Inversion of Tridiagonal Matrices and the Stability of Tridiagonal Systems of Linear Equations

TATSUO TORII*

1. Introduction

It is important to know whether the numerical solution of a linear system is stable or unstable with the increase of its order. We first invert a tridiagonal matrix A analytically, and then discuss the stability and instability of the tridiagonal linear system using the norm $||A^{-1}||$ of A^{-1} . For a certain tridiagonal system we find a simple criterion of its stability.

2. Inversion of Tridiagonal Matrices

A tridiagonal matrix A of order n is written in the form:

For convenience we denote

$$A=[a_i, b_i, c_i]$$
.

From this we consider such a homogeneous linear difference equation of second order that

$$a_i x_{i-1} + b_i x_i + c_i x_{i+1} = 0, \quad i = 1, 2, \dots, n$$
 (1)

 a_1, c_n ; arbitrary non-zero constants

and we denote two fundamental solutions of (1) by

$$\frac{\mathbf{x}^{(1)} = (0, x_1^{(1)}, \dots, x_n^{(1)}, x_{n+1}^{(1)})}{\mathbf{x}^{(2)} = (x_0^{(2)}, x_1^{(2)}, \dots, x_n^{(2)}, 0)}$$
(2)

where both $x_{n+1}^{(1)}$ and $x_0^{(2)}$ are always not zero, if and only if A is non-singular matrix. When $a_i c_i = 0$ for a particular value of i, we can reduce nth order tridiagonal system to the lower, so we may consider $a_i c_i \neq 0$ for any i.

This paper first appeared in Japanese in Joho Shori (The Journal of the Information Processing Society of Japan), Vol. 6, No. 4 (1965), pp. 187-193.

^{*} Faculty of Engineering, Osaka University, Osaka.

42 T. TORII

In matrix notation, we rewrite equations (1) and (2)

$$P_i X_i = X_{i-1} \tag{3}$$

where

$$P_{i} = \begin{bmatrix} -\frac{b_{i}}{a_{i}} & \frac{c_{i}}{a_{i}} \\ 1 & 0 \end{bmatrix}, X_{i} = \begin{bmatrix} x_{i}^{(1)} & x_{i}^{(2)} \\ x_{i+1}^{(1)} & x_{i+1}^{(2)} \end{bmatrix}.$$

Letting α_{ij} be the element of A^{-1} , we write $A^{-1} = (\alpha_{ij})$. Suppose that, using the suitable numbers $y_i^{(1)}$ and $y_i^{(2)}$, we are able to set

$$\alpha_{ij} = \begin{cases} \chi_i^{(1)} & y_j^{(2)}, & j \ge i \\ \chi_i^{(2)} & y_j^{(1)}, & j \le i \end{cases}$$
 (4)

In order to satisfy the identity $AA^{-1}=I$ we must have a relation

$$\begin{pmatrix} x_i^{(1)} & x_i^{(2)} \\ x_{i+1}^{(1)} & x_{i+1}^{(2)} \end{pmatrix} = \begin{pmatrix} y_i^{(2)} \\ -y_i^{(1)} \end{pmatrix} = \begin{pmatrix} 0 \\ -\frac{1}{C_i} \end{pmatrix}$$
(5a)

from (3) and (4). Applying (3) to (5a) we can obtain another expressions such that

$$\begin{pmatrix} \chi_{i}^{(1)} & \chi_{i}^{(2)} \\ \chi_{i+1}^{(1)} & \chi_{i+1}^{(2)} \end{pmatrix} \begin{pmatrix} y_{i-1}^{(2)} \\ -y_{i-1}^{(1)} \end{pmatrix} = \begin{pmatrix} -\frac{1}{c_{i-1}} \\ \frac{b_{i}}{c_{i-1}c_{i}} \end{pmatrix},$$
 (5b)

$$\begin{bmatrix} x_{i}^{(1)} & x_{i}^{(2)} \\ x_{i+1}^{(1)} & x_{i+1}^{(2)} \end{bmatrix} \begin{bmatrix} y_{i+1}^{(2)} \\ -y_{i+1}^{(1)} \end{bmatrix} = \begin{bmatrix} \frac{1}{a_{i+1}} \\ 0 \end{bmatrix}.$$
 (5c)

