Information Processing in Japan Vol. 7, 1967

A Large Scale Parallel Processing Logic Simulation System

Kensuge Takasumva*, Masao Kato*, SHiNjT TAKAMURA*, KATUHIKO ARAT¥,
Avatomo Kanno** aANDp Hipeo IMADE**

1. Introduction

This paper describes a large scale parallel processing logic simulation system
capable of handling 30,000 logic elements with the effective speed of 0.5 second
per clock.

The system was developed and extensively used for the logic design and the
maintenance design of a real time data processor employing 20,000 logic elements
for use in an electronic switching system.

It is the utmost necessity for the processor to have accurate and efficient
maintenance capability to keep it alive at any single fault, which required a com-
plicated design both in hardware and programming.

It is desired to carry out various and voluminous program exercises and get
exact information about what is happening in the whole processor logic by simula-
tion so as to facilitate thorough logic debugging and proving fault isolating and
diagnosing algorithm and programs.

The idea of gate level logic simulation,” which evaluates the logic function of
each element, is not new. However, the disadvantages of the gate level logic
simulators made so far by us? were a small number of elements to be accomodat-
ed and slow simulation speed that made whole processor simulation impractical.
Due to these limitations, logic designer has to partition the whole processor logic
into several blocks, which in turn gives him extra work and less accuracy of logic
debugging.

Although recent efforts have been made toward register level simulators®#»®
which provide the designer with register to register operation to describe his
machine structure for simulation, the automatic translation of the machine struc-
ture described in the register level statements into the complete gate level speci-
fications is still not an easy problem. Besides, the register level simulation which
naturally does not handle the logic function of each element has difficulties in
analyzing the behavior of the machine in various fault conditions.

From these reasons, a bigger, faster and convenient logic simulation system

This paper first appeared in Japanese in Joho Shori (the Journal of the Information
Processing Society of Japan), Vol. 7, No. 5 (1966), pp. 263-272.
* Electrical Communication Laboratory NTT.

** Hitachi Ltd.
35

36 K. TAKASHIMA et al.

is desired. It is the purpose of the system to provide the designer a more im-
mediate design help by which he can exercise ample test programs on the whole
processor logic and get detailed logic information by ssimulation as though he
is given an actual machine.

Two major ideas employed in the system to accomplish those objectives are
the parallel processing logic simulation and the integrated use of the register
register level and the gate level simulation.

The parallel processing technique employed in the system can carry out the
gate level simulation for fifteen different test programs simultaneously which ef-
fectively speeds up the simulation.

Flexibility and generality is other important factors for the efficient use of the
system. For ease of the gate level simulation, several kinds of statements are
provided in the system to set input conditions, control a course of the simulation
and display the results. The designer can freely define and change a simulation
procedure with these statements to suit his need.

There is no reason, however, to exclude register level simulation so that it is
another feature of the system to accept the register level simulation within the
gate level simulation. The designer can easily define some other logic blocks than
he has designed with the register level statements, or exclude the detailed gate
level simulation of a part of the whole processor logic which he has already
tested or has less concern, by replacing it with register level statements.

The following sections describe programming techniques to implement these ideas.

2. Parallel Processing Logic Simulation

The principle of the parallel processing logic simulation is simple.

Let Si/* be the state of element ¢ for the j-th set of input variables at clock %
and f; be the logic function of element 7, the state of the element 7 for j-th set
at clock k41 is represented by

Ss# 1 =fi(S1/%Se%...... S,
where 7 is the number of elements.

A 32 bit word is assigned to each element and fifteen bits each are used to store
(Siyi*...... Si,1%) and (SiFthLL Si,15°%1). The functions of all conbinatorial logic
are compiled using bit parallel logic instructions so as to evaluate the functions
simultaneously for the fifteen different sets of input variables.

The function of storage element or flipflop is interpreted in the following way
before compilation

F'=R(F+S)=R-S-F 1)

where F and F’ represent the previous and the next clock states of a flipflop, and
R and S are reset and set gate conditions,

A LARGE SCALE PARALLEL PROCESSING LOGIC SIMULATION SYSTEM 37
The gate condition such that
R.S=1 (2)
should be avoided in the design. Equation (1) and (2) are compiled as a subrou-
tine and are used in common to all flipflops for the considerable saving of memory

space.
The problems to use and control these simultaneous simulations are described

in the following section.

3. The Simulaiion Language

Flexible means of the simulation are as important as the speed of simulation
for the efficient use of the system. Table 1 shows typical simulation statements.
Any one (b=1~15) or all (b=0) of the fifteen simultaneous simulations can be

specified by the parameter b in the statements.

Table 1. Typical Simulation Statements.

Initial Procedure

RDTB, b Read Table
CLST, b Clear States
Input Conditions
SBTB, b, m Set by table
SET, b, x Set
RESET, b, x Reset
Simulation
SIML, p,q Simulate
MOVE, b Move
COMP, b,**¥¥ Compare
Simulation Control
STCL, b, « Set clock counter to a
RTCL, b, 8 Raise clock counter by 8
TEST, b, x,*¥%¥%¥ Test element x
b: case number, m: table number, x: element name,
p: clock phase, q: logic level,***¥*: branch address.

Input conditions are specified by tables listing element names, states and clocks,
which are read into the system by the statement RDTB. Setting of the specified
element states according to the table is done by the SBTB.

The statement SIML calls for the compiled logic equations to be executed. The
MOVE statement is used to replace the previous clock states (Sii*...... Si,15%) by
the next clock states (S;,/F*'...... Si,15+1). - Hazard condition can be detected by
repeating the simulation with the same clocking condition and compare the results
using the COMP statement.

The STCL and RTCL statements control clock counters provided one for each
fifteen simulations, which in turn control required timing of other statements.

38 K. TAKASHIMA et al.

The TEST statement can be used to change the simulation procedure during the
course of simulation.
In order to integrate gate level and register level simulation, a statement

DEF, <register name> <element names>
is provided to define a group of elements to be called by a common neme, Actual-
ly the group is not necessarily a register, but it can be any set of elements in a
combinatorial network. A statement,

CONVERT, <register name> <direction>
gives the way to transform the register contents into the element states or vice
versa. The direction field defines direction of the transform. Figure 1 and Figure

2 show an example of integrated simulation procedure.

X1o\ | __—OY1

T o S— Logic Biock SV

X30— | T———oy:
Y1=X1, Xgy X3 Y9=Y1, Yo» V3

DEF 71y X1y X2, X3,
DEF 75 1, 32, s
Fig. 1. Register Name Definition.

Gate Level Procedure

CONVERT ry, p- (Pack)

Register Level Procedure

CONVERT rz s+ (Scatter)

Gate Level Procedure

Fig. 2. Integrated Simulation Procedure.

Besides such usual register level statements as to add, count and transfer the
contents of registers, another useful simulation statement is
TRANSPM, <adddress reg> <data reg> <timing>.

A LARGE SCALE PARALLEL PROCESSING LOGIC SIMULATION SYSTEM 39

This statement transfers data between specified data register and pseudo -memory
provided in the system for the purpose of program execution by simulation.

A simplified example of the parallel processing simulation procedure is shown in
Figure 3. In this example, fifteen test programs for logic debugging are first loaded
into the pseudo memory and the