minimum weighted outdegree δΛ(G) is defined by δΛ(G) = minv∈V {dΛ(v)}.
In this paper we deal with the problem of finding an orientation of the input graph

such that the minimum weighted outdegree is maximum. We call this problem Maxi-

mum Minimum Weighted Outdegree Graph Orientation Problem (MaxMinO for short):

The input is an undirected, edge-weighted graph G = (V, E, w) with w : E → Z+, where

Z+ denotes the set of positive integers, and the objective is to find an orientation Λ∗

of G which maximizes δΛ(G) over all possible orientations Λ of G. Such an orientation

is called a max-min orientation of G, and the corresponding value δΛ∗(G) is denoted

by OPT (G). The special case of MaxMinO where all edge weights of the input graph

are equal to 1 is referred to as unweighted MaxMinO.

Throughout the paper, we use the following notations: n = |V |, m = |E|, and

W =
∑

e∈E
w(e) for the input G. Furthermore, wmax and wmin denote the maximum

and minimum weights, respectively, among all edges in E. For any v ∈ V , the (unori-

ented) weighted degree of v, denoted by d(v), is the sum of all weights of edges incident

to v, and ∆ = maxv∈V {d(v)} is the maximum (unoriented) weighted degree among all

vertices in G. Also for a (fixed) v ∈ V , we call |{{u, v} ∈ E}| (i.e., the number of edges

incident to v) the (unoriented) unweighted degree of v, and denote it by deg(v). We

also call maxv∈V deg(v) the (unoriented) unweighted degree of G, both of which will be

used to focus on the topological structure of the graph.

We say that an algorithm A is a σ-approximation algorithm for MaxMinO or that

A’s approximation ratio is at most σ, if OPT (G) ≤ σ·A(G) holds for any input graph G,

where A(G) is the minimum weighted outdegree in the orientation returned by A on

input G.

Related work. MaxMinO studied in the current work is closely related to the re-

stricted assignment variant of the machine covering problem, which is often called the

Santa Claus problem4),5),8),12): Santa Claus has m gifts (corresponding to jobs, and

to edges in MaxMinO) that he wants to distribute among n kids (corresponding to

machines, and to vertices in MaxMinO). Some gift may be worth $100 but another

may be not so expensive, and some kids do not want some of the gifts whatsoever

(i.e., its value is 0 for the kids). The goal of Santa Claus is to distribute the gifts in

such a way that the least lucky kid is as happy as possible. In addition, MaxMinO

has the following restriction (which might be strong and somehow strange in the Santa

Claus scenario): Every gift is of great value only to exactly two kids and thus it must

be delivered to one of them. For the Santa Claus problem, Golovin12) provided an

O(
√

n)-approximation algorithm for the restricted case where the value of each gift be-

longs to {1, k} for some integer k. Bansal and Sviridenko4) considered the general value

case and showed that a certain linear programming relaxation can be used to design

an O(log log m/ log log log m)-approximation algorithm, while Bezakova and Dani5) al-

ready showed that the general case is NP-hard to approximate within ratios smaller

than 2.

Another objective function studied for the graph orientation problem is that of min-

imizing the maximum weighted outdegree (MinMaxO), also known as Graph Balanc-

ing1)–3),7),13),17): Given an undirected graph with edge weights, we are asked to assign

a direction to each edge so that the maximum outdegree is minimized. It is obvious

that MinMaxO is generally NP-hard. Asahiro et al.2) showed that it is still weakly

NP-hard for outerplanar graphs, and strongly NP-hard for P4-bipartite graphs. Fortu-

nately, however, they also showed2) that MinMaxO is tractable if the input is limited to

trees or even to cactus graphs. Note that the class of cactus graphs is a maximal subset

of the class of outerplanar graphs and the class of P4-bipartite graphs, and a minimal

superset of the class of trees. Very recently, Ebenlendr et al.7) designed a polynomial-

time 1.75-approximation algorithm for the general weighted case, and Asahiro et al.1)

showed that MinMaxO can be approximated within an approximation ratio of 1.5 in

polynomial-time if all edge weights belong to {1, 2}. As for inapproximability, it is

known that MinMaxO is NP-hard to approximate within approximation ratios smaller

than 1.5 even for this restricted {1, 2}-case1),7).

