FEEEA WL B 2009—ARC—182 (26)
IPSJ SIG Technical Report 2009—HPC—119 (26)
200972728

Evaluation of Interactive Scheduling Architecture for GridRPC Applications

Hao Sun ! and KENTO AIDAT2:11

GridRPC is known as an effective programming model to develop Grid applications. How-
ever, it still has difficulty to make efficient applications for non-expert users. For example,
users need to monitoring remote computational resources and estimating application perfor-
mance on selected computational resources. In this paper, we propose InterS, an interactive
scheduling system for GridRPC applications. InterS provides three mechanisms, which help
GridRPC application users to run their application in an efficient and robust way. First, the
automatic scheduling mechanism provides resource allocation functionality and supports gen-
eration of budget constraint plans, which can be adopted by the application users. Second,
the execution advice mechanism helps a user to improve performance of the application at
run time while overload or failure on the resource(s) is detected. Third, the scheduling policy
mechanism provides a user an interface in ClassAd format to define the scheduling policy
applied in InterS. This paper also presents experiments to show the advantage of interactive
scheduling and how they can be performed at run time.

1. Introduction

GridRPC7 is known as an effective program-
ming model to develop Grid applications. How-
ever, it still has difficulty to make efficient ap-
plications for non-expert users. The current im-
plementation of GridRPC assumes that a user
selects remote computational resources before
run time; thus it forces the user to do hard work
requiring expert knowledge, e.g. monitoring re-
mote computational resources and estimating
application performance on selected computa-
tional resources. Additionally, computational
resources on the grid are unstable. Loads of
the resources fluctuate and some resources may
have failure. GridRPC users need to make their
applications robust enough, so that those can
accommodate the fluctuation and failure of re-
mote computational resources.

Several mechanisms to reduce the complex-
ity of running Grid applications have been pro-
posed; some of them focused on GridRPC appli-
cations. Condor? and Nimrod/G® focuses on
high throughput and economic feature of Grid
application, respectively. Task Farming® and
F-Omega® help GridRPC users by providing
advanced mechanisms in terms of task schedul-
ing and dynamic resource allocation at applica-
tion run time. GridWay!') meta-scheduler pro-
vides users adaptive scheduling features such as
automatic reschedule when task fails or a better
resource is discovered. Some of above mech-
anisms perform automatic scheduling, where

11 Tokyo Institution of Technology
12 National Institute of Informatics

the scheduling algorithm is implemented in the
scheduling software or is provided by the user
through APIs. Although there are many suc-
cesses in automatic scheduling, it sometime fails
to obtain satisfying performance due to fluctu-
ation of resources or a complicated user policy
to run the application. In this case, changing
resource allocation (or even the scheduling al-
gorithm) using the user’s knowledge contributes
to improve efficiency and robustness of the ap-
plication run.

In this paper, we propose InterS, an inter-
active scheduling system for GridRPC appli-
cations. InterS provides three mechanisms,
which help GridRPC application users to run
their application in an efficient and robust way.
The automatic scheduling mechanism provides
resource allocation functionality and supports
generation of budget constraint plans, which
can be adopted by the application users. The
execution advice mechanism helps a user to im-
prove performance of the application at run
time while overload or failure on the resource
is detected. Some expert users may want to
customize the scheduling policy for their appli-
cations. The scheduling policy mechanism pro-
vides a user an interface in ClassAd format to
define the scheduling policy applied in InterS.
It also enables to change the currently running
scheduling algorithm to others during the run
time.

The rest of this paper is organized as follows:
in section 2, comparison between InterS and re-
lated works are presented. In section 3, design
and implementation issues are discussed. Sec-

—151—

tion 4 shows the experimental study and the
results, and section 5 gives the conclusions.

2. Related Works

Condor and Nimrod/G are resource bro-
kers, which dispatch user tasks to suitable
computational resources. Both requirements
from user applications and those from resources
providers are specified in the ClassAds, and the
matchmaking mechanism dispatches tasks to
resources so as to satisfy the both requirements
in Condor. Nimrod/G has the similar mecha-
nism and it also enables task scheduling with
budget constraints. Both Condor and Nim-
rod/G perform fully automatic scheduling. The
users cannot change resource allocation during
application run time.

