Vo0l.2009-AL-124 No.7
oooooooooo 2009/5/11

IPSJ SIG Technical Report

ooooboogoooood

Ooooaot Jesper Jansson 2
ODoooof® ooooaof

MaxMINO 000000000 0DO0O0O0O0OO0OO0ODOO0OO00OO0OO0O0O0
gdoooooooooOo0o0ooooooooooooooooooobobooOoOog
goooooooboboooooooobobooooooooOoboOoOoOoOooOoDOboOoOoo
00000000D000MAXMINO OOOOD {1,2} 0000000000000
goooo0oooosoooboO0oO0oO0O0oOoOoOoOO0O0bOOoOOO0OO0O0O0O0 NPOOO
O00OP=NPOOOOOOODOOOO e>OO00000000000 2—e00
gooo0oobo0oooooo0o0ooOo0o0oObO0o01100000000D00000O0
0000000000o0ooooo0o0o0oo0ob0000nt wyy, 0000000000
O(logn) 0000000000 ODODOO0OOODO0OOOOODOOOOOOODOOOODO
MAXMINO 0000000 wmaz/wmn 00000000000000O0OOOO
0000 wmaz, wmin 0000000000000000). 0O00O000O0O0DOO
00000000000 MaxMINOOOOOOOOOODOOOODOODOODOO

On Graph Orientation
to Maximize the Minimum Weighted Outdegree

YuicHl ASAHIRO ,T1 JESPER JaNSsoN T2 Eur Mivano 3
and HIROTAKA ONOT*

We study a new variant of the graph orientation problem called MAXMINO
where the input is an undirected, edge-weighted graph and the objective is to
assign a direction to each edge so that the minimum weighted outdegree (taken
over all vertices in the resulting directed graph) is maximized. All edge weights
are assumed to be positive integers. First, we prove that MAXMINO is strongly
NP-hard and cannot be approximated within a ratio of 2 — ¢ for any constant
€ > 0 in polynomial time unless P=NP, even if all edge weights belong to {1, 2},
every vertex has degree at most three, and the input graph is bipartite or pla-
nar. Next, we show how to solve MAXMINO exactly in polynomial time for the
special case in which all edge weights are equal to 1. This technique gives us a
simple polynomial-time me -approximation algorithm for MAXMINO where

min

Wmaz and Wy, denote the maximum and minimum weights among all the
input edges. Furthermore, we also observe that this approach yields an exact
algorithm for the general case of MAXMINO whose running time is polynomial
whenever the number of edges having weight larger than wy,;, is at most loga-
rithmic in the number of vertices. Finally, we show that MAXMINO is solvable
in polynomial time if the input is a cactus graph.

1. Introduction

An orientation of an undirected graph is an assignment of a direction to each of its
edges. Graph orientation is a well-studied area of graph theory and combinatorial opti-
mization and thus a large variety of objective functions have been considered so far. The
objective function of the present paper is the maximization of the minimum outdegree.
It is closely related to the classic job scheduling on parallel machines. In the parallel
machine scheduling scenario, our problem can be regarded as the restricted assignment
variant of the machine covering problem®®, where its goal is to assign jobs to parallel
machines such that each machine is covered as much as possible. In the following, we
first define several terminologies and our objective function, then describe related work,

and summarize our results.

Problem definition. Let G = (V, E,w) be a given undirected, edge-weighted graph
with vertex set V' and edge set E whose weights are numbers specified by a function w.
An orientation A of G is defined to be any function on E of the form A : {u,v} —
{(u,v), (v,u)}, i.e., an assignment of a direction to each undirected edge {u,v} in E.