Our results. In this paper we study the computational complexity and

(in)approximability of the machine covering problem from the viewpoint of the graph

based problem, i.e., graph orientation. In Section 2, we prove that MaxMinO is strongly

NP-hard and cannot be approximated within a ratio of min{2, wmax
wmin

}−ε for any constant
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ε > 0 in polynomial time unless P=NP, even if all edge weights belong to {wmin, wmax},
every vertex has unweighted degree at most three, and the input graph is bipartite and

planar. As mentioned above, although MaxMinO imposes a strong restriction on the

Santa Claus problem, unfortunately it is still hard.

Section 3 first considers the unweighted MaxMinO problem. We can obtain an opti-

mal orientation algorithm which runs in O(m3/2 · log m · log2 ∆) time for the special case

in which all edge weights are equal to 1. Here, it is important to note that Golovin12) al-

ready claimed that the unweighted case of MaxMinO (more precisely, the Santa Claus

problem) can be solved in polynomial time, but no proof of this claim has ever appeared

as far as the authors know. Our contribution here is to provide the non-trivial, efficient

running time with its explicit proof. Then, we observe that our approach yields an exact

algorithm for the general case of MaxMinO whose running time is polynomial when-

ever the number of edges having weight larger than wmin is at most logarithmic in the

number of vertices. In Section 4, this efficient algorithm for the unweighted MaxMinO

also gives us a simple wmax
wmin

-approximation algorithm running in the same time for gen-

eral (weighted) case of MaxMinO, i.e., it always outputs an orientation Λ′ of G which

satisfies OPT (G) ≤ wmax
wmin

· δΛ′(G). This simple approximation algorithm is best possi-

ble for the case that the weights of edges belong to {wmin, wmax} with wmax ≤ 2wmin

since the lower bound of approximation ratios is min{2, wmax
wmin

} described above.

In the field of combinatorial optimization, much work is often devoted to seek a subset

of instances that is tractable and as large as possible. For example, if the input graph

G is a tree, then OPT (G) is always 0 because the number of vertices is larger than the

number of edges, and in any orientation of G, at least one vertex must have no outgo-

ing edges. Also, for the case of cycles, MaxMinO is quite trivial since the clockwise or

counterclockwise orientation along the cycle gives us the optimal value of wmin. On the

other hand, the class of planar graphs is too large to allow a polynomial-time optimal

algorithm (under the assumption of P 6=NP). Hence, our goal in Section 5 is to find

a polynomially solvable subset between trees and planar graphs. Then, we show that

MaxMinO remains in P even if we make the set of instances so large that it contains

the class of cactus graphs.

2. Hardness results

In this section, we show the MaxMinO problem is strongly NP-hard even if all the

edge weights belong to {wmin, wmax} for any integers wmin < wmax and the input

graph is bipartite and planar. The proof is by a reduction from At-Most-3-SAT(2L).

At-Most-3-SAT(2L) is a restriction of 3-SAT where each clause contains at most

three literals and each literal (not variable) appears at most twice in a formula. It can

be easily proved that At-Most-3-SAT(2L) is NP-hard by using problem [LO1] on p.

259 of9).

First, we pick any fixed integers for wmin and wmax such that wmin < wmax. Given

a formula φ of At-Most-3-SAT(2L) with n variables {v1, . . . , vn} and m clauses

{c1, . . . , cm}, we then construct a graph Gφ including gadgets that mimic (a) variables

and (b) clauses. To define these, we prepare a gadget consisting of a cycle of 3 vertices

and 3 edges (i.e., a triangle) where each edge of the cycle has weight wmax. We call this

a triangle gadget. Apart from these triangle gadgets, we define gadgets for (a) variables

and (b) clauses: (a) Each variable gadget corresponding to a variable vi consists of two

vertices labeled by vi and vi and one edge {vi, vi} between them. The weight of {vi, vi}
is wmax. By the definition of At-Most-3-SAT(2L), some literals (say vi for example)

do not occur (or may occur only once). In such a case, we attach a triangle gadget

to the variable gadget by adding two edges (one edge) of weight wmin that connects

vertex vi and two different vertices (one vertex) of the triangle gadget. (b) Each clause

gadget consists of one representative vertex labeled by cj , corresponding to clause cj of

φ, and a triangle gadget connected to this cj-vertex by an edge of weight wmin. The

representative vertex cj is also connected to at most three vertices in the literal gadgets

that have the same labels as the literals in the clause cj , by edges of weight wmin. For

example, if c1 = x ∨ y appears in φ, then vertex c1 is connected to vertices x and y.

