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Summary

In this paper, the authors present a new theory of error evaluation at numerical
integration. The classical theories of error evaluation based on the Taylor expansion
inform us only of the order of magnitude of errors, and are not capable of clarify-
ing the exact value and the nature of errors. i

It is known the numerical integration of the set of linear differential equations
can be reduced into the solution of the set of the corresponding difference equations,
and the difference equations can be solved by means of the matrix technique and
the z-transform. With these facts in mind, authors developed a new theory, which
clarifies the nature errors and gives criteria for selecting adequate time intervals
that keep the errors for computation within the allowable limits.

Though the round-off errors are not discussed in this paper, it is shown by the
example that the round off errors are much smaller than the truncation errors
discussed in the paper.

1. Introduction

In order to analyze transient phenomena in a physical system, we have
to solve a set of linear differential equations deseribing its performance.
The solutions of the set of linear differential equations in explicit forms
are not usually feasible and therefore numerical calculation becomes
necessary.

For numerical calculation, care must be taken for the selection of the
sampling time interval. Excessively long time interval causes appreciable
errors in the numerical solution, while shorter time interval requires
unduly long computation time to obtain the solution. Therefore, adequate
sampling time interval must be chosen for the analysis of the transients,

and a certain theory of error evalution of numerical calculation becomes
necessary.

The classical theories® of error evaluation based on the Taylor expan-
sion inform us only of the order of the magnitude of the errors, and are
not capable of clarifying the exact value and the nature of the errors.

In order to overcome the difficulty of the classical theories, the authors
have developed a new theory of the error evaluation. In the theory the
numerical calculation of the set of linear differential equations can be
turned into the solution of the set of the corresponding linear difference

euations, which can be solved by means of the matrix technique®® and
the z-transform.?®
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The new theory, discussed in this paper, can be used to choose the ade-
quate sampling time interval for the numerical calculations.

2. The General Form of the Simultaneous Linear Differential Equations
with Constant Coefficients

It is possible to change any set of differential equations into such a set

of equations involving only first-order differential coefficients by writing

the higher-order coefficients as the differential coefficients of new inde-

pendent variables. Therefore, we have the general forms of simultaneous
linear differential equations as

%Jri aa=b, (i=12,+-,m) 2.1),
t=1

where x;=x;,, at t=0.
The set of equations (2.1) may be written in matrix form as

%HA] [#]=[B] | 2.2),

where the initial value of [x] is [«,].

Since the equation (2.2) is linear, and the principle of superposition is
applicable in this case, we may assume that [B] is a constant matrix.
Applying to eq. (2.2) the Laplace transformation yields

s[X(s)]+[AI[X(s)]=[B]/s+[] (2.3),

where elements of the matrix [A] are constant.

3. Numerical Calculation of Ordinary Differential Equations

Although there are many methods of numerical ealculation of ordinary
differential equations, here we discuss the following three representative
ones:

3.1 The Method of Euler
If x is expressed as a function of ¢ by the equation d—jf:f(t, %), the
o

increment 4z in 2 corresponding to an increment 4t in ¢ is given approx-
imately by the equation dx=f(¢, )4t the value of f(i,x) being that at
the begining of the interval 4¢. Thus if (¢, %, are the corresponding
initial values of the argument ¢ and the function #, the first increment
is given by
Az, = f (o, %0)41, 8.1),

where 4t, is the first increment in ¢. Proceeding in this manner, the
value of x corresponding to any value of ¢, say ¢, can be obtained by
dividing the range t,—¢, into » suitable intervals.



12 J. BABA AND S. HAYASHI

3.2 Modified Method of Euler

For an improvement in accuracy, the foregoing method is modified in
the following manner. The above method provides an approximate value
of x at the end of the first interval, say xz; the average of (¢, x,) and
(t, ) gives the middle point of the first interval.

The coefficient %% at the middle point is then multiplied by the incre-

ment 4t¢, thus giving a more accurate value of x, than before. This
value of x, is then used for the second interval, and the process is repeated.

Axlzf(to —‘—g— xo+-;—f<to, xo)Atl)Atl (3.2).