Given an orientation A of G, the weighted outdegree da(v) of a vertex v € V' is defined

11 00000000000000000Department of Information Science, Kyushu Sangyo University,
Higashi-ku, Fukuoka 813-8503, Japan. Email: asahiro@is.kyusan-u.ac.jp

t2 00 000 0O OOchanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan. Email: Jes-
per.Jansson@ocha.ac.jp

13000000000 000000000000000000, Department of Systems Design and
Informatics, Kyushu Institute of Technology, Ilizuka, Fukuoka 820-8502, Japan. Email:
miyano@ces.kyutech.ac.jp

140000000 DO0O0O0DDO0OO0DO 00000, Department of Informatics, Kyushu University,
Nishi-ku, Fukuoka 819-0395, Japan. Email: ono®csce.kyushu-u.ac.jp

(© 2009 Information Processing Society of Japan

gooooboooag
IPSJ SIG Technical Report

as the total weight of all edges leaving v, i.e., da(v) = Y, (uwier: w({u,v}), and
the minimum weighted outdegree o (G) is defined by 6A(G/)\({:uyum}i);i:;){d,\ (v)}.

In this paper we deal with the problem of finding an orientation of the input graph
such that the minimum weighted outdegree is maximum. We call this problem Maxi-
mum Minimum Weighted Outdegree Graph Orientation Problem (MAXMINO for short):
The input is an undirected, edge-weighted graph G = (V, E,w) with w : E — Z%, where
7" denotes the set of positive integers, and the objective is to find an orientation A*
of G which maximizes d(G) over all possible orientations A of G. Such an orientation
is called a maz-min orientation of G, and the corresponding value d=(G) is denoted
by OPT(G). The special case of MAXMINO where all edge weights of the input graph
are equal to 1 is referred to as unweighted MAXMINO.

Throughout the paper, we use the following notations: n = |V|, m = |E|, and
W = ZGGE w(e) for the input G. Furthermore, wmaz and wmin denote the maximum
and minimum weights, respectively, among all edges in E. For any v € V, the (unori-
ented) weighted degree of v, denoted by d(v), is the sum of all weights of edges incident
to v, and A = max,ev{d(v)} is the maximum (unoriented) weighted degree among all
vertices in G. Also for a (fixed) v € V, we call [{{u,v} € E}| (i.e., the number of edges
incident to v) the (unoriented) unweighted degree of v, and denote it by deg(v). We
also call maxyev deg(v) the (unoriented) unweighted degree of G, both of which will be
used to focus on the topological structure of the graph.

We say that an algorithm A is a o-approximation algorithm for MAXMINO or that
A’s approzimation ratio is at most o, if OPT(G) < o-A(G) holds for any input graph G,
where A(G) is the minimum weighted outdegree in the orientation returned by A on

input G.

Related work. MAXMINO studied in the current work is closely related to the re-
stricted assignment variant of the machine covering problem, which is often called the

Santa Claus problem®:%)8):12);

Santa Claus has m gifts (corresponding to jobs, and
to edges in MAXMINO) that he wants to distribute among n kids (corresponding to
machines, and to vertices in MAXMINO). Some gift may be worth $100 but another

may be not so expensive, and some kids do not want some of the gifts whatsoever

Vo0l.2009-AL-124 No.7
2009/5/11

(i-e., its value is O for the kids). The goal of Santa Claus is to distribute the gifts in
such a way that the least lucky kid is as happy as possible. In addition, MAXMINO
has the following restriction (which might be strong and somehow strange in the Santa
Claus scenario): Every gift is of great value only to exactly two kids and thus it must

12) provided an

be delivered to one of them. For the Santa Claus problem, Golovin
O(y/n)-approximation algorithm for the restricted case where the value of each gift be-
longs to {1, k} for some integer k. Bansal and Sviridenko® considered the general value
case and showed that a certain linear programming relaxation can be used to design
an O(loglog m/ logloglog m)-approximation algorithm, while Bezakova and Dani® al-
ready showed that the general case is NP-hard to approximate within ratios smaller
than 2.

Another objective function studied for the graph orientation problem is that of min-
imizing the mazimum weighted outdegree (MINMAXO), also known as Graph Balanc-
ing1)73)’7)’13)’17): Given an undirected graph with edge weights, we are asked to assign
a direction to each edge so that the maximum outdegree is minimized. It is obvious
that MINMAXO is generally NP-hard. Asahiro et al.? showed that it is still weakly
NP-hard for outerplanar graphs, and strongly NP-hard for Ps-bipartite graphs. Fortu-
nately, however, they also showed? that MINMAXO is tractable if the input is limited to
trees or even to cactus graphs. Note that the class of cactus graphs is a maximal subset
of the class of outerplanar graphs and the class of Ps-bipartite graphs, and a minimal
superset of the class of trees. Very recently, Ebenlendr et al.”) designed a polynomial-
time 1.75-approximation algorithm for the general weighted case, and Asahiro et al.?)
showed that MINMAXO can be approximated within an approximation ratio of 1.5 in
polynomial-time if all edge weights belong to {1,2}. As for inapproximability, it is
known that MINMAXO is NP-hard to approximate within approximation ratios smaller
than 1.5 even for this restricted {1, 2}—case1)‘7).