Eliminating the non-singular matrix X_t from the last three relations, we have

$$a_{i+1} \begin{pmatrix} y_{i+1}^{(2)} \\ -y_{i+1}^{(2)} \end{pmatrix} + b_i \begin{pmatrix} y_i^{(2)} \\ -y_i^{(2)} \end{pmatrix} + c_{i-1} \begin{pmatrix} y_{i-1}^{(2)} \\ -y_{i-1}^{(1)} \end{pmatrix} = 0.$$

That is, both numbers $y_i^{(1)}$ and $y_i^{(2)}$ satisfy the second order linear difference equation

$$a_{i+1}y_{i+1} + b_iy_i + c_{i-1}y_{i-1} = 0, (6)$$

 a_{n+1} , c_0 ; arbitrary non-zero constants.

Therefore, in order to know all elements of A^{-1} , we must determine either boundary conditions or initial conditions of (1) and (6).

So that, putting i=0, n in equations (5a) and (5c), we get

$$y_0^{(1)} = 0, y_{n+1}^{(2)} = 0, (7a)$$

$$y_0^{(2)} = -\frac{1}{c_0 x_1^{(1)}}, \ y_{n+1}^{(1)} = -\frac{1}{a_{n+1} x_n^{(2)}}.$$
 (7b)

Hence, if we decide two parameters, for example, $x_1^{(1)}$, $x_n^{(2)}$, the rests $y_0^{(2)}$, $y_{n+1}^{(1)}$ are uniquely determined. This means that the boundary conditions of (6) are determined.

Similarly, putting i=n, 0 in (5a) and (5c), we have

$$y_1^{(1)} = -\frac{1}{a_1 x_0^{(2)}}, \quad y_n^{(2)} = -\frac{1}{c_n x_{n+1}^{(1)}},$$
 (8a)

$$\frac{y_1^{(2)}}{y_1^{(1)}} = \frac{x_1^{(2)}}{x_1^{(1)}}, \qquad \frac{y_n^{(2)}}{y_n^{(1)}} = \frac{x_n^{(2)}}{x_n^{(1)}}.$$
 (8b)

From (7a) and (8a) we have two independent initial conditions of (6)

$$y_0^{(1)} = 0, \ y_1^{(1)} = -\frac{1}{a_1 x_0^{(2)}}$$

and

$$y_{n+1}^{(2)} = 0, \quad y_n^{(2)} = -\frac{1}{Cn\chi_{n+1}^{(1)}}.$$

Thus, when initial conditions of difference equations (1) and (6) are given, their fundamental solutions can be easily computed.

As we stated above, all elements of A^{-1} are determined by substituting $x_i^{(1)}$, $x_i^{(2)}$, $y_j^{(1)}$, $y_j^{(2)}$ into formula (4).

For convenience, let us designate the two fundamental solutions of difference equation (1) anew by

$$\begin{array}{l}
\boldsymbol{x}^{(1)} = (0, 1, x_2^{(1)}, \dots, x_n^{(1)}, x_{n+1}^{(1)}) \\
\boldsymbol{x}^{(2)} = (x_0^{(2)}, x_1^{(2)}, \dots, x_{n-1}^{(2)}, 1, 0)
\end{array}, (9)$$

and similarly for equation (6)

$$\mathbf{y}^{(1)} = (0, 1, y_{2}^{(1)}, \dots, y_{n}^{(1)}, y_{n+1}^{(1)})
\mathbf{y}^{(2)} = (y_{0}^{(2)}, y_{1}^{(2)}, \dots, y_{n-1}^{(2)}, 1, 0)$$
(10)

Then, conditions (7b) and (8b) are written such that

$$c_0 y_0^{(2)} = c_n x_{n+1}^{(1)}, \ a_{n+1} y_{n+1}^{(1)} = a_1 x_0^{(2)}$$
 (11)

and

$$\frac{y_1^{(2)}}{y_0^{(2)}} = \frac{c_0 x_1^{(2)}}{a_1 x_0^{(2)}}, \quad \frac{y_{n+1}^{(1)}}{y_n^{(1)}} = \frac{c_n x_{n+1}^{(1)}}{a_{n+1} x_n^{(1)}}.$$
 (12)