3.3 Thé Method of Runge-Kutta

The Method of integrating the differential equations due to Runge
was later developed by Kutta. The methods used by Kutta in obtaining
. his approximations are the third or higher order approximations. Only
for the forth-order approximations, the results will be illustrated here.

In these approximations, the error is of the order of (4¢)°. The formula
with this degree of accuracy is given by

Axlz_é.(dl+2dl‘+241m+dw) (3.3),

where
A" f(t,, %) 4t

' - 4.t A

o = (1o A2, o )
1

dIH:f<to+’%l”; xo‘l‘%)dtl

AV = F(to+ Aty 2o+ A4t .

4. The Formal Solutions of the Simultaneous Linear Differential Equa-
tions with Constant Coeffictents
If the set of equations (2.1) has constant coefficients, the elements of
matrix [A] are constant. In this case the solution of eq. (2.2) is

[e]=[A] Y([I]—e“)([B]—[A][@])+ ] (4.1),
where ‘
[I]: unit matrix
=[] — [A]t+-h[‘24']2 tz———[‘;’]s P 4.2).
If then = characteristic roots (+=1,2,---,n) of the n-th order square

matrix [A] are distinet, then, using Sylvester’s theorem the expression
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(4.2) can be written in the form:

o= S1e [ K(2,)] 43),
where
(kG="11" A=A mryp (4.4)

and the characteristic roots 2,’s satisfy the equation
det {4,[1]—[A]}=0 (r=1,2,---,m)

2=t +Jv,
., v,; real number ji=—1.

Substituting eq. (4.3) into eq. (4.1) yields
o] =437 - 3047 ([ A=A s e

v A4 (4.5).
Applying the Laplace transformation to eq. (4.5) gives
[xe@1=L 4 5 [P (46),

" s+ gy,
where
[a)=[4](B]
[8,1=—[41""] CALE Bt =10,

sxr A,—2,

5. The Evaluatibn of Errors of the Solutions obtained by the above
Methods

5.1 The Method of Euler

Applying the method of Euler to the set of equations (2.1), we get the
corresponding set of difference equations:

{xi(t—l-i]tz ; (t)}+ Z‘,a;”xj(t) b, (i=1,--,n) (5.1).
The set (5.1) may be written in matrix form as
&W_Aﬁ—i@ﬁ+ [A[2(t)]=[B] (5.2).

Applying to eq. (5.2) the z-transformation yields
(=D[X(®)]
At

4

where [#,] is the initial value of the column matrix [2(¢)] and [X(=)]
denotes the z-transform of [x(¢)].

1

Putting p= z; , eq. (5.3) may be written in the form:
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B
PLX()]+AIXE] =2 1) G4
Remembering that the solution of eq. (2.3) is given by (4.6), we get
the solution of eq. (5.4) in the form:

=2 Ly 2 5 (5] 5.
O T A 5

Substituting p= z—1 into eq. (5.5) yields

o % < (8,17
[X(z)]—Ean— gz (1 p, 4t — v, At) (5.6).

Then, referring to appendix 1.1, we now have the inverse z-transform
of eq. (5.6)

[a(2)]=[a]+ 2: [8,] e # (cos vit—j sin »t) (5.7).

Comparing eq. (5.7) With eq. (4.5), it can be said that the solution of the
original equation is distorted at the application of the method of Euler,
in such a manner that ¢ and v, are in the solution instead of g, and v,.

5.2 Modified Method of Euler

Applying the modified method of Euler to eq. (2.1), we get the corre-
sponding set of difference equations:

frt+AD—a(D} | Zaw{x(tJrAt)—i—@(t)} b (i=1,2--,m) (5.8).