Our results. In this paper we study the computational complexity and
(in)approximability of the machine covering problem from the viewpoint of the graph
based problem, i.e., graph orientation. In Section 2, we prove that MAXMINO is strongly

NP-hard and cannot be approximated within a ratio of min{2, ¥maz } —¢ for any constant

(© 2009 Information Processing Society of Japan

gooooboooag
IPSJ SIG Technical Report

€ > 0 in polynomial time unless P=NP, even if all edge weights belong to {wmin, Wmaz },
every vertex has unweighted degree at most three, and the input graph is bipartite and
planar. As mentioned above, although MAXMINO imposes a strong restriction on the
Santa Claus problem, unfortunately it is still hard.

Section 3 first considers the unweighted MAXMINO problem. We can obtain an opti-
mal orientation algorithm which runs in O(m?’/2 log m-log? A) time for the special case
in which all edge weights are equal to 1. Here, it is important to note that Golovin'? al-
ready claimed that the unweighted case of MAXMINO (more precisely, the Santa Claus
problem) can be solved in polynomial time, but no proof of this claim has ever appeared
as far as the authors know. Our contribution here is to provide the non-trivial, efficient
running time with its explicit proof. Then, we observe that our approach yields an exact
algorithm for the general case of MAXMINO whose running time is polynomial when-
ever the number of edges having weight larger than wp,, is at most logarithmic in the
number of vertices. In Section 4, this efficient algorithm for the unweighted MAXMINO
also gives us a simple ﬁ—approximation algorithm running in the same time for gen-
eral (weighted) case of MAXMINO, i.e., it always outputs an orientation A’ of G which
satisfies OPT(G) < ﬁ - d/(G). This simple approximation algorithm is best possi-
ble for the case that the weights of edges belong to {wmin, Wmaz} With Wmaee < 2Wmin
since the lower bound of approximation ratios is min{2, *=ez} described above.

Wmin

In the field of combinatorial optimization, much work is often devoted to seek a subset

of instances that is tractable and as large as possible. For example, if the input graph
G is a tree, then OPT(G) is always 0 because the number of vertices is larger than the
number of edges, and in any orientation of GG, at least one vertex must have no outgo-
ing edges. Also, for the case of cycles, MAXMINO is quite trivial since the clockwise or
counterclockwise orientation along the cycle gives us the optimal value of win. On the
other hand, the class of planar graphs is too large to allow a polynomial-time optimal
algorithm (under the assumption of P#NP). Hence, our goal in Section 5 is to find
a polynomially solvable subset between trees and planar graphs. Then, we show that
MAXMINO remains in P even if we make the set of instances so large that it contains

the class of cactus graphs.

Vo0l.2009-AL-124 No.7
2009/5/11

2. Hardness results

In this section, we show the MAXMINO problem is strongly NP-hard even if all the
edge weights belong to {Wmin, Wmasz} for any integers wmin < Wmae and the input
graph is bipartite and planar. The proof is by a reduction from AT-MosT-3-SAT(2L).

AT-MOST-3-SAT(2L) is a restriction of 3-SAT where each clause contains at most
three literals and each literal (not variable) appears at most twice in a formula. It can
be easily proved that AT-MosT-3-SAT(2L) is NP-hard by using problem [LO1] on p.
259 of?).