Consequently, elements of A^{-1} are written by

$$\alpha_{ij} = \begin{cases} -\frac{x_i^{(1)}y_j^{(2)}}{c_n x_{n+1}^{(1)}} = -\frac{x_i^{(1)}y_j^{(2)}}{c_0 y_0^{(2)}}, & j \ge i \\ -\frac{x_i^{(2)}y_j^{(1)}}{a_1 x_0^{(2)}} = -\frac{x_i^{(2)}y_j^{(1)}}{a_{n+1}y_{n+1}^{(1)}}, & j \le i. \end{cases}$$

$$(13)$$

For example, we now consider the inversion of a particular matrix A=[a, b, c]. The characteristic equation (6) is $az^2+bz+c=0$, and let α , β be its two roots. Using the formula (13) elements of A^{-1} are given by

$$a_{ij} = \begin{cases} -c^{-1} \cdot \frac{\beta^{-i} - \alpha^{-i}}{\beta^{-1} - \alpha^{-1}} \cdot \frac{\beta^{-n+j-1} - \alpha^{-n+j-1}}{\beta^{-(n+1)} - \alpha^{(n+1)}}, & j \ge i \\ -a^{-1} \cdot \frac{\alpha^{n-i+1} - \beta^{n-i+1}}{\alpha^{n+1} - \beta^{n+1}} \cdot \frac{\alpha^{j} - \beta^{j}}{\alpha - \beta}, & j \le i, \alpha \ne \beta. \end{cases}$$
(14)

When $\alpha = \beta$ we first set $\beta \neq \alpha$ and next approach β to α in above formula. It follows that

$$\alpha_{ij} = \begin{cases} -c^{-1} \cdot i \left(1 - \frac{j}{n+1}\right) \alpha^{j-i+1}, & j \ge i \\ -a^{-1} \cdot j \left(1 - \frac{i}{n+1}\right) \alpha^{j-i-1}, & j \le i. \end{cases}$$

$$(15)$$

If α and β are conjugate complex, $\alpha = \overline{\beta} = re^{i\theta}$, then

$$\alpha_{ij} = \begin{cases} -c^{-1} \cdot r^{j-i+1} \cdot \frac{\sin i\theta \sin(n-j+1)\theta}{\sin\theta \sin(n+1)\theta}, & j \ge i \\ -a^{-1} \cdot r^{j-i-1} \cdot \frac{\sin(n-i+1)\theta \sin j\theta}{\sin\theta \sin(n+1)\theta}, & j \le i, \end{cases}$$

$$(16)$$

where $(n+1)\theta$ is not an integer multiple of π .

3. Stability of Tridiagonal Systems of Linear Equations

Let us consider the constant $||A|| ||A^{-1}||$ named condition number of a matrix A, from which we can obtain several condition numbers^[1]. If we take the matrix norm $||A|| = \max \lambda_i$ for a positive definite matrix A whose proper numbers are λ 's, we get a well-known P-condition number

$$P = \frac{\max \lambda_i}{\min \lambda_i}$$
.

If A is a tridiagonal matrix whose elements are all finite for any order n, we can define ||A|| so as to be bounded. Therefore, in this case it may be considered that the condition number $||A|| ||A^{-1}||$ depends mainly upon $||A^{-1}||$.

Now, we define the stability of tridiagonal systems as follows.

When an arbitrary vector r is added to the right hand side of nth order tridiagonal linear system Ax = f, we designate the change of x by Δx . Let us consider a suitable positive number $\varepsilon > ||r||$. If the condition

$$\|\Delta x\| < M\varepsilon$$
, $0 < M < \infty$

is satisfied for any n, then the solution is stable.

From the reason mentioned above, it is a subject for us to clarify the condition that $||A^{-1}||$ is bounded for the bounded matrix A.