Task Farming middleware provides users
APIs for task scheduling and a fault tolerant
mechanism. F-Omega is a programming frame-
work, which enables flexible grid application de-
velopment and its execution. Although Task
Farming performs automatic scheduling, the
implemented scheduling algorithm is simple one
and users cannot change resource allocation at
run time. F-Omega enables users to change re-
source allocation during application run time,
however, the users need to select an initial set
of computational resources.

GridWay is a job submission framework on
the Globus toolkit. It performs automatic
scheduling and enables users to change resource
allocation during application run time.

The proposed InterS performs automatic
scheduling and enables users to change re-
sources allocation during application run time.
Generally, changing recourse allocation requires
users to have expert knowledge about both the
applications and resources on the grid. InterS
helps users by giving advices for changing re-
source allocation during application run time
to solve this problem. Furthermore, InterS en-
ables users to change the scheduling algorithm
currently running during application run time.
The advantage of InterS is to fully utilize the
user’s knowledge through an interaction with
the user at application run time so as to achieve
more efficient and robust application run. Table
1 summarizes techniques enabled in scheduling
software. To the best of our knowledge, there
is no software that enables “interactive schedul-
ing” mechanisms as InterS.

Interactive Operations collected
(ex. Add cluster) (/ cluster information
~ user

B e (cpu,price.etc) from
e

wei801d JuBIP JdypuS

[

Fig.1 InterS architecture overview

3. Design and Implementation

Fig. 1 illustrates software architecture of In-
terS. The user first writes a GridRPC client pro-
gram using the InterS client APIs. The “ad-
dJob” method (in Table 2) creates GridRPC
tasks first then stores them into the job pool
through the job pool manager. Three ways
of adding resources to InterS are supported:
the API, the web interface and the policy file.
GridRPC executables, or tasks, are executed
on remote computational resources selected by
InterS. At run time, the user starts the ap-
plication and performs interactive scheduling
through the web or policy file interface.

3.1 Client Interface

A user of InterS first writes a GridRPC client
program using the InterS client APIs. The
user gives information about the application,
or remote GridRPC executables, through the
APIs. Currently, APIs for Java & Groovy'®
are available. Table 2 summarizes the InterS
Client APIs. Fig. 2 presents an exam-
ple of InterS client program in Groovy lan-
guage. First, the user needs to decide which
scheduling policy to use for automatic schedul-
ing, and then binds the remote executables with
the scheduling agent by creating a RemoteFunc-
tion instance. The “FCFS” scheduling policy is
adopted for utilizing local clusters. When tasks
finish their execution, the results are stored into
“results”, which is an array of String arrays
(defined at line 3). After submitting tasks to
InterS, user can call waitAll method to block
the client program until all tasks finished. In
this example the user decides to add a com-
mercial resource later, which shows better per-
formance. So the user changed the “FCFS”
scheduling agent to “BudgetConstraint” for the

—152—

Table 1

comparison of scheduling techniques in scheduling software

Condor Nimrod/G Task Farming F-Omega GridWay InterS
automatic scheduling Y Y Y N Y Y
scheduling budget constrains N Y N N N Y
execution advice N N N N N Y
changing resources allocation N N N Y Y Y
configuring scheduling algorithm N N N N Y Y
changing schedule algorithm N N N N N Y

Table 2 List of APIs in InterS

Task initiation APIs

ScheduleAgent A Java class implementing the scheduling agent(s) in InterS. It takes agent type as argument
in terms of FCFS, round-robin and BudgetConstraint
RemoteFunction | A Java class implementing the GridRPC remote executable(s) in InterS. It takes name of the
executable and scheduling agent, a default agent setting for this executable, as arguments.
Cluster A java class, which stores the resource information(s).
Task submission APIs
addJob() Submitting user tasks to InterS. Tasks are stored in the job pool and InterS decides the
resource allocation. A task id will be returned for further job handling.
addJobWith() Same as addJob except that resources are selected by users.
waitAll() Blocking until all tasks finished.
waitFor() Blocking until a certain task finished. The only argument is the task id.
waitAnd() Blocking until all tasks in a certain group finished. The arguments are a list of task ids.
waitOr() Blocking until one of the tasks in a certain group finished. The arguments are a list of task
ids.
Execution control APIs
reschedule() | Rescheduling tasks, which do not start