(See Figure 1.) We have the following lemma, though we omit the proof.

Lemma1 For the reduced graph Gφ, the following holds:

(i) OPT (Gφ) ≥ min{2wmin, wmax} if φ is satisfiable.

(ii) OPT (Gφ) ≤ wmin if φ is not satisfiable.

From Lemma 1, we immediately obtain the following theorem.
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Fig.1 Reduction from At-Most-3-SAT(2L) (Solid and dotted edges have weight wmax and wmin,

respectively.)

Theorem2 MaxMinO is strongly NP-hard even if the edge weights are in

{wmin, wmax} (wmin < wmax). ˜
Also the (un)satisfiability gap of Lemma 1 yields the following theorem.

Theorem3 Even if the edge weights are in {wmin, wmax}, MaxMinO has

no pseudo-polynomial time algorithm whose approximation ratio is smaller than

min{2, wmax
wmin

}, unless P = NP. ˜
Similarly, we can show the NP-hardness of MaxMinO for planar bipartite graphs

by almost the same reduction as the above from Monotone-Planar-One-In-Three-

3-SAT(2L), which is a variant of At-Most-3-SAT(2L), having both the planarity14)

and the monotonicity10).

One-In-Three-3-SAT itself is a variant of 3-SAT problem which asks whether there

exists a truth assignment to the variables so that each clause has exactly one true literal

(and thus exactly two false literals)16). The reason why we use One-In-Three-3-SAT

instead of At-Most-3-SAT is to bound the unweighted degrees of the constructed

graphs. While the above reduction from At-Most-3-SAT(2L) guarantees that the

unweighted degrees of constructed graphs are bounded by four, we can bound the un-

weighted degrees of constructed graph from One-In-Three-3SAT(2L) by three. In the

new reduction, we do not attach triangle gadgets to clause vertices, which makes the

unweighted degrees of clause vertices three, and One-In-Three satisfiability guarantees

that each clause vertex has two outgoing edges in an optimal MaxMinO solution.

The planarity means that the graph constructed from an instance CNF, in which two

vertices corresponding to a variable and a clause are connected by an edge if the vari-

able occurs (positively or negatively) in the clause, is planar. The monotonicity means

that in an input CNF formula each clause contains either only positive literals or only

negative literals. Planar-One-In-Three-3-SAT is shown to be NP-complete in15).

By applying an operation used in2), we can transform an instance of Planar-One-

In-Three-3-SAT into one of Monotone-Planar-One-In-Three-3-SAT. Moreover,

by applying another operation used in the same paper2), we can transform an in-

stance of Monotone-Planar-One-In-Three-3-SAT into Monotone-Planar-One-

In-Three-3-SAT(2L). This implies that the constructed graph is planar and bipartite

and its unweighted degree is at most three. (To preserve the bipartiteness, we need to

use bipartite gadgets, e.g., square gadgets, instead of triangle gadgets.)

Theorem4 MaxMinO is strongly NP-hard even if the edge weights are in

{wmin, wmax} for integers wmin < wmax and the input graph is bipartite and planar in

which the unweighted degree is bounded by three. ˜
Theorem5 Even if the edge weights are in {wmin, wmax} and the input graph is

bipartite and planar in which the unweighted degree is bounded by three, MaxMinO

has no pseudo-polynomial time algorithm whose approximation ratio is smaller than

min{2, wmax
wmin

}, unless P=NP. ˜
This result is tight in a sense, because if the unweighted degree of the input graph

is bounded by two (i.e., cycles or trees), obviously MaxMinO can be solved in linear

time.

3. An exact algorithm for unweighted cases

MaxMinO is closely related to the problem of computing a maximum flow in a flow

network with positive edge capacities. Indeed, maximum-flow-based techniques have

been used in3) to solve the analogous problem of computing an edge orientation which

minimizes the maximum outdegree of a given unweighted graph (MinMaxO) in poly-

nomial time. In this section, we extend the results of3) by showing how a maximum
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Fig.2 An example of G

flow-algorithm can be used to efficiently solve unweighted MaxMinO.