We define here the vector norm by

$$\|\boldsymbol{x}\| = \max_{i} |x_{i}|, \tag{17}$$

where x_i is a element of vector x.

Then we take the norm of the *n*th order matrix $A = (a_{ij})$, subordinate to this vector norm, such as

$$||A|| = \max_{i} \sum_{j=1}^{n} |a_{ij}|. \tag{18}$$

Next, let us consider the norm of inverse matrix A^{-1} of A, which is non-singular and tridiagonal. Since elements α_{ij} of A^{-1} are given by formula (13), we have

$$||A^{-1}|| = \max_{i} \left\{ \sum_{j=i}^{i} \left| \frac{x_{i}^{(2)} y_{j}^{(1)}}{a_{n+1} y_{n+1}^{(1)}} \right| + \sum_{j=i+1}^{n} \left| \frac{x_{i}^{(1)} y_{j}^{(2)}}{c_{0} y_{0}^{(2)}} \right| \right\}. \tag{19}$$

Therefore, the sequences $\{x_i^{(1)}\}$, $\{x_i^{(2)}\}$ and $\{y_i^{(1)}\}$, $\{y_i^{(2)}\}$ determine whether $||A^{-1}||$ is bounded or not. The former are the fundamental solutions of second order linear difference equation (1) and the latter that of (6).

First, we explain the sufficient condition for $A = [a_i, b_i, c_i]$ to be unstable. From the formula (19) and $x_1^{(1)} = y_1^{(1)} = x_n^{(2)} = y_n^{(2)} = 1$ it is obvious that

$$||A^{-1}|| \ge \max\left\{\frac{1}{|a_{n+1}y_{n+1}^{(1)}|}, \frac{1}{|c_0y_0^{(2)}|}\right\}. \tag{20}$$

Hence, $||A^{-1}||$ is unbounded, if one of $y_{n+1}^{(1)}$ and $y_0^{(2)}$ approaches to zero as $n \to \infty$. Between $y_{n+1}^{(1)}$, $y_0^{(2)}$, $x_{n+1}^{(1)}$ and $x_0^{(2)}$ we should note that there exists a relation (11).

Next, we describe a special matrix A=[a, b, c]. Using the relations (14), (15) and (16) we get the following simple result:

 $||A^{-1}||$ is bounded if and only if

$$|\alpha| > 1 > |\beta|, \tag{21}$$

where α and β denote two roots of quadratic equation $az^2+bz+c=0$.

We can write this stability condition in another expression such as

$$|a+c| < |b|, (22)$$

where a, b, c are all real.

4. Remarks

In case of a special matrix A = [a, b, c], Nagasaka^[2] stated that when we solve the tridiagonal system Ax = f by the elimination method, stable solution is obtained if the following condition is satisfied

$$\left|\frac{a}{\alpha}\right| \le 1, \left|\frac{c}{\alpha}\right| \le 1$$

where α , $\beta(|\alpha| \ge |\beta|)$ are two roots of a quadratic equation $z^2 - bz + ac = 0$. We can easily find that this stability condition is the same to ours (21), excluding the equalities.

For a symmetric matrix A = [a, b, a], Evans and Forrington^[3] showed a condition $b^2 \ge 4a^2$ which is clearly a special case of $|b| \ge |a+c|$, a=c.

Our fundamental view in respect of a tridiagonal matrix may be extended to a more general band matrix. A detailed description and examples will be seen in Technology Reports of the Osaka University, Vol. 16 (1966).

Acknowledgement

The author wishes to thank Prof. Kenzo Joh for many valuable criticisms in this work.

References

- FADDEEV, D.K. AND V.N. FADDEEVA, Computational Methods of Linear Algebra, Freeman (1963), 120-128.
- [2] NAGASAKA, H., Error Propagation in the Solution of Some Tridiagonal Linear Equations, The Journal of the Information Processing Society of Japan, 5 (1964), 195-202 (in Japanese).
- [3] EVANS, D.J. AND C.V.D. FORRINGTON, Note on the Solution of Certain Tridiagonal Systems of Linear Equations, The Computer Journal, 5 (1963), 327-328.