0. // INITIALIZE CLIENT PROGRAM
1. def schedulingAgent =
new ScheduleAgent(type:‘‘FCFS’’);
- def remoteFunc = new RemoteFunction(
name: ‘ ‘NPB/EP’’, agent:schedulingAgent);
def scheduler, results = [], taskids = [];
// SUBMIT TASKS
for(i=0;i<N;i++) {
def aResult = new String[]; results << aResult;
taskids <<
scheduler.addJob(remoteFunc,argl,arg2,aResult);

N

N oS W

8. 1}
9. scheduler.waitAnd(** subset of taskids **);
10. // CHANGE SCHEDULING AGENT
11. schedulingAgent =
new ScheduleAgent(type:‘ ‘BudgetConstraint’’);
12. remoteFunc.agent = schedulingAgent;
13. remoteFunc.save();
14. scheduler.reschedule();
15. scheduler.waitAll();
16. // PROCESS RESULTS

17. for(i=0;i<N;i++) { **use results[i]** }

Fig.2 InterS client program
cost management, after waiting for the end of
tasks specified in waitAnd. Finally, all tasks
finish execution, user can access values stored
in the “results” list.

3.2 Automatic Scheduling

The automatic scheduling mechanism selects
computational resources that satisfy require-
ments of the user application. Multiple schedul-
ing algorithms, or policies are implemented in
InterS. Currently, the FCFS policy, the round
robin policy and the budget constraints pol-

icy are available in InterS. FCFS and round
robin are the simple heuristics, which allocate
resources without any cost concern. On the
other hand, budget constraint algorithm offers
scheduling plans to the user. Various allocation
variations as well as the cost and performance
estimation are given in the plans. The user
then chooses the suitable one for his/her pref-
erence. Also, the user can implement the cus-
tomized policy through the scheduling policy
mechanism. The scheduling agent presented in
Fig. 3 performs scheduling. An instance of the
scheduling agent is generated for each schedul-
ing policy, that is, three scheduling agent in-
stances (FCFS, round robin, budget constraint)
are implemented in the default setting. The
user can change the scheduling policy at ap-
plication run time by switching the schedul-
ing agent instances. The scheduling agent sub-
mits tasks to the execution manager following
the scheduling policy. The execution manager
invokes tasks to remote computing resources
through execution threads, where an execution
thread is created for each task.

Information of remote computational re-
sources, e.g. CPU specifications, available
memory sizes and unit prices for computation,
is required in scheduling. InterS has ways to
obtain the information. The first way is col-

—153—

Cluster X, Y ...

Collect cluster info. From MDS{s) 1

Interactive ‘
scheduling

InterS
Cluster list system

Budget Limit
Plan(s}
Choose & go

Fig.3 An example of automatic scheduling

expired

Fig.4 An example of execution advice

lecting resource information from the MDS®.
The resource information is collected automat-
ically and the user does not have to take care
about the information. The second way is that
the user provides the information.

Estimation of task execution time on remote
computational resources is an important issue
to make better scheduling plan. InterS has a
mechanism to estimate task execution time on
remote computational resources by running test
jobs. The user can control the test by e.g. defin-
ing the number of test jobs to run, through
the InterS interface. Running test jobs is not
acceptable in some cases due to performance
problems or budget constraints. In this case,
the user can give estimated task execution time
to InterS.

3.3 Execution Advice

The execution advice mechanism gives advice
for changing resource allocation or scheduling
plan during application run time, when it finds
a better plan. For instance, when new compu-

tational resources are available during the ap-
plication run time. InterS detects it and es-
timates the application performance by utiliz-
ing the new resources. If InterS estimates that
adding the new resources improves the appli-
cation performance, InterS gives the advice for
utilizing the new resources to the user. The
user can use the new resources through InterS
interface if the user accepts the advice.