4t
We may write eq. (5. 8) in matrix form as
[aict 40 2] 1 L 1 4] [t + 49+ (] =B (5.9).
Applying to eq. (5.9) the z-transformation yields
1+ 2 o]+ 24T

(5.10),
where [#,] is the initial value of [#(¢)] and [X(2)] denotes the z-tranform

of [x(¢)]. Multiplying by —i—i«, we obtain
2(z—1)
(1) [X(x)]+[AI[X(2)]
_ 2(z—1) y [B] N ® _ "
Tz i) [ 5o—1) +[®OJJ er1{[19] [A][=]}  (5.1).
dt(z+1)
the eq. (5.11) may be written in the form: ‘

2(z—1)

Putting p= ,
R e )
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] 2z j[B]
X@)]+[A][X A + [, Bl —[A][=,

Since the set (5.12) is linear, the solution is equal to the sum of the
solutions of the following two equations:

IXEIH AN @I= 3 2 (M) 619

and
(5.14).

PLX()]+[AI[Xo(2)]=—— j_l

Remembering that the solution of eq. (2.3) is given by eq. (5.6) the solu-
tion of eq. (5.13) may be written in the form:

__ 2 [a] | < [5,]
1= At(z+1){ 7 T2 p+m+1’vr} 6.15).
s _ 2(z—1) . .
Substituting p—m into eq. (56.15) yields
(X&) =[a] 2t 3 L2 ]z — (5.16).
z—1 = < + mﬂwdt) (1_ /A,ZJDTAQ

According to the same consideration, the solution of eq. (5.14) may be
written in the form:

_ —1 2z La]— [%] [B,]
K== U ) D
Substltutlng Pp= Azt((z +11)) into eq. (5.17) yields
[X@)=——2{la]~[e]+ 3] RO Kt S R
mﬂw gy,
1 O e )
(5.18).

Therefore, using eq. (5.16) and eq. (5.18), we obtain
[X(2)]=[X(2)]+[X(2)]

= 2 S [5.1z _ o
A 1 v g z+1 {[ J=lwd+ L[ﬁ ]}

2 (5.19),
1_|_ /"r_gypr At

Z2—

then, remembering that [xO]:[a]—l—i} [8,], eq. (5.19) may be written in
r=1
the following form:
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(X@]=La] o3 — (5.20).
1A gy
2

1+ Aur_gjvr At

Referring to appendix 1.2, we obtain to solution of eq. (5.9) in time domain,
that is,

[a()]=[al+ 3] [8,]e"*" (cos vit—j sin /1) (5.21).

Comparing eq. (5.21) with eq. (4.5), it can be said that the solution of
original equation is distorted at the application of the modified method
of Euler, in such a manner that . and ». are in the solution instead of
¢, and v,.

5.3 The method of Runge-Kutta

Applying the method of Runge-Kutta to the set of equations (2.1), we
get the corresponding set of difference equations:
Ao, =b,—>a;,x,)4t
7

I
A, = b,—>] aij<xj—}—wd—2ﬁﬂ 4t
J

=4~ L (Say )4t

IT
Amxi: bi—Zai](ijr 4290;‘ >Jdt
L J

1 1
3(; a4 ) At + Z(%‘, Zk a; a4, At
AV = [b— S a (r,+ 4)] 4
J
1 1
— 2a—(S) aijAIx].)AtJrE(g S0, 85 1~ (ST S 0,040, 85)48,
therefore,

xi(H—At)—xi(t)=%(Alxi+2_/1Hx.;—}—211“1xi—}—dwx.;)

=A%, —

=Byt — (S0, (40 (SIS0, b (40— (SIS0, (A1)
—{(Sap)at—L(5 D008+ (S5 ety

——2%(2 3paps a”ajka“amwl)(dt)‘*} (=12, -, m) (5.22),

The set (5.22) may be written in matrix form as

[2(t44t) —a(t)] =LK {[B]—[Al[«(®)]} (5.23),
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where

[K]=[I]At—%[A](dt)“r%[A]%At)‘*—i[x‘l]s(dt)“ (5.24)

[I] : Unit matrix.
Applying to eq. (5.23) the z-transformation yields

(e=DIX(2)]=[KI[B]_* - —[KI[AILX()]+4[x]

where [«,] is the initial value of [x(¢)] and [X(z)] denotes the z-trans-
form. Putting p=2—1, eq. (5.25) may be written in the form

PLX@ I+ KA @1 = (B ] 526)

Remembering that eq. (4.5) is the solution of eq. (2.3), we get the solu-
tion of eq. (5.26) in the form:

[X(2)]=[KA]'[K] [ng

(5.27),
n _ 8=1,2,---,71 ~; I . KA
—egyrkar [T AL kR - kAl L
r=1 s¥r Ar— Ag p+ A
where 2/ is the characteristic root of the matrix [KA], that is
det {Z/[I]—[KA]}=0 (r=12,---,n) (5.28).

