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The Method for Testing Randomness and Transforming
Distribution of Random Number Utilizing
Random Walk Simulation*

TADASHI ISHIKETA**

1. Introduction

The three-dimensional random walk simulator, which is a sort of computer for
Monte Carlo methods, has been constructed at Osaka City University by the
author and others.” Many digits of a equi-distributed random number are used
in a random walk simulation, and we used to carry out only the frequency test
for the random numbers used for the simulation. This is the simplest test, so
that it gives us only one side information of randomness.

In order to obtain much information about randomness, a new method for test-
ing randomness of random numbers utilizing the random walk simulation is devised
by the author. Moreover, the method for transforming distributions of random
numbers is proposed.

2. Random Walk Simulation
2.1. Probability function U(P—Q:)
An outline of the random walk simulation is as follows:
Let @ be a simply connected domain with a boundary I" of an arbitrary shape.
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Fig. 1. An example of a random trip for case of two-dimensions.
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As shown in Fig. 1, the domain includes small squares with a side /, and the
boundary I' consists of a set of lattice points @: (i=1,2,---, n).

A random walk point (r.w.p.) being at one point of the lattice can go to any
one of the four neighboring points, of the lattice with equal probability (1/4)
among four directions for case of two-dimensions, according to the instruction
(with a form of a random number or a random signal, such as +X, —X, +7Y,
and —Y, which defines one direction of four neighbores) sent from the random
number generator. A r.w.p. strats from a fixed lattice point P(x, y) in the domain
@ and walks along the lattice lines. When a r.w.p. arrives at a lattice point );
on the boundary I', we terminate the random trip. An example of a random trip
is shown in Fig. 1.

Let P; (j=1,2,3,4) be the four neighboring points of P(x,y) and U(P—Q))
be the function representing the probability that a r.w.p. starting from a point
P(x,y) arrives at a lattice point € on the boundary I". The function {P—Q))
is one-fourth of the sum of each probability that the r.w.p. starting from each one
of the four neighboring points of P arrives at the point Q..

Then we have
1 4
p 2 UP—Q)=UP-Q). (1)

Fest
The coordininates of point P; are following.

Pl: (x+h’ y), PZ: (x9 y+h)
Py: (x—h, v), Pi:(x, y—h)

We have the following equation of the function U provided that the cell length
of the lattice, A, is sufficently small:

o+ 5 UCPG+h, 9)— Q1 —2UCPs Q)

+ ULPs(x—h, )= Q]+ ULPux, y+h)—Q:)
—2UCP(x, y)— Q)+ ULPy(x, y—h)—Q:]}

1/ U | o*U 1
:Z< ox* T oy*? )EZAUZO' (2)

This Eq. (2) is nothing but the Laplace’s differential equation. There are sev-
eral methods of numerical calculations to evaluate the function [/, such as:

(i) Liebmann’s method,®

(ii) Mass division method® (Explosive method),®

(iii) Monte Carlo method.®
As the methods (i) and (ii) are both deterministic, we call them the analytical
method. On the contrary, the method (iii) is stochastic, so we call it the experi-
mental method. From now, we denote values by the analytical method such as

U(P—@Q;) and those by the experimental method such as [(P—@Q)) (estimate).
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2.2. Example of calculation

We chose, as an example, a square boundary for I" and set the starting point
P on the center of the domain, for making easier to treat analytically and to
keep high symmetry; and then calculated the value of U(P—):). On the other
hand, we got experimentally the value of ﬁ(P—>Q,-) from results 10,000 random
trips. In Figs. 2 and 3 we show the value of [(P—@Q:) and U(P—Q.). The
confidence limit of the values ﬁ(P—»Q;) are estimated by the central limit theorem.