Fig.4 presents an example of the execution
advice. The numbers 3 and 6 are the advice
ids. User can handle these ids through the web
interface to the advice manager which advice
is applied. The execution advice shows users
the number of migration tasks, cluster names,
cost and performance changes. Advice 3 rec-.
ommends the user to migrate 10 tasks from
the resource “gk” to the resource “kuruwa-gw”.
The advice also shows that the migration costs
$30 more but makes execution time 100 sec-
onds shorter. Execution advices are managed
in three statuses: proposed, used and expired.
Advice 6 is in the expired status because less
than 20 tasks are available in cluster “kuruwa-

9

The advice manager presented in Fig. 4 per-
forms the execution advice. The advice man-
ager periodically communicates with the execu-
tion information manager, the policy manager
and the cluster pool manager presented in Fig.
1. The execution information manager collects
past task execution records, which include er-
rors, performances and costs to run tasks on re-
mote computational resources. When a new re-
source becomes available, the cluster pool man-
ager notifies the advice manager the informa-
tion of the new resource.

3.4 Scheduling Policy

The scheduling policy mechanism enables the
user to give the customized scheduling policy.
Two interfaces to give the user’s policy, the web
interface and the policy file in ClassAd format
are available in InterS.

The policy manager presented in Fig. 1 ac-
tuates change of the user’s policy to scheduling
at application run time. It includes adding new
computational resources, change budget con-
straints and configuration of test jobs and etc.

Fig. 5 shows an example of the policy file.
Every change is detected and handled by the
policy manager. “CostLimitation” stands for
the limitation of the entire application run.
“TestJobCostLimitation” specifies the totally
cost upper bound of test jobs. The user may

—154—

W N -

costLimitation = 1700;
testJobCostLimitation = 30;

num0f JobsPerCall =

// Budget constraints
// Test job cost constraints
// Bundle tasks into one GridRPC request

(CLIENT_LOAD_AVERAGE <= 0.1)? 3 :

cluster2 = [

// Cluster definition

(CLIENT_LOAD_AVERAGE <= 0.5)? 5:20;

[
O WO ~NOO B

11.
12.

name = "gk.alab.ip.titech.ac.jp";

price = 0.02;

cpulnfo = (RMOTE_NODE_CPUINFO is undefined)? 1263.475 : RMOTE_NODE_CPUINFO;
memInfo = (RMOTE_NODE_MEMINFO is undefined)? 1010 : RMOTE_NODE_MEMINFO;
numOfNodes = (RMOTE_NODE_NUMBER is undefined)? 4 : RMOTE_NODE_NUMBER;
corePerCPU = (RMOTE_NODE_NUMOFCORE is undefined)? 2 : RMOTE_NODE_NUMOFCORE;
onFailReduceRatio = numOfJobsPerCallReduceRatio;

Fig.5 A policy file example

Table 3 experimental environment

DRM*! nodes X cores 0OS

CPU (vendor/MHz)

exec. time(s)*?

price($/(core - s))

blade SGE Pentium/1266 4X2
kuruwa SGE AMD/2412 2x4

Redhat 7.2
CentOS 5.0

210
116

0.02
0.13

1.DRM: distributed resource manager, such as SGE, PBS, Condor

2.Average execution time of EP(Class A) benchmark per core in each cluster

Choose & go

- el
24 EP benchmarks
InterS
system
Cost limit: $300

Inter$
—_.. system
Interactive Operation
Add cluster

Fig.6 Application scenario used in the experiments

change these options to affect the behavior of
the budget constraint scheduling agent. Cluster
information is written by ClassAd expressions;
for example, RMOTE_NODE_NUMOFCORE is
assigned to corePerCPU, if InterS can retrieve
the number of cores in “gk” from MDS. Expres-
sion of numOfJobsPerCall is in charge of task
bundle, which helps to reduce the heavy load of
client machine.

4. Experimental Study

This section presents experiments to see ef-
fect of interactive scheduling provided by In-
terS. We implemented InterS and conducted
experiments using PC clusters located in two
sites. In the experiments, we verify an effect of
interactive scheduling by InterS using an appli-
cation scenario (Fig.6).

4.1 Experimental Setting

Table 3 shows PC clusters used in the exper-
iments. Two clusters, blade and kuruwa, are
located in Yokohama and Tokyo, respectively.
The execution time in the table shows the av-
erage benchmark execution time of each core
in each PC clusters; EP benchmark (Class A)

in NAS Parallel Benchmarks? is used here. We
assume that a unit price to run computation on
the PC clusters, price in Table 3, is announced
from resources providers.