Referring to appendix 2. the relation between i, and 2,, the characteristic
root of the matrix [A4] is

2= (4t)2,— (A;)2zz+ ("?3 2 (gfzﬁ (r=12---,m) (5.29),

and referring to appendix 3,
8§=1,2,+++,m XQI:I]—[KA] hs:l,z,...,n ZS[I]'-[A]_
LI r—a 1L A, —A,
Since the matrix [K] is the polynomials of the matrix [4], [K] and
[A] are commutative. Then we may write eq. (5.27) in the form:

[X@)=[41(B1 =% (rag- " ALL=TA

r=1 sx7r 28_.27

(5.30).

1 (5.31).
B[4
(LB1—[A](wT) ]
Substituting p=z—1 into the above equation yields
X()]=[a]—2— 3 [B-12 5.32).
(@)=l 3y LA (5.:2)

Referring to appendix 1.3, we have
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[ae(t)] =[]+ S1[8,] e *“(cos vit—j sin v/t) (5.33).
r=1

Comparing eq. (5.33) with eq. (4.5), it can be said that the solution of
the original equation is distorted at the application of the method of
Runge-Kutta, in such a manner that ¢ and v are in the solution instead
of ¢, and v,.

6. The Suitable Time Intervals when the Allowable Error is Given

It is difficult to discuss on the problem of suitable time intervals in
general. Here, we study this problem for some simple cases, from which
general conclusion will be derived to some extent.

6.1 The Application on the Method of Euler to the Differential Equation
of the First Order:

de |, «
2+ 2 =0,
dt + T

Referring to appendix 1.1 (a) the error in time constant is given in
the form:

4t
2T
100
50
30
N
<

Number of Divisions N

0.2

| | I ! !

Ll ] 1 !
001 0.02 005 041 02 03 05 1 2 3 5 10
Errors € (%)

041

Fig. 1. The relation between the errors and the number of divi-
’ da

dt-l—x:O.

sions, calculating the equation
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In order to keep the error within the allowable error, it is required to
adopt the time interval as

At<2Tey X

where ¢, is the allowable error. The number of divisions corresponding
to this time interval is given in the expression:

_ 1 100
At ZeT

Fig. 1 shows the relation between the number of divisions N and the
allowable error g, in the case T'=1.

6.2 The Application of the Method of Euler to the Equation:
-l—wx 0

d 2
Referring to appendix 1.1 (b) the rate of divergence and the error in
frequency are given by the expressions:
a:e’””‘”—l, e :M .
A

In order to keep the frequency error within ¢, it is required to select
the time interval as

e, X—-—
\/100 100

200
100
Bl
il 50
< 30
=
o 20
<
(o]
@
=10
(o]
G-
° 5
—
L]
€ 3
2 2k
1 I 1 1 | 1 ! I i !
001 003 005 04 02 03 05 1 2 3 5 10

Errors & or d (%)

Fig. 2. The relation between the errors and the number of

2,

divisions, caleulating the equation —UfiT—HJ 0.
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Then, the number of divisions corresponding to the above time interval is
1 ) 2xf 36.3f

N=—> _—_X10="2LXx10=""—

TR V3¢, Ve,

Fig. 2 shows the relation between N and ¢, in the case w=1.

6.3 The Application of the Modified Method of Euler to the Equation:
de | «
A )
dt + T
Referring to appendix 1.2. (a), the error in time constant is given in

the form:
1 (At >2
e=— (=) .
12\ T

The length of time interval which keeps the error within the allowable
errdr is given in the relation:
At<y12¢, Tx 100 .
Then, the number of divisions corresponding to the time interval is
N=Lo 100 _o5g 1 |
4t T V12, T Ve, T
Fig. 1 shows the relation between N and ¢ in the case T=1.