First, we pick any fixed integers for wmin and Wmaz such that wmin < Wmaez. Given
a formula ¢ of AT-MoOST-3-SAT(2L) with n variables {v1,...,v,} and m clauses
{c1,...,¢em}, we then construct a graph Gy including gadgets that mimic (a) variables
and (b) clauses. To define these, we prepare a gadget consisting of a cycle of 3 vertices
and 3 edges (i.e., a triangle) where each edge of the cycle has weight wmas. We call this
a triangle gadget. Apart from these triangle gadgets, we define gadgets for (a) variables
and (b) clauses: (a) Each variable gadget corresponding to a variable v; consists of two
vertices labeled by v; and 7; and one edge {vi, 7; } between them. The weight of {v;,7;}
iS Wmae- By the definition of AT-Mo0ST-3-SAT(2L), some literals (say v; for example)
do not occur (or may occur only once). In such a case, we attach a triangle gadget
to the variable gadget by adding two edges (one edge) of weight wm:, that connects
vertex v; and two different vertices (one vertex) of the triangle gadget. (b) Each clause
gadget consists of one representative vertex labeled by c;, corresponding to clause c; of
¢, and a triangle gadget connected to this cj-vertex by an edge of weight wmin. The
representative vertex c; is also connected to at most three vertices in the literal gadgets
that have the same labels as the literals in the clause c;, by edges of weight win. For
example, if ¢; = x V § appears in ¢, then vertex c; is connected to vertices x and 7¥.
(See Figure 1.) We have the following lemma, though we omit the proof.

Lemmal For the reduced graph G4, the following holds:

(i) OPT(G4) > min{2Wmin, Wmaz } if ¢ is satisfiable.

(ii) OPT(Gg) < Wmin if ¢ is not satisfiable.

From Lemma 1, we immediately obtain the following theorem.

(© 2009 Information Processing Society of Japan

gooooboooag
IPSJ SIG Technical Report

vari abl e
gadget

Cl—XVy
cl ause 5 . e

A AFA

Fig.1 Reduction from AT-MosT-3-SAT(2L) (Solid and dotted edges have weight w.ae and Wimin,
respectively.)

Theorem2 MAXMINO is strongly NP-hard even if the edge weights are in
{Wmin, Wmaz } (Wmin < Wmaz)- O

Also the (un)satisfiability gap of Lemma 1 yields the following theorem.

Theorem3 Even if the edge weights are in {Wmin, Wmaz}, MAXMINO has
no pseudo-polynomial time algorithm whose approximation ratio is smaller than
min{2, {2ee }, unless P = NP. O

Similarly, we can show the NP-hardness of MAXMINO for planar bipartite graphs

by almost the same reduction as the above from MONOTONE-PLANAR-ONE-IN-THREE-
3-SAT(2L), which is a variant of AT-M0ST-3-SAT(2L), having both the planarity'®
and the monotonicity'®.

ONE-IN-THREE-3-SAT itself is a variant of 3-SAT problem which asks whether there
exists a truth assignment to the variables so that each clause has exactly one true literal
(and thus exactly two false literals)'®. The reason why we use ONE-IN-THREE-3-SAT
instead of AT-MOST-3-SAT is to bound the unweighted degrees of the constructed
graphs. While the above reduction from AT-MoOST-3-SAT(2L) guarantees that the
unweighted degrees of constructed graphs are bounded by four, we can bound the un-
weighted degrees of constructed graph from ONE-IN-THREE-3SAT(2L) by three. In the

new reduction, we do not attach triangle gadgets to clause vertices, which makes the

Vo0l.2009-AL-124 No.7
2009/5/11

unweighted degrees of clause vertices three, and One-In-Three satisfiability guarantees
that each clause vertex has two outgoing edges in an optimal MAXMINO solution.

The planarity means that the graph constructed from an instance CNF, in which two
vertices corresponding to a variable and a clause are connected by an edge if the vari-
able occurs (positively or negatively) in the clause, is planar. The monotonicity means
that in an input CNF formula each clause contains either only positive literals or only
negative literals. PLANAR-ONE-IN-THREE-3-SAT is shown to be NP-complete in'®.