For any input graph G = (V, E) to unweighted MaxMinO, let NG = (VG, EG) be the

directed graph with vertex set VG and edge set EG defined by:

VG = E ∪ V ∪ {s, t},
EG =

{
(s, e) | e ∈ E

}
∪

{
(v, t) | v ∈ V

}
∪{

(e, vi), (e, vj) | e = {vi, vj} ∈ E
}
,

and for any integer q ∈ {0, 1, . . . , ∆}, let NG(q) = (VG, EG, capq) be the flow network

obtained by augmenting NG with edge capacities capq, where:

capq(a) =





1, if a = (s, e) with e ∈ E;

1, if a = (e, v) with e ∈ E, v ∈ V ;

q, if a = (v, t) with v ∈ V.

See Figure 2 and Figure 3 for an example of the original graph G and the corresponding

network NG, respectively.

Let F (q) be an integral maximum directed flow?1 from vertex s to vertex t in NG(q).

Then, for each e = {vi, vj} ∈ E, either zero or one unit of flow in F (q) passes through

the corresponding vertex e in VG, and thus at most one of the two edges (e, vi) and (e, vj)

is assigned one unit of flow. This induces an orientation ΛF (q) of G based on F (q) as fol-

lows: If the flow in F (q) from vertex e to vertex vi equals 1 then set ΛF (q)(e) := (vi, vj);

else if the flow in F (q) from e to vj equals 1 then set ΛF (q)(e) := (vj , vi); else set ΛF (q)(e)

arbitrarily.

?1 Since all edge capacities are integers, we may assume by the integrality theorem (see, e.g.,6))

that the flow along each edge in F (q) found by the algorithm in11) is an integer.

vertex setedge set

cap=1

s t

cap=1

cap=q

v1

v2

v4

v3

v5

e1

e3

e4

e5

e6

e7

e2

Fig.3 Network NG constructed from G of Figure 2

Let f(q) denote the value of a maximum directed flow from vertex s to vertex t

in NG(q). Then:

Lemma6 For any q ∈ {0, 1, . . . , ∆}, f(q) ≤ q · n.

Proof. The sum of all edge capacities of edges leading into t in NG(q) is q · n. Clearly,

the value of the maximum flow in NG(q) cannot be larger than this sum. ˜
Lemma7 For any q ∈ {0, 1, . . . , ∆}, f(q) = q · n if and only if OPT (G) ≥ q.

Proof.

=⇒) Suppose that f(q) = q · n and consider the maximum flow F (q) defined above.

For each v ∈ V , exactly q units of flow leave the corresponding vertex v in VG because

the edge capacity of (v, t) is q and there are n such vertices. This implies that q units of

flow enter v, which is only possible if there are q edges of the form (e, v) in EG that have

been assigned one unit of flow each. Therefore, the induced orientation ΛF (q) ensures

that dΛF (q)(v) ≥ q for every v ∈ V , which yields OPT (G) ≥ q.

⇐=) Suppose that OPT (G) ≥ q and let Λ be a max-min orientation of G. Let F ′ be

the following directed flow from s to t in NG(∆):
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F ′(a)=





1, if a = (s, e) with e ∈ E;

1, if a = (e, vi) with e = {vi, vj} ∈ E and Λ(e) = (vi, vj);

0, if a = (e, vi) with e = {vi, vj} ∈ E and Λ(e) = (vj , vi);

dΛ(v), if a = (v, t) with v ∈ V.

For every v ∈ V , the flow in F ′ along the edge (v, t) inNG(∆) is dΛ(v) ≥ OPT (G) ≥ q.

By reducing each such edge flow to q, one obtains a directed flow which obeys the

(stricter) edge capacity constraints of the flow network NG(q) and has flow value n · q.
Thus, there exists a maximum directed flow from s to t in NG(q) with value q · n, so

f(q) ≥ q · n. It follows from Lemma 6 that f(q) = q · n. ˜

Lemmas 6 and 7 suggest the algorithm for unweighted MaxMinO named Algo-

rithm Exact-1-MaxMinO.