6.4 The Application of the Modified Method of Euler to the Equation:
d*x
dt?

Referring to appendix 1.2 (b), the rate of divergence and the frequency
error are given in the form:

+o?x=0

a=0, ef=—i1—2—(wdt)2.

The number of divisions which keeps the frequency error within ¢, is
given in the relation:
Nl /100, _2zfx10 _ 182f

4t ~ Y 12¢, J12e Je

Fig. 2 shows the above relation in the case o=1.
6.5 The Application of the Method of Runge-Kutta to the Equation:

Referring to appendix 1.3 (a), the error of time constant is written in

the form:
120\ T T/
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The number of division which keeps the error within ¢, is given in the

relation:
Nexp(— 1 >2 1 = 0‘26 <N:L>.
AN /7 4J12¢, T 45T At

Fig. 1 shows the above relation in the case T'=1.

6.6 The Application of the Method of Runge-Kutta to the Equation:
d*x
dt?

Referring to appendix 1.3 (b), the rate of attenuation and the frequency
error are given in the forms:

+ =0

d=— L (wdty, &={24D"
144 120

The length of time interval which keeps d within g, is given in the relation:

1445, ., 5
Atg\/TOan_’

@

then, the number of divisions corresponding to the above time interval is
1 100w f
Ny=— >,/ Y x@w=84,/Lf
T TV 14as, " \/50
The length of time interval which keeps the frequency error within ¢,
is given in the relation:
<,/

The number divisions corresponding to the above the intervals is

1 » 6
N:—zizv_/;: .
TN
The relation between N; and ¢ and that between N, and ¢, are shown in
Fig. 2.

20g, 1
100

@

7. Conclusions

The characteristic of the solutions of the simultaneous linear ordinary
differential equations with constant coefficients can be described by such
characteristic constants as the time-constants and the frequencies. With
special regard to these characteristic constants, the authors studied the
problem of errors due to numerical calculation. The results of this study
give the suitable time intervals when the allowable errors are given.

In many engineering problems, it is adequate to keep the errors within
1 percent. The suitable time intervals for above requirements are shown
in Table 1. In the section 1, we assumed that B is the constant matrix,
however, the results of- this study may be extended to the general cases
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in which elements of B are given in the explicit functions of time ¢.

Table 1. Suitable time intervals required to keep the errors of time
constants and that of Frequencies within 1 percent.

The method of numerical calculation The suitable time interval 4¢
. T min 1 ' W)ﬁﬂ )
The modified method of Euler m1n< 5 ° 207 min
The method of Runge-Kutt in(Tmi’i *—1—>
e method of Runge-Kutta m 5 * 10/ min

Tmin: The Minimum time constant in the system.
f min: The Minimum frequency in the system.

The paper discusses only about the truncation errors; the round-off
errors are not discussed. However, when the time intervals for computa-
tion are determined by the above criteria, the round-off errors are much
smaller than the truncation errors, and it is sufficient to consider only
about the latter errors.
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Appendix 1 The inverse z-transformation of X(z)

1.1 The Method of Euler
_ the inverse-transformation of the equation X(z)=
Putting

2
2—(1—pdt—vdt)
e— ¥+ 3" 4!521——/,5At—jydt,
that is,
., 1 .
wH= —Eln(l—/xdtvjvdt)

we may write the X(z) in the following form:

- *
z—e—C+5d 4t

X(z)=
Then, applying the inverse z-transformation to the above equation yields
a(t)=e— W+

1.1(a) In the case: v=0.
In this case, we have

’ . /___L -
W= yr In (1— pedt)
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that is,

S TN el )
gy pedt)_p<1+ SAt),
v'=0

The time constant 7' is given by the inverse of ¢ then

oL 1

T 4t
g p(1+€‘dt> T< 2T>

In this case, 7" is in the solution instead of the exact time constant 7. Then the error in
the time constant is
At

fTar

1.1(b) In the case: u=0.
In this case, we have
Sy s 1 . 1 . 1
prp= i In (1—gvdt)= —-Evgdt—mv[l—é—(vdt)z] .
Although the exact solution is e7*?, the solution obtained by the method of Euler is
e—_; [ ae] v [1_,§,(y4z)2]t
In this case, the rate of divergence and the frequency error are written in the forms:
a=e"*40—1,

= -;:(vdt)‘z.