By applying an operation used in2), we can transform an instance of PLANAR-ONE-
IN-THREE-3-SAT into one of MONOTONE-PLANAR-ONE-IN-THREE-3-SAT. Moreover,
by applying another operation used in the same paper2>, we can transform an in-
stance of MONOTONE-PLANAR-ONE-IN-THREE-3-SAT into MONOTONE-PLANAR-ONE-
IN-THREE-3-SAT(2L). This implies that the constructed graph is planar and bipartite
and its unweighted degree is at most three. (To preserve the bipartiteness, we need to
use bipartite gadgets, e.g., square gadgets, instead of triangle gadgets.)

Theorem4 MAXMINO is strongly NP-hard even if the edge weights are in
{Wmin, Wmaz } for integers Wmin < Wmas and the input graph is bipartite and planar in
which the unweighted degree is bounded by three. [

Theorem5 Even if the edge weights are in {Wmin, Wmaz} and the input graph is
bipartite and planar in which the unweighted degree is bounded by three, MAXMINO
has no pseudo-polynomial time algorithm whose approximation ratio is smaller than
min{2, $=ee }, unless P=NP. O

This reéuit is tight in a sense, because if the unweighted degree of the input graph
is bounded by two (i.e., cycles or trees), obviously MAXMINO can be solved in linear

time.
3. An exact algorithm for unweighted cases

MAXMINO is closely related to the problem of computing a maximum flow in a flow
network with positive edge capacities. Indeed, maximum-flow-based techniques have
been used in® to solve the analogous problem of computing an edge orientation which
minimizes the mazimum outdegree of a given unweighted graph (MINMAXO) in poly-

nomial time. In this section, we extend the results of® by showing how a maximum

(© 2009 Information Processing Society of Japan

gooooboooag
IPSJ SIG Technical Report

Fig.2 An example of G

flow-algorithm can be used to efficiently solve unweighted MAXMINO.
For any input graph G = (V, E) to unweighted MAXMINO, let N¢ = (V, E¢) be the
directed graph with vertex set Vi and edge set E¢ defined by:
Vo =EUV U({s,t},
Ec = {(s,e) | eEE}U{(v,t) |ve V}U
{(e;v2), (e,v5) | e = {vi,v5} € EY,
and for any integer ¢ € {0,1,...,A}, let Na(q) = (Va, Ec, capq) be the flow network

obtained by augmenting Ng with edge capacities capq, where:

1, ifa=(s,e) withe € E}
capg(a) = ¢ 1, ifa= (e,v) withe€ E,veV;
g, ifa=(v,t)withveV
See Figure 2 and Figure 3 for an example of the original graph G and the corresponding
network Ng, respectively.

Let F(q) be an integral maximum directed flow*! from vertex s to vertex t in Ng(q).
Then, for each e = {v;,v;} € E, either zero or one unit of flow in F'(q) passes through
the corresponding vertex e in Vi, and thus at most one of the two edges (e, v;) and (e, v;)
is assigned one unit of flow. This induces an orientation Apq) of G based on F'(q) as fol-
lows: If the flow in F'(q) from vertex e to vertex v; equals 1 then set Ap(q(e) := (vi,v;);
else if the flow in F'(¢) from e to v; equals 1 then set Ap(q)(e) := (v, v:); else set Ap(gy(e)

arbitrarily.

*1 Since all edge capacities are integers, we may assume by the integrality theorem (see, e.g.,G))

11)

that the flow along each edge in F'(gq) found by the algorithm in is an integer.

Vol.2009-AL-124 No.7
2009/5/11

vertex set

edge set

Fig.3 Network Ng constructed from G of Figure 2

Let f(q) denote the value of a maximum directed flow from vertex s to vertex t
in N¢(q). Then:

Lemma6 For any q € {0,1,...,A}, f(q) <q-n.
Proof. The sum of all edge capacities of edges leading into ¢ in Ng(q) is g - n. Clearly,
the value of the maximum flow in Nz (g) cannot be larger than this sum. O

Lemma7 For any q € {0,1,...,A}, f(q) =¢q-n if and only if OPT(G) > q.
Proof.
=) Suppose that f(q¢) = ¢-n and consider the maximum flow F(q) defined above.
For each v € V| exactly ¢ units of flow leave the corresponding vertex v in Vi because
the edge capacity of (v, t) is ¢ and there are n such vertices. This implies that ¢ units of
flow enter v, which is only possible if there are g edges of the form (e, v) in E¢ that have
been assigned one unit of flow each. Therefore, the induced orientation Ap(,) ensures
that day., (v) > ¢ for every v € V, which yields OPT(G) > q.
<=) Suppose that OPT(G) > ¢ and let A be a max-min orientation of G. Let F’ be
the following directed flow from s to ¢ in Ng(A):