1: Construct NG.

2: Use binary search on q in the interval {0, 1, . . . , ∆} to find the integer q such that

f(q) = q · n and f(q + 1) < (q + 1) · n.

3: Compute F (q) as a maximum directed flow from s to t in NG(q).

4: Return ΛF (q).

Fig.4 Algorithm Exact-1-MaxMinO

Theorem8 Exact-1-MaxMinO solves unweighted MaxMinO in O(m3/2 · log m ·
log2 ∆) time. ˜
Proof. The correctness of Exact-1-MaxMinO is guaranteed by Lemmas 6 and 7. For

any q ∈ {0, 1, . . . , ∆}, to compute a maximum flow in the flow network NG(q) takes

O(m3/2 · log m · log ∆) time with the algorithm of Goldberg and Rao11) because NG(q)

contains m+n+2 = O(m) vertices and 3m+n = O(m) edges and the capacity of each

edge in NG(q) is upper-bounded by ∆. Algorithm Exact-1-MaxMinO can therefore be

implemented to run in O(m3/2 · log m · log2 ∆) time. ˜

Finally, we outline how Exact-1-MaxMinO can be applied to solve weighted

MaxMinO. Let X be the set of all edges in E with weight larger than wmin. First

modify the flow network NG(q) to set capq(a) = dw(e)/wmine. for every edge a ∈ EG

of the form a = (s, e). Then, run Exact-1-MaxMinO a total of 2|X| times while testing

all possible ways of setting the capacity of exactly one of (e, vi) and (e, vj) in NG(q)

to w(e) and the other to 0 for each e ∈ X, using binary search on q in the interval

{0, 1, . . . , dW/ne}, and select the best resulting orientation. The asymptotic running

time becomes the same as that of Exact-1-MaxMinO multiplied by 2|X| and with an

increase due to the larger interval for the binary search on q and the edge capacities

being upper-bounded by max{wmax, W/n} instead of ∆.

Theorem9 Weighted MaxMinO can be solved in O(m3/2 · log m · log(wmax+W/n) ·
log(W/n) · 2|X|) time, where X = {e ∈ E | w(e) > wmin}.

Corollary1 If |X| = O(log n) then weighted MaxMinO can be solved in polynomial

time. ˜

4. A simple approximation algorithm for general cases

Here, we prove that ignoring the edge weights of the input graph and applying Exact-1-

MaxMinO on the resulting unweighted graph immediately yields a wmax
wmin

-approximation

algorithm for the general case of the problem. The algorithm is named Approximate-

MaxMinO and is listed in Figure 5.

1: Let G′ be the undirected graph obtained from G by replacing the weight of every

edge by 1.

2: Apply Algorithm Exact-1-MaxMinO on G′ and let Λ′ be the obtained orientation.

3: Return Λ′.
Fig.5 Algorithm Approximate-MaxMinO

Theorem10 Approximate-MaxMinO runs in O(m3/2 · log m · log2 ∆) time and is a
wmax
wmin

-approximation algorithm for MaxMinO.

Proof. The asymptotic running time of Algorithm Approximate-MaxMinO is the same

as that of Exact-1-MaxMinO.

To analyze the approximation ratio, observe that δΛ(G) ≥ wmin · δΛ(G′) for any

orientation Λ of G because the weight of any edge in G is at least wmin times larger
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than its weight in G′. Similarly, wmax · δΛ(G′) ≥ δΛ(G) for any orientation Λ of G.

Now, let Λ′ be the optimal orientation for G′ returned by Approximate-MaxMinO

and let Λ∗ be an optimal orientation for G. Note that δΛ′(G
′) ≥ δΛ∗(G

′). Thus,

δΛ′(G) ≥ wmin · δΛ′(G
′) ≥ wmin · δΛ∗(G

′) ≥ wmin
wmax

· δΛ∗(G) = wmin
wmax

·OPT (G). ˜

5. An exact algorithm for cactus graphs

In this section, we present a polynomial time algorithm which obtains optimal ori-

entations for cactus graphs. A graph is a cactus if every edge is part of at most one

cycle. To this end, we introduce vertex weight αG(v) for each vertex v in a graph G

which is considered as 0 in the input graph (we omit the subscript G of αG(v) if it is

apparent). Here we define the notion of weighted outdegree for a vertex in a vertex

and edge weighted graph. The weighted outdegree dΛ(v) of a vertex v is defined as the

weight of v itself plus the total weight of outgoing arcs of v, i.e.,

dΛ(v) = α(v) +
∑

{u,v}∈E:
Λ({u,v})=(v,u)

w({u, v}).