3. Method for Testing Randomness
3.1. Principle

The experimental value 0(P~+Q.~) which is obtained from the above mentioned
simulation of random walk process using complete random numbers or equi-
distributed random numbers should coincide the analytically calculated value
UP—@). Accordingly, if we simulate the random walk process in the same way

using random numbers to be tested and we carry out y? test between the value
of U(P—Q:) and that of U(P—Q):) obtained from the simulation, then we may

M
Q: Qs Qs / U(P—Q:) G(P—’Qi)
method (i) (ii) (iii)
Qs Qreeveveenniens 0.0625 0.06250 0.062
Q- P Qs oereeereenene 0.1250 0.12500 0.126
Q (AR 0.0625 0.06250 0.062
QIZ Qll QlD
(a)
/F’
Qs Qr Qs Qs Quo U(P—-Qi) /L\I(P——'Qi)
method (i) (it) (iii)
Qs LA PYRTPIPO 0.0289 0.02885 0.029
Q. Quzevererrennnnns 0.0577 0.05769 0.057
Qs P [AFERTRIITRRRN 0.0769 0.07692 0.077
Q- Qg veveerenenens 0.0577 0.05769 0.057
Q Qis evereremnvnnes 0.0289 0.02885 0.029

QZO Q19 QlB Q17 QIG
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¥

Qs Qs Qi Qu Qiz Qu Qu/ U(P-Qi) G P-Qqi)
method ﬁ? (iii)
Q: [« WERTBIREIIS 0.0165 0.01654 0.017
Qs Qug ereerreee 0.0331 0.03309 0.033
Qs T PR 0.0478 0.04779 0.047
Q P Qua +reereeeenees 0.0552 0.05515 0.055
Qs Qug errereeees 0.0478 0.04779 0.047
Q: Qug rrererereeeens 0.0331 0.03309 0.033
Q Qay weeeeereenenes 0.0165 0.01654 0.017

Qs Qz Qz Qus Qo Qus Quz

(c)
v

Qi Qu Qz Qs Qu Qis Qus Qu Qw/ U(P-Q)  U(P-Qi)
method (i) Gi) (i)
Qs Qupvemerreeneence 0.0107 0.01070 0.010
Qs Qaoeerevsennenes 0.0214 0.02140 0.020
Q [ P 0.0316 0.03159 0.032
Qs Qagreeesenens 0.0397 0.03973 0.040
Qs P Qaseovvererennnee 0.0432 0.04317 0.044
Q Qas wvrvreninenns 0.0397 0.03973 0.040
Qs o & LR 0.0316 0.03159 0.032
Qe Qs evneennnnnns 0.0214 0.02140 0.020
Q Qereveerinenns 0.0107 0.01070 0.010

Qs Qss Qs Qss Qsz Qar Qa0 Qoo Qas
(d)
Fig. 2. Values of U(P—Q:) and U(P—Q.).

evaluate another side of randomness of random numbers to be tested. This is the
principle of the method for testing randomness utilizing random walk simulation.

3.2. Results of experiment

We made an experiment to test randomness using a square boundary shown in
Fig. 2 (a). In the experiment, we performed 1,600 random trips and used 7, 217
digits of random numbers. In Table 1 we show the values of U(P—):), the
values of U(P—:), the absolute values of difference between U(P—Q:) and
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U(P-Qi) 0(P-Qqi)

7 method (i) (ii) (iii)
Qa/ ........................... 0.0833 0.08333 0.0835
Q: Qteeiiiiiieeeeiiiiene, 0.1667 0.16667 0.1662
Q LS R O 0.0833 0.08333 0.0835
Qg QG
(a) N
Qs r U(P—Qi) U(P—Qi)
———t—
method (i) (ii) (iii)
Qe 0.0357 0.03571 0.0359
Qs Qs 0.1071 0.10714 0.1070
Q- Qoo 0.1071 0.10714 0.1070
Q. P Q7 weveennnn 0.0357 0.03571 0.0359
Q12 ) Qs
Qu Qs
(b) Q1o p UPP—Qi)  0(P-Qi)
method (i) (ii) (iii)
Qs e, 0.0189 0.01891 0.0187
Qs Q6eeniriiniiiieinininns 0.0672 0.06723 0.0674
Qs Q7 e, 0.0966 0.09664 0.0962
Qe Qoeevveeenne 0.0672 0.06723 0.0674
Q P Qs+-0.0189  0.01891 0.0187
Qlﬁ QIO
le Qll
Q14 le

() Qis Fig. 3. Values of U(P—Q.) and U(P—Q).