(© 2009 Information Processing Society of Japan

gooooboooag
IPSJ SIG Technical Report

L if a = (s, e) with e € E;
F(a)= 1, if a = (e,v;) with e = {v;,v;} € E and A(e) = (vs,v;);
0, if a = (e,v;) with e = {v;,v;} € E and A(e) = (vj,vi);

da(v), ifa=(v,t) withv e V.

For every v € V, the flow in F’ along the edge (v,t) in Ng(A) is da(v) > OPT(G) > q.
By reducing each such edge flow to ¢, one obtains a directed flow which obeys the
(stricter) edge capacity constraints of the flow network N¢(g) and has flow value n - q.
Thus, there exists a maximum directed flow from s to ¢t in Ng(g) with value ¢ - n, so
f(q) > q-n. It follows from Lemma 6 that f(q) = ¢ n. (]

Lemmas 6 and 7 suggest the algorithm for unweighted MAXMINO named Algo-
rithm Exact-1-MaxMinO.

1. Construct Ng.

2: Use binary search on ¢ in the interval {0,1,...,A} to find the integer ¢ such that
fl@)=g-nand f(g+1) <(¢g+1) n.

3: Compute F(gq) as a maximum directed flow from s to ¢ in N (q).

4: Return Ap(g).

Fig.4 Algorithm Exact-1-MaxMinO

Theorem8 Exact-1-MaxMinO solves unweighted MAXMINO in O(m?’/2 - logm -
log® A) time. O
Proof. The correctness of Exact-1-MaxMinO is guaranteed by Lemmas 6 and 7. For
any ¢ € {0,1,...,A}, to compute a maximum flow in the flow network Ng(q) takes
O(m®? -logm -log A) time with the algorithm of Goldberg and Rao*") because N (q)
contains m+n+2 = O(m) vertices and 3m+n = O(m) edges and the capacity of each
edge in Ng(q) is upper-bounded by A. Algorithm Exact-1-MaxMinO can therefore be

implemented to run in O(m*/? - logm - log? A) time. O

Finally, we outline how Exact-1-MaxMinO can be applied to solve weighted
MAXMINO. Let X be the set of all edges in E with weight larger than wpmin. First

Vo0l.2009-AL-124 No.7
2009/5/11

modify the flow network Ng(q) to set capq(a) = [w(e)/wmin|. for every edge a € E¢
of the form a = (s,e). Then, run Exact-1-MaxMinO a total of 2/%! times while testing
all possible ways of setting the capacity of exactly one of (e,v;) and (e,v;) in Ng(q)
to w(e) and the other to 0 for each e € X, using binary search on ¢ in the interval
{0,1,...,[W/n]}, and select the best resulting orientation. The asymptotic running
time becomes the same as that of Exact-1-MaxMinO multiplied by 2/*! and with an
increase due to the larger interval for the binary search on ¢ and the edge capacities
being upper-bounded by max{wmaz, W/n} instead of A.

Theorem9 Weighted MAXMINO can be solved in O(m®/?-log m-10g(wWmaz +W/n)-
log(W/n) - 21%1) time, where X = {e € E | w(e) > wmin}.

Corollaryl If |X| = O(logn) then weighted MAXMINO can be solved in polynomial
time. g

4. A simple approximation algorithm for general cases

Here, we prove that ignoring the edge weights of the input graph and applying Exact-1-

Ymaz _approximation
Wmin

MaxMinO on the resulting unweighted graph immediately yields a
algorithm for the general case of the problem. The algorithm is named Approximate-
MaxMinQO and is listed in Figure 5.

1: Let G’ be the undirected graph obtained from G by replacing the weight of every
edge by 1.
2: Apply Algorithm Exact-1-MaxMinO on G’ and let A’ be the obtained orientation.

3: Return A’.
Fig.5 Algorithm Approximate-MaxMinO

Theorem10 Approximate-MaxMinO runs in O(m‘Q’/2 -logm - log? A) time and is a
%-approximation algorithm for MAXMINO.
Proof. The asymptotic running time of Algorithm Approximate-MaxMinO is the same
as that of Exact-1-MaxMinO.

To analyze the approximation ratio, observe that §a(G) > wWmin - oa(G’) for any

orientation A of G because the weight of any edge in G is at least wmin times larger

(© 2009 Information Processing Society of Japan

gooooboooag
IPSJ SIG Technical Report

than its weight in G’. Similarly, wmaz - 64(G’) > 6a(G) for any orientation A of G.
Now, let A’ be the optimal orientation for G’ returned by Approximate-MaxMinO
and let A* be an optimal orientation for G. Note that do/(G’) > dax(G’). Thus,
551 (G) > Whnin - Ops (G') > Winin - 04+ (G) > “min 6, (G) = Ymin . OPT(G). O

w

5. An exact algorithm for cactus graphs

In this section, we present a polynomial time algorithm which obtains optimal ori-
entations for cactus graphs. A graph is a cactus if every edge is part of at most one
cycle. To this end, we introduce vertex weight aq(v) for each vertex v in a graph G
which is considered as 0 in the input graph (we omit the subscript G of ag(v) if it is
apparent). Here we define the notion of weighted outdegree for a vertex in a vertex
and edge weighted graph. The weighted outdegree da(v) of a vertex v is defined as the
weight of v itself plus the total weight of outgoing arcs of v, i.e.,

da@)=a@)+ > w({uv}).
{u,v}€B:
In a cactus graph, a vertex in a cycle is g{gz,zvtiﬁf(Ultu)lb adjacent to any vertex that does
not belong to the cycle. Note that the unweighted degree of a gate is at least three. As
for the number of gates in a cycle, the following is known:

Proposition11 (Proposition 2 in®) In a cactus graph G in which deg(v) > 2
for every vertex v, there always exists a cycle with at most one gate.

The main part of the proposed algorithm Exact-Cactus-MaxMinO is shown in Figures 6
and 7, which solves the decision version of the problem MAXMINO: Given a number
K, this problem asks whether there exists an orientation whose value is at least K. We
can develop an algorithm for the original problem MAXMINO by using this algorithm
O(log A) times in a binary search manner on optimal value, which is upper-bounded
by A.

The correctness of Exact-Cactus-MaxMinO is based on the following property on op-
timal orientations for two graphs.

Proposition12 Consider two graphs G and G’ that differ only on their vertex
weights. If ag(v) < agr(v) for every vertex v, then OPT(G) < OPT(G’) holds. O

Theorem13 Given a cactus graph G and a target K, Exact-Cactus-MaxMinO out-

Vo0l.2009-AL-124 No.7
2009/5/11

puts an orientation A such that 65 (G) > K if such an orientation exists, in polynomial
time. 0
From Theorem 13, we can solve MAXMINO for cactus graphs in polynomial time by

using EXACT-CACTUS-MAXMINO as an engine of the binary search.
Acknowledgments

We thank Tetsuo Shibuya for some inspiring discussions. This work is partially sup-

1: repeat
2: For a vertex v,
if a(v) +d(v) < K then
output No and halt.
else if deg(v) =1 then
(let its connecting edge be e = {v, u})
if a(v) < K then
A(e) == (v, u)

else

© ® 3 @ F ok ®

10: A(e) := (u,v) and increase a(u) by w(e)
11: end if
12: Remove v and e.

13: else if deg(v) = 2 then

14: (let e1 = {p,v} and e2 = {v,q})

15: if a(v) +w(e1) < K and a(v) + w(ez) < K then

16: A(er) := (v,p) and A(ez2) := (v,q). Remove v, e1, and es.