In a cactus graph, a vertex in a cycle is a gate if it is adjacent to any vertex that does

not belong to the cycle. Note that the unweighted degree of a gate is at least three. As

for the number of gates in a cycle, the following is known:

Proposition11 (Proposition 2 in2)) In a cactus graph G in which deg(v) ≥ 2

for every vertex v, there always exists a cycle with at most one gate.

The main part of the proposed algorithm Exact-Cactus-MaxMinO is shown in Figures 6

and 7, which solves the decision version of the problem MaxMinO: Given a number

K, this problem asks whether there exists an orientation whose value is at least K. We

can develop an algorithm for the original problem MaxMinO by using this algorithm

O(log ∆) times in a binary search manner on optimal value, which is upper-bounded

by ∆.

The correctness of Exact-Cactus-MaxMinO is based on the following property on op-

timal orientations for two graphs.

Proposition12 Consider two graphs G and G′ that differ only on their vertex

weights. If αG(v) ≤ αG′(v) for every vertex v, then OPT (G) ≤ OPT (G′) holds. ˜
Theorem13 Given a cactus graph G and a target K, Exact-Cactus-MaxMinO out-

puts an orientation Λ such that δΛ(G) ≥ K if such an orientation exists, in polynomial

time. ˜
From Theorem 13, we can solve MaxMinO for cactus graphs in polynomial time by

using Exact-Cactus-MaxMinO as an engine of the binary search.
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1: repeat

2: For a vertex v,

3: if α(v) + d(v) < K then

4: output No and halt.

5: else if deg(v) = 1 then

6: (let its connecting edge be e = {v, u})
7: if α(v) < K then

8: Λ(e) := (v, u)

9: else

10: Λ(e) := (u, v) and increase α(u) by w(e)

11: end if

12: Remove v and e.

13: else if deg(v) = 2 then

14: (let e1 = {p, v} and e2 = {v, q})
15: if α(v) + w(e1) < K and α(v) + w(e2) < K then

16: Λ(e1) := (v, p) and Λ(e2) := (v, q). Remove v, e1, and e2.

17: else if α(v) + w(e1) < K and α(v) + w(e2) ≥ K then

18: Λ(e1) := (p, v) and Λ(e2) := (v, q) and also increase α(p) by w(e1). Remove

v, e1, and e2.

19: end if

20: end if

21: until No vertex v satisfies either one of the above conditions

Fig.6 Algorithm Exact-Cactus-MaxMinO
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22: for all C := 〈v0, v1, · · · , v` = v0〉 that has at most one gate do

23: if C does not have a gate then

24: Λ({vi, vi+1}) := (vi, vi+1) for 0 ≤ i ≤ `− 1. Remove C.

25: else

26: Let v0 be the gate.

27: if there exists a vertex vj , j 6= 0 satisfying α(vj) ≥ K in C then

28: Assign Λ({vi, vi+1}) := (vi, vi+1) for 0 ≤ i ≤ j − 1 and Λ({vi, vi+1}) :=

(vi+1, vi) for j ≤ i ≤ `− 1. Increase α(v0) by w({v0, v1}) + w({v0, v`−1}).
29: else

30: If w({v0, v1}) > w({v0, v`−1}) then assign Λ({vi, vi+1}) := (vi, vi+1) for

0 ≤ i ≤ ` − 1 and increase α(v0) by w({v0, v1}), otherwise Λ({vi, vi+1}) :=

(vi+1, vi) for 0 ≤ i ≤ `− 1 and increase α(v0) by w({v0, v`−1}).
31: end if

32: Remove C except the gate v0.

33: end if

34: end for

35: if the graph is empty then

36: output Λ and halt.

37: else

38: go back to line 1.

39: end if

Fig.7 Algorithm Exact-Cactus-MaxMinO(cont.)

ported by KAKENHI (No. 18700014, 18700015, 20500017 and 21680001).
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