Information Processing in Japan Vol. 6, 1966

Inversion of Tridiagonal Matrices and the Stability
of Tridiagonal Systems of Linear Equations

TATSUO TORIT*

1. Introduction
It is important to know whether the numerical solution of a linear system is

stable or unstable with the increase of its order. We first invert a tridiagonal
matrix A analytically, and then discuss the stability and instability of the tridiagonal
linear system using the norm | A~!| of A~'. For a certain tridiagonal system we
find a simple criterion of its stability.

2. Inversion of Tridiagonal Matrices
A tridiagonal matrix A of order » is written in the form:

b
as bz Co

An-1 bn—l Cn-1
an b,

For convenience we denote
A:[a’;, bi, Ci] .
From this we consider such a homogeneous linear difference equation of second
order that
a:’xi—1+bixi+cfxi+1:05 2:15 29 ...... » N (1)
dy, Ca3 arbitrary non-zero constants
and we denote two fundamental solutions of (1) by
x®=00, 5, . .... , %D, xnﬂ(”)}
X =(02, 6?,. ... .. s 1@, 0)
where both x.,;° and x,® are always not zero, if and only if A is non-singular
matrix., When aic;=0 for a particular value of §, we can reduce nth order
tridiagonal system to the lower, so we may consider gici*0 for any 4.

(2)
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In matrix notation, we rewrite equations (1) and (2)

PiXi=Xi, - (3)
where
b PYCEIPYE
P,« fent a; a; ) X:
1 0 XY x @

Letting a;; be the element of A~!, we write A~'=(ai;). Suppose that, using the
suitable numbers y,” and y;®, we are able to set

a“_{xim @, =4 (4)
) . -
0@ y® j<g,
In order to satisfy the identity AA~'=] we must have a relation
2D n® ;@ 0
= 1 (5a)
Kia1 D i @ [ =y @ -

from (3) and (4). Applying (3) to (ba) we can obtain another expressions such
that

1
LD @ Y @ it
~ , (5b)
i@ K @ || =y @ b;
Ci-1Ci
W @ @ 1
Xi Xi Yiv1
=| G+ |, (5¢)
2@ ki @ | =y @ 0

Eliminating the non-singular matrix X from the last three relations, we have

2 (2
yi+1( )] ; yi-—l(Z)

+b:

iy
@)
—Yi+1

]+Ci—1

— @ — i ©
That is, both numbers y:V and y:® satisfy the second order linear difference
equation
div1Yiv1 +biyi+ci—1yi—1:O 9 ( 6 )
An+1s Cos arbitrary non-zero constants.
Therefore, in order to know all elements of A~!, we must determine either

boundary conditions or initial conditions of (1) and (6).
So that, putting {=0, # in equations (5a) and (5¢), we get

y® =0, Prp @ =0, (Ta)

e P L (7h)

Y@ = —
Ccox: ¢ Unp1Xn®
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Hence, if we decide two parameters, for example, x;”, xx®, the rests Y0P5 Va1 P

are uniquely determined. This means that the boundary conditions of (6) are
determined.
Similarly, putting j=#, 0 in (5a) and (5c), we have

1 . 1

@A) — @) -

PP =y PP, (8a)
alxu(z) ? Cnns1 [65)

y1(2> @ y"cz)  xa® b

ylu) - x;‘”’ yn“) - PPReEN (8b)

From (7a) and (8a) we have two independent initial conditions of (6)

1
a) — 0 A) e __
o =U, Y=
¥ ’ @%@
and
1
@ =( @ — _
1= n " = .
Ynr , Y Crny @

Thus, when initial conditions of difference equations (1) and (6) are given, their
fundamental solutions can be easily computed.

As we stated above, all elements of A~! are determined by substituting x;V,
x:®, y;P, ;% into formula (4).

For convenience, let us designate the two fundamental solutions of difference

equation (1) anew by

xu):(O, 1, XQ(Dg ...... ’ xn(l), xn+1(1))} (9)
x(Z):(x[)(z), xl(Z), ...... 0 xn—1(2)7 17 0) ’
and similarly for equation (6)
y(l):(Og 17 y2(1)9 ...... 9 yn(l)a yn+1(1)) } (1())
YO =52, n®,. ..... s 1@, 1, 0)
Then, conditions (7b) and (8b) are written such that
C[)yu(Z) =CnXns1 (1), an+1yn+1(1) =a1x0(2> (11)
and
Nn® _ cm® Y1 P _ Cnny @ (12)
@ @ @ @ *
Yo ai1Xo Yn Any1Xn
Consequently, elements of A~ are written by
L xWy® g Wy @ -
o @ " J=
CrXu+1 CoYo (13)
®ij=
@y g ®y® o
@ o ISt
a1Xo Ant1Yn+1

For example, we now consider the inversion of a particular matrix A=[q, b, c].
The characteristic equation (6) is @z®+bz+c=0, and let a, § be its two roots.
Using the formula (13) elements of A~' are given by
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ﬁ—l__a~l ﬁ—(n+l)__a(n+l) ?

an—i+1___‘8n~i+l a,i_ﬁ]' ..
an+1_‘8n+1 * a__‘@ ? 7£Z’ aﬂF‘B.