64 T. ISHIKETA

[7(P—>Q,-) and the values of 2. In Table 2 we show the results of the frequency
test which we carried out at the same time. We denote the expected value of
probability of occurrence as P, and the experimental one as P. We carried out
% test under the hypothesis that if the values of U(PHQ) coincide the values
of U(P—@):), random numbers are equi-distributed.

As shown in Table 1, the degree of freedom is 11 and the value of y* is 15.24
in this example, so we can see from x* table that the probability is between 0.20
and 0.10. We choose the value of significance to be 0.05 in general, so the above
hypothesis is not rejected.

Simulally, we carried out y? test under the hypothsis that if the values of P
coincide the values of P, random numbers are equi-distributed. In this case, the
degree of freedom is 3 and the value of y* is 3.22, then we see that the proba-
bility is between 0.50 and 0.30. Therefore this hypothsis also is not rejected.
Consequently, we conclude that these random numbers are equi-distributed.

3.3. Consideration
This method for testing randomness has the following characteristics.

Table 1.
Results of random walk simulation.

Boundary Point UP—Qy) U(P-Qy) -0 Z
Qs 0.0625 0.0569 0.0056 0.81
Q. 0.1250 0.1219 0.0031 0.13
Q; 0.0625 0.0700 0.0075 1.44
Q. 0.0625 0.0494 0.0131 441
Qs 0.1250 0.1219 0.0031 0.13
Qs 0.0625 0.0663 0.0038 0.36
Q; 0.0625 0.0588 0.0037 0.36
Qs 0.1250 0.1244 0.0006 0.01
@ 0.0625 0.0631 0.0006 0.01
Q1o 0.0625 0.0719 0.0094 2.25
Qs 0.1250 0.1419 0.0164 3.37
Q12 0.0625 0.0538 0.0087 1.96

Total 1.0000 1.0003 15.24
Table 2.
Results of frequency test.

Random Number P P |P—IA’] 1:
+X 0.2500 0.2504 0.0004 0.00
-X 0.2500 0.2439 0.0061 1.07
+Y 0.2500 0.2476 0.0024 0.16
-Y 0.2500 0.2581 0.0081 1.99

Total 1.0000 1.0000 3.22
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(1) If any periodicity appears in some part of random numbers, either will
happen that the r.w.p. does not arrive for a while at a lattice point @; on the
boundary [, or that the r.w.p. arrives at a particular lattice point for some times.
We can find out periodicity by checking the above situation; whereas we cannot
check such a situation in the frequency test.

(2) If the probability for a particular random number (for instance -+X) to
be generated is higher than that for others, the probability of the r.w.p. going to
the direction which is dertermined by the number (for instance the direction to
go to +.X) becomes high. Consequently, a deviation of probability for a random
number to be generated affects the value of [7(P—>Q,-), and the order of the de-
viation may be estimated from the value.

We may conclude that this method for testing randomness has a function of
the frequency test. This is clear from the results of experiments; for example,
in Table 2 we can see that the probability P for the generated random number
— Y is higher than that for others and that it affects the value of (7([3—>Q11).