17: else if a(v) +w(er1) < K and a(v) + w(ez) > K then

18: A(er) := (p,v) and A(e2) := (v, ¢) and also increase a(p) by w(e1). Remove

v, e1, and es.
19: end if
20: end if

21: until No vertex v satisfies either one of the above conditions
Fig.6 Algorithm Exact-Cactus-MaxMinO

(© 2009 Information Processing Society of Japan

gooooboooag
IPSJ SIG Technical Report

22: for all C := (vo,v1,--- ,v¢ = vo) that has at most one gate do

23: if C does not have a gate then

24: A({vi,vig1}) = (vi,viq1) for 0 < i < £—1. Remove C.

25: else

26: Let vo be the gate.

27: if there exists a vertex vj, j # 0 satisfying a(v;) > K in C then

28: Assign A({vi,vig1}) := (vi,vi41) for 0 < ¢ < j — 1 and A({vi,vig1}) :=
(Vig1,vs) for j <14 < £€—1. Increase a(vo) by w({vo,v1}) + w({vo,ve-1}).

29: else

30: If w({vo,v1}) > w({vo,ve—1}) then assign A({vi,vit1}) = (vs,vi41) for

0 <4 < ¢ —1 and increase a(vg) by w({vo,v1}), otherwise A({vs,viy1}) :=
(vig1,vi) for 0 <4 < £—1 and increase a(vo) by w({vo, ve—1}).
31: end if
32: Remove C' except the gate vg.
33: end if
34: end for
35: if the graph is empty then
36: output A and halt.
37: else
38: go back to line 1.

39: end if
Fig.7 Algorithm Exact-Cactus-MaxMinO(cont.)

ported by KAKENHI (No. 18700014, 18700015, 20500017 and 21680001).

g o 0 0

1) Y. Asahiro, J. Jansson, E. Miyano, H. Ono, and K. Zenmyo. Approximation algo-
rithms for the graph orientation minimizing the maximum weighted outdegree. In
Proc. of AAIM2007, pp.167-177, 2007.

2) Y. Asahiro, E. Miyano, and H. Ono. Graph classes and the complexity of the graph
orientation minimizing the maximum weighted outdegree. In Proc. of CATS2008,
pp.97-106, 2008.

Vo0l.2009-AL-124 No.7
2009/5/11

3) Y. Asahiro, E. Miyano, H. Ono, and K. Zenmyo. Graph orientation algorithms to
minimize the maximum outdegree. IJFCS, 18(2), pp.197-215, 2007.
4) N. Bansal and M. Sviridenko. The Santa Claus problem. In Proc. of STOC2006,
pp.31-40, 2006.
5) 1. Bezdkova and V. Dani. Allocating indivisible goods. ACM SIGecom Ezchanges,
5(3), pp.11-18, 2005.
6) T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press,
1990.
7) T. Ebenlendr, M. Kréal, and J. Sgall. Graph balancing: a special case of scheduling
unrelated parallel machines. In Proc. of SODA2008, pp.483-490, 2008.
8) U. Feige. On allocations that maximize fairness. In Proc. of SODA2008, pp.287—
293, 2008.
9) M. Garey and D. Johnson. Computers and Intractability — A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, 1979.
10) E. M. Gold. Complexity of automaton identification from given data. Information
and Control, 37(3), pp.302-320, 1978.
11) A. V. Goldberg and S. Rao. Beyond the flow decomposition barrier. JACM, 45(5),
pp.783-797, 1998.
12) D. Golovin. Max-min fair allocation of indivisible goods. Tech. Report, 2005.
13) L. Kowalik. Approximation scheme for lowest outdegree orientation and graph
density measures. In Proc. of ISAAC2006, pp.557-566, 2006.
14) D. Lichtenstein. Planar formulae and their uses. SIAM J. Computing, 11(2),
pp.329-343, 1982.
15) W. Mulzer and G. Rote. Minimum-weight triangulation is NP-hard. In Proc. of
SoCG, pp.1-10, 2006.
16) T. J. Schaefer. The complexity of satisfiability problems. In Proc. of STOC1978,
pp.216-226, 1978.
17) V. Venkateswaran. Minimizing maximum indegree. Disc. Appl. Math., 143(1-3),
pp.374-378, 2004.
18) G. J. Woeginger. A polynomial-time approximation scheme for maximizing the
minimum machine completion time. Opp. Res. Lett., 20, pp.149-154, 1997.

(© 2009 Information Processing Society of Japan