1.2 The modified Method of Euler
the inverse z-transformation of the equation
z

X=)= <1 ?H4-gy At)

N o2 )
(1+ﬁ”” At)

z—

Putting
1"‘M’At
o= (Wit =
1+ /«!+3v At
that this
1—£ J;J” At
f iy =—"11n

4t 1+ /H—ju sty

we may write X(z) in the form:

P P
X@=" i -
Then, the inverse z-transform of X(z) is

B(t) =~ +3,
1.2 (a) In the case: p+0, v=0.

In this case, we have
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1-£ 4t
P 1 2
prp=——rln v
1+4-4¢
2
that is
1—E4
#fz_z%l ‘Z = 1445 L 5 (edor], v=o.
145 4t

The time constant is given by the inverse of y; then we get relation about time constant:

T'Zfzy[l—if:ql 12(41,*’:)2]

T2 (”At)”]

Then, the error in time constant is given in the form:

1.2(b) In the case: p=0, v=+0.
In this case, we have

1—2 4
yg+iv=—""I 2
S S
2
that is,
e 2 (vdt)
©=0, v'= Att

Then, the rate of divergence a and the frequency error ¢ are given in the forms:
=0 oL
a=0, g= 12 (vdt).

1.3 The Method of Runge-Kutta

the inverse z-transformation of the equation

2
Putting
e~<p'+j»/>4t4t=24(__1)n (f‘"’j”):”(dt)" ,
n=0 !
we may write X(2) in the form:
X(z)= z

Then, the inverse z-transform of X(z) is
x(t)=e~ ¥ +5:"2,
1.3(a) In the case: p#0, v=0.

In this case, we have

(ﬂdt) (#At5)

e~ (#4422 120’

e~ +j- 'm—z( J A

that is,
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, 1 (pdty (pdt)*
”:—Eln(ewur 120 ) ”(1_ 120 >ew>’

v'=0.
The time constant 7' is given by the inverse of p; then we have

1 1 N AN A
P W S— AR
v, {1_ (CZ 1 At} [ 120\ T
! 120
Then, the error in time constant is given in the form:

1 At>4 2
= — T
€ 120<T ¢

e~ (W +ipdi= é_é—l)nw(ﬁ)n

1.2(b) In the case: #¢#=0, v+0

(gvdty _ Gvdt)®
120 720

o]

N (gvdey | (gvde)®

=e ’“[H 120 T 144 ]

(ijt)5+ (w4t) 1
120 T 14d

:exp{ —jvdt<1 —%?-_j%%s_ﬂ ’

~ v it

~ep—ijvat exp

that is

2 Nm(vdt)"’

=[5

Although the exact solution is e/, the solution obtained by the method of Runge-Kutta is
given in the expression as

_(wan)d (vatt
o 1at 1 120 o]
Then, the rate of attenuation 6 and the frequency error e are given in the forms:

ad
gmio O, e
120

Appendix 2 Characteristic Roots of the Matrix [KA]

4 and 7 denote the characteristic roots of the matrix [A] and [KA] respectively. The matrix
[KA] is given in the foam as

(At) (At)

—[A]*+ 5 [AT*~
Applying Frobenius’s theorem, which states that if 4 is the characteristic root of the square
matrix [A], the characteristic root of P(A), a polynomial of [A], is given by P(4), 4, can
‘be written in the form:

(At)

[KA)=[4t][A]- LA

i (de3 (4ty? 4t
A T(At))\,—— 21 A+ 31 A2 — 11 At
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Appendix 3 The Proof of the Equation
=L2ooom AS[IT—[KA] _ s=b2oen A[I]—[A]
s‘g 23/ - /27'/ - SJSFI?‘ /zs - 27'
Using the result of appendix 2, we have the equation as
S:I’ﬁ"’” ATI]-[KA]

A A=
B (0 L v (PSR (PO AR
= U e (At)3/. ()2
o (48— ("” ey MO (AU —-{(At)lr_
LAl (At)3[A]f_ (At)‘[A]”‘_}
21 3! 41
(432> (dPA2 (th)“lr‘*}
2t 83l T 4l
TnALLZLA] [A” m[ésj,
sxr

where

(1= T+ TAD At G (LT + 2, AT+[AT) A

[0s]= 1 1
+§-(23+ZT)AH— —6~(ls + A+ 2,2 48

—?14'(183[[] +AS[ AT+ ALAT+ LA

S A3A Rede 4 2

Using the identity as
[4]_[A]=a[I]

— o +[I]
[0s] may be written in the form:

AL AD = GPT 1+ A2, 1= 2L A]-[AT)
[9.]= -
1

SOk it O+ A2 A

F o G T TT+ 2L T4 2,470 1] = 2L AT~ AL AT~ [ AT)

e 1]
"éz(233+2s,‘17'+ Zslrz‘i‘z'ra)dtg

that is
[3:1=ALT]1-[ADF(A)+[T],
where F's(A) is a polynominal of finite degree in the matrix [A]. Then, we have

T AUEEAL T AU g - papmay + 0y ]

s];l; 231—27‘/
_e=lenn ] n B s=.20m Q[ T]—[A]
= s,gl{zsm [AB R+ A,

sxr As

where F(A) is a polynominal of finite degree in [A].
In the above equation, A,” are the characteristic roots of the matrix [A]. Then, applying
Cayley-Hamilton’s theorem yields
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(MIT—[ADQLIT-[AD- - AL I]-[AD=0,
therefore, we have the equation as
8§=1,2,+04, M ZS’EI]—[KA] _s:1,2,m,n ALT1-TA)
A e - N o

Appendix 4. Truncation errors vs round-off errors
An ordinary differential equation of the harmonic oscillation type %%er:o under the
initial condition {SU:O, %:0} is solved by means of a digital computor (5 digits. floating
decimal) using the method of modified Euler and the result of the computation is shown in

Table.

Table II. Numerical Errors <Modiﬁed Euler method N=20, At:z’i)

20
A 2% Fy° amplitude tan~! 2/y (deg) (Phase) Phase error (deg)
True Com- Theo- True Com- Theo- Com- Theo- B—A
value puted retical value puted retical puted  retical — B
value value value value value value (%)
(4) (B) ”

0.31416 1.0000 1.00006 1.0000 18 17.854 17.852 0.146 0.148 2.7
0.62832 1" " " 36 35.708 35.704 0.292 0.296 1.3
0.94248 ” 1" " 54 53.562 53.556 0.438 0.446 1.8
1.2566 " " " 72 71.417 71.408 0.583 0.592 1.5
1.5708 " " 7 90 89.271 89.260 0.729 0.740 "
1.8850 " " " 108 107.13 107.11 0.87 0.89 2.2
21991 " " " 126 124.98 121.96 1.02 1.04 1.9
2.5133 " " " 144 142.83 142.82 1.17 1.18 0.9
2.8274 " " " 162 160.69 160.67 1.81 1.388 1.5
3.1416 " " " 180 178.54 178.52 1.46 1.48 1.4
3.4558 " " " 198 196.40 196.37 1.60 1.63 1.8
3.7699 " " " 216 214.25 214.22 1.75 1.78 1.6
4.0841 " " " 234 232.10 232.08 1.90 1.92 1.0
4.3982 " " " 252 249.96 249.93 2.04 2.07 1.5
4.7124 " " " 270 267.81 267.78 2.19 2.22 1.4
5.0266 " " " 288 285.67 285.63 2.33 2.37 1.7
5.3407 " " " 306 303.52 303.48 2.48 2.52 1.6
5.6549 " " " 324 321.38 321.34 2.62 2.66 1.5
5.9691 " " " 342 339.23 339.19 2.7 2.81 1.4
6.2832 " " " 360 357.08 357.04 2.92 2.96 "

As shown in Table II, the computed value is nearly equal to the theoretical value and this
means that the round-off errors are much smaller than the truncation errors.