Here, we consider the relation between the function [/(P—):) and the proba-
bility P of generating random number. Let the function U(P—@):) have the
variables a, 8, 7 and § which correspond the respective probability of generating
random numbers +X, —X, +Y and — Y and let us formulate the function as
UP—-Q; a, f, 1, 6). For the case of equi-distribution, variables a, 5, 7 and §
should be all 1/4 theoretically, but really, there are deviations da, dB, dy and ds
respectively from all 1/4 in a case of random numbers to be tested. Therefore, in
this case, a function U(P—@Q:; a, B, 7, 0) is rewritten as U(P—Q:; 1/4+da,
1/4+dp, 1/4+dy, 1/44-ds). When da, d, dy and do are sufficiently small, the

function U can be expanded as follows: (Taylor expansion).
UP-Q:; 1/A+da, 1/4+dB, 1/A+dy, 1/4+dd)
— UP-Q:; 1/4, 1/4, 1/4, 1/4)

L, 8U, 08U, ,8U  ,.dU
=da da +dy aﬂ +d/ aT +db 3

o

1 d 0
+2—!<daﬁég—+ ---- +d5‘%*) Ut . (3)

The left hand side of Eq. (3) is difference between the value of {J which is ob-
tained from the experiment and that obtaitend analytically from the numerical
calculation.

On the othere hand, in the right hand side of Eq. (3) if we may neglect the
terms with second order of differentials, we can obtain the magnitude of

da%—{— ------ +d6%. If the first order of derivatives are more than unity, the

deviations da, df, dy and d¢ (which may be fund by the frequency test) reflect
remarkably. Therefore, this method of testing randomness in which the informa-
tion of the left hand side Eq. (3) is utilized is more sensitive than t_he ‘frequency
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test. But, in general, it is not clear whether the first derivatives are more than
unity or not.

4. Method for Transforming Distribution of Random Number
4.1. Principle

If we fix a boundary I, a closed domain @, a starting point P and a set of @,
the values of U(P—@)) are uniquely given. In other words, the r.w.p. arrives at
a lattice point ) with probability (P—@):). Thus we may get a signal with
probability U(P—):) on every time the r.w.p. arrives at the lattice points €); on
the boundary I', and we may consider the signal as a kind of random number.
Moreover, if we add the signal with probability U(P—@:) to another signal with
probability U(P—@Q;)(i=j), we may get the signal or random number with pro-
bability of the sum of U{P—Q:) and U(P—Q);). Therefore, we may produce
random numbers whose distribution f is any type (say, normal type or Poisson
type etc.) by means of making adequate combinations of values of U(P—@):) and
fitting the distribution of combined values to the distribution f. Thus we can
transform the equi-distributed random number into the random number with any
other distribution. This is the principle of the method for transforming distribu-
tion of random numbers utilizing the random walk simulation. Several examples
of transformation are shown below.

Table 3.
Combination of U(P—@:) for transformation of equi-distribution to normal distribution.
Range of 2|1 1 Combination of U(P—Q Citaaf | Setting
ange of x [?n<x<*§ (n+1>:l ombination of U(P—Q:) U?l;l—iq());) Frror
—oo~—3.0 0.001 —_— 0.000 0.001
—3.0~—25 0.005 e 0.000 0.005
—25~—20 0.017 U(P—@Qys) 0.017 0.000
—2.0~-15 0.044 U(P—Qq) 0.047 0.003
—1.5~-1.0 0.092 U(P— Q1)+ U(P— Q) 0.094 0.002
—1.0~—-05 0.150 U(P— Q1)+ U(P—Qyp)+ U(P—Qy) 0.149 0.001
+ U(P—Qs5)+ U(P— Q)
—0.5~0 0.191 U(P—-Qy5)+U(P-Q)+ UP—Qys) 0.191 0.000
+U(P—>Qs1)+ U(P— Q)
0~0.5 0.191 U(P— Q)+ U(P—Qg)+U(P—Q;) 0.191 0.000
+U(P— Q)+ U(P—Q1y)
0.5~1.0 0.150 UP—Qp)+U(P-Qe)+UP—Q) 0.149 0.001
+U(P— Q)+ U(P— Q1)
1.0~15 0.092 U(P—-Q5)+ U(P—Qy0) 0.094 0.002
1.5~2.0 0.044 U(P—Qy) 0.047 0.003
2.0~2.5 0.017 U(P—Qy) 0.017 0.000
2.5~3.0 0.005 e 0.000 0.005
3.0~o0 0.001 —_— 0.000 0.001
Total 1.000 ‘ 0.996
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(1) Example of transforming the equi-distribution to the normal distribution
(mean: 0, standard deviation: 1) using a square boundary in Fig. 2 (¢).
The theoretical values of occurence probability Prob is given as:

1 1 1 (n»tl X2
Prob [7n<x<5(n+1)]= VZ_—ES,, eXp[—7]dx n=0, £1, +2, ...... )-

In Table 3, we show the range of x, Prob [%n<x<%»(n+l)], combinations of
U(P—Q):), combined values of U{P—()) and setting errors.

(2) Example of transforming the equi-distribution to the Poisson distribution
(mean: 2, standard deviation: 4/2) using a square boundary in Fig. 2 (¢).

-2 9z
Prob [x]:_e.?_ (=0, 1, +rere )

In Table 4, we show values of x, Prob [x], combinations of U(P—Q:), combined
values of U(P—@):) and setting errors.

(3) Eyample of transforming the equi-distribution to the binomial distribution
(mean: 5, standard deviation: 4/25) using a square boundary in Fig. 2 (d).

Prob [szwcx(%ﬂ%)m (x=0, 1, -, 10)

In Table 5, we show values of x, Prob [x], combinations of U(P—):), combined
values of U(P—@):) and setting errors.

4.2. Results of experiment
We carried out 10,000 random trips for transforming distributions using the

Table 4.
Combination of U(P—@:) for transformation of equi-distribution to Poisson distribution.
x Prob (x) Combination of U(P—Q;) C(:)r;lb[ijrz;ﬂfg})ue SE::i)r;g
0.135 U(P—Q,)+ U(P—Qq)+ U(P—Qy) + U(P— Q13) 0.132 0.003
1 0.271 U(P—Qg)~+U(P—Q10) + U(P— Q10)+ U(P— Q) 0.271 0.000
24
+ 2 UP—~Q:)
=22
2 0271 | U(P-Qs)+U(P— Q1)+ U(P— Qo)+ UP— Qyy) 0.271 0.000
28
+ 3 UP-Q)
=26
3 0.180 U(P— Q1)+ U(P— Q1)+ U(P— Q) + U(P— Qy) 0.182 0.002
4 0.090 U(P—Qy)+U(P-Q)+U(P—Q;;5) 0.089 0.001
5 0.036 U(P—-Q)+U(P—Qy) 0.034 0.002
6 0012 | UP-Q) 0.017 0.005
7 0.003 —_—
8 0.001 e
Total 0.999 0.996
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Table 5.
Combination of U(P—Q:) for transformation of equi-distribution to binominal distribution.
x| Prob () Combination of U(P—@Q;) C%’?bgg;i_,vg)“e Setting
0 0.001 — 0.000 0.001
1 0.010 U(P-Q36) 0.011 0.001
2 0044 | UP—Qy) 0.043 0.001
3 0.117 U(P—Qy3)+ U(P—Qug) + U(P— Qyo)+ U(P—Qs4) 0.118 0.001
4 0.205 U(P—‘“’QZA)'*"U(P'*’st)+U(P-’Q27>+U(P—"Qgg) 0.205 0.000
+U(P—Qy) + U(P—Qy)+ U(P— Qss)
22 0.250 0.005
5 0.245 U(P-Qu)+ ,ZISU(P—’Qi)‘l' U(P—@Qs)
i=
6 0.205 U(P— Q)+ U(P— Q)+ U(P—Qg)+ U(P— Q) 0.205 0.000
+U(P- Q1)+ U(P-Q15)+ U(P—Qy3)
7 0.117 U(P—Qs)+ U(P— Q)+ U(P— Qo)+ U(P— &) 0.118 0.001
0.044 U(P—Q5) 0.043 0.001
9 0.010 U(P-@qy) 0.011 0.001
10 0.001 — 0.000 0.001
Total 1.000 1.004

Table 6.
Results of experiment for case of normal distribution.
Range of x Combined Value Experimental Value | |Comb. Value—Exper. Value|
—o00~—3.0 0.000 0.000 0.000
-3.0~—25 0.000 0.000 0.000
—2.5~—2.0 0.017 0.016 0.001
—20~-15 0.047 0.046 0.001
—1.5~—1.0 0.094 0.104 0.010
—1.0~-0.5 0.149 0.151 0.002
—~0.5~0 0.191 0.192 0.001
0~0.5 0.191 0.192 0.001
0.5~1.0 0.149 0.153 0.004
1.0~1.5 0.094 0.091 0.003
1.5~2.0 0.047 0.041 0.006
20~2.5 0.017 0.018 0.001
2.5~3.0 0.000 0.000 0.000
3.0~ 0.000 0.000 0.000
Total 0.996 1.004

three-dimensional random walk simulator.

In Tables 6~8, we show combined

values of U(P—Q:), experimental values, absolute values of difference between
the combined value and the experimental value.

4.3. Consideration
This method for transforming distribution has the following characteristics.
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Table 7.
Results of experiment for case of Poisson distribution.
x Combined Value Experimental Value |Comb. Value—Exper. Value|
0 0.132 0.135 0.003
1 0.271 0.270 0.001
2 0.271 0.273 0.002
3 0.182 0.183 0.001
4 0.089 0.086 0.003
5 0.034 0.034 0.000
6 0.017 0.018 0.001
7 0.000 0.000 0.000
8 0.000 0.000 0.000
Total 0.996 0.999
Table 8.
Results of experiment for case of binomial distribution.
x Combined Value Experimental Value |Comb. Value—Exper. Value|
0 0.000 0.000 0.000
1 0.011 0.013 0.002
2 0.043 0.049 0.006
3 0.118 0.122 0.004
4 0.205 0.223 0.018
5 0.250 0.231 0.019
6 0.205 0.195 0.010
7 0.118 0.116 0.002
8 0.043 0.040 0.003
9 0.011 0.011 0.000
10 0.000 0.000 0.000
Total 1.004 1.000

(1) Because the value of U(P—)) decreases with inerease the number of
partition of a side of a squate boundary, we can fit the distribution of the com-
bined value of U(P—@)) to a given distribution f more exactly.

(2) There is not one to one correspondence between the number of equi-
distributed random numbers comsumed in the random walk simulation and the
number of random numbers with transformed distribation. The efficiency of trans-
formation depends upon the mean number of equi-distributed random numbers per
a trip, that is the means duration of random walks.®® It has been already known
that the approximate value of 7, a mean number of steps 7 in a trip, is given
in the following formular.®

fl= k<—§f—>2 (k: constant)
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Table 9.
Numbers of steps per a trip.
Number of Partition of a Side 7 n Number of Random Trips
4 4 4.51 1,600
6 9 10.62 800 5]
10 25 29.34 5,000 5]
20 100 117.64 10,000
28 196 236.50 2,000

Where R is a radius of circle which surrounds completely the closed domain @.
In Table 9, we show the number of partition of a side in a square boundary,
the approximate value: 7, the experimental value of 7: # and the total numbers
of random trips in the experiment.

Further, together with the results of computing the auto-correlation function of
random numbers after transformation, we concluded that these random numbers
after transforming had sufficient randomness.

5. Conclusion

These methods are originally devised on the standpoint that we utilize the three-
dimensional random walk simulator, but we can perform these testing and trans-
forming of random numbers according to these methods using the digital computer.

There are a few unsolved problems in these methods, those are:

(1) The relation between the randomness of random numbers to the function
U is not analytically clear.

(2) The efficiency of transformation falls in proportion to the number of par-
titions of a side of a square boundary.
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