4.2 Results

Fig. 6 shows the execution scenario used
in this experiments. The user requests to run
the EP benchmark (Class A) in NPB 24 times
within a budget of $300. The scheduling agent
for budget constraints is adopted for the re-
source allocation. In this scenario, we assume
that the kuruwa cluster is not available at this
time due to the heavy load of external jobs. In-
terS offers the plan to run all tasks to the blade
cluster with the cost of $103, and the user ac-
cepts this plan. When the first eight tasks are
running, the kuruwa cluster becomes available.
InterS detects it and gives the user an advice
with new scheduling plans (right in Fig. 6).
Here, the user chooses the first plan with higher
performance.

Fig. 7 shows the results of resource allocation
and execution times for the above 24 tasks. The
X-axis indicates the task numbers. Note that
InterS run one test job for estimation of the

—1556—

Fig.7 results of experiment with re-planning

execution time. The Y-axis shows the execu-
tion time in seconds. Fig. 7 shows that first
eight tasks run on the blade cluster and 16 tasks
run on the kuruwa cluster. The results show
that the application finishes in 292 [sec], while
it takes more than 600 [sec] if the user runs the
application without the execution advice by In-
terS.

5. Conclusions

This paper proposed InterS, an interac-
tive scheduling system for GridRPC applica-
tions. InterS fully utilizes the user’s knowledge
through an interaction with the user at applica-
tion run time so as to achieve more efficient and
robust application run. We implemented three
mechanisms, the automatic scheduling mecha-
nism, the execution advice mechanism and the
scheduling policy mechanism on the testbed
and evaluated the effectiveness of the interac-
tive scheduling using the application scenario.

The experiments presented in this paper are
limited to those with the simple application sce-
nario. We plan to evaluate the advantage of In-
terS through experiments with more scenarios.

Acknowledgments A part of this work
is supported by Japan Society for the Promo-
tion of Science (JSPS) within the framework of
Global COE Program ”Photonics Integration-
Core Electronics”.

References

1) E.Huedo, R.S.Montero and I.M.Llorente.: “A
Framework for Adaptive Execution on Grids,”
Intl.J.of Software - Practice and Experience
(SPE), 2004

2) Yoshio Tanaka, Hidemoto Nakada, Satoshi
Sekiguchi, Toyotaro Suzumura, and Satoshi
Matsuoka.: “Ninf-g: A reference implementa-
tion of rpc-based programming middleware for
grid computing,” Journal of Grid Computing,
2003.

3) Yusuke Tanimura, Hidemoto Nakada, Yoshio
Tanaka and Satoshi Sekiguchi.: “Implementation
of A Task Farming API over GridRPC Frame-
work,” IPSJ SIG Technical Reports, HPC-103,
2005)

4) Ra jesh Raman, Miron Livny, and Mar-
vin Solomon.: “Matchmaking: Distributed Re-
source Management for High Throughput
Computing,” Proceedings of the Seventh IEEE
International Symposium on High Performance
Distributed Computing, July 28-31, 1998,
Chicago, IL.

5) Rajkumar Buyya, David Abramson, Jonathan
Giddy.:“Nimrod/G: An Architecture for a Re-
source Management and Scheduling System
in a Global Computational Grid,” hpc,pp.283,
The Fourth International Conference on High-
Performance Computing in the Asia-Pacific
Region, 2000

6) Hiromasa Watanabe,Shoichi Hirasawa, Hiroki
Honda.: “F-Omega: A Framework for GridRPC
Application with Adaptive Server Use,” IPSJ
SIG Technical Reports, HOKKE-2007, 2007

7) Keith Seymour, Hidemoto Nakada, and et
al.:“Overview of GridRPC: A Remote Proce-
dure Call API for Grid Computing,” GRID
COMPUTING, GRID 2002, LNCS 2536, 2002

8) K. Czajkowski, S. Fitzgerald, I. Foster, an d
C. Kesselman.: “Grid Information Services for
Distributed Resource Sharing, in Proc. of 10th
IEEE Int. Symp. on High Performance Dis-
tributed Computing, San Francisco, CA, USA,
2001.

9) D. Bailey, J. Barton, T. Lasinski, and H. Si-
mon (Eds.).:“The NAS Parallel Benchmarks,
NAS Technical Report RNR-91-002, NASA
Ames Research Center, Moffett Field, CA,
1991.

10) Groovy: An agile dynamic language for the
Java Platform
http://groovy.codehaus.org/

—156—