—i__ =i ~a+j-1_ ,~ntj—1 .
J—c‘1 BTz B a Jj=i
aii =

(14)
—qate

When a=p we first set f#a and next approach § to « in above formula. It
follows that

j_cq,i(l_ J )a,j—ﬁly j=i

n+1
Aij= . (15)
—g-tejl1—__1 > imiml i
a ]( nt1 a ,» ISt
If @ and § are conjugate complex, a=pg=ye¢", then
ol gimit1, SINGsin(n—j+1)0 >
j €07 sinfsin(nt1 7
i = . . .. (16)
gL e -1, SR (n—i+1)fsin 50 ;
sinfsin(n+1)§ ° ° 7

where (n7+1)0 is not an integer multiple of 7.

3. Stability of Tridiagonal Systems of Linear Equations

Let us consider the constant |A| |A~!| named condition number of a matrix A,
from which we can obtain several condition numbers!., If we take the matrix
norm |A|=max 2; for a positive definite matrix A whose proper numbers are 1’s,
we get a well-known P-condition number

__ max A;
" minj

If A is a tridiagonal matrix whose elements are all finite for any order 7, we
can define |A| so as to be bounded. Therefore, in this case it may be considered
that the condition number |A| | A~!| depends mainly upon |A~!|.

Now, we define the stability of tridiagonal systems as follows.

When an arbitrary vector r is added to the right hand side of sth order
tridiagonal linear system Ax=f, we designate the change of x by dx. Let us
consider a suitable positive number ¢>|r|. If the condition

ldx]<Me, 0<M<

is satisfied for any #, then the solution is stable.

From the reason mentioned above, it is a subject for us to clarify the condition
that |A~!| is bounded for the bounded matrix A.

We define here the vector norm by

llxll=H;ax %] 5 17)

where x; is a element of vector x.
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Then we take the norm of the nth order matrix A=(a:;), subordinate to this
vector norm, such as

7
IIAllzmaszzl |ai] - (18)
Next, let us consider the norm of inverse matrix 4! of A, which is non-singular
and tridiagonal. Since elements ai; of A~! are given by formula (13), we have

} . (19)

x[(2)yj(1) n

Anir s D

_’X,'z‘(l)yj(m
2
Coyo( )

|47 [=max 3,

1 j=i

J=i+1
Therefore, the sequences {x:}, {x®} and {y:®}, {y:®} determine whether
[A~'| is bounded or not. The former are the fundamental solutions of second
order linear difference equation (1) and the latter that of (6).
First, we explain the sufficient condition for A=[a:;, b, ¢i] to be unstable.
From the formula (19) and x® =y, =x,? =y,% =1 it is obvious that

) 1 1 }
4 |[2max{ ansynas @] 7 Jeopo®] 20
Hence, | A~!| is unbounded, if one of y.,; and y,® approaches to zero as y—oo.
Between yuy; 0, $5@, xnp1® and x,® we should note that there exists a relation (11).
Next, we describe a special matrix A=[a, b, ¢]. Using the relations (14), (15)
and (16) we get the following simple result:
JA-Y] is bounded if and only if

la|>1>|4], 2y,

where « and 3 denote two roots of quadratic equation @z®-+bz+c=0.
We can write this stability condition in another expression such as

la+cl<b], (22)
where @, b, ¢ are all real.

4. Remarks

In case of a special matrix A=[a, b, c], Nagasaka!® stated that when we solve
the tridiagonal system Ax=f by the elimination method, stable solution is obtained
if the following condition is satisfied

a

a

<1

—

< a1,

where a, B (la|=|g]) are two roots of a quadratic equation z>—bz+ac=0. We can
easily find that this stability condition is the same to ours (21), excluding the
equalities.

For a symmetric matrix A=[a, b, a], Evans and Forrington® showed a condition
b*=4a* which is clearly a special case of |b|=|a+c|, a=c.

Our fundamental view in respect of a tridiagonal matrix may be extended to a
more general band matrix. A detailed description and examples will be seen in

Technology Reports of the Osaka University, Vol. 16 (1966).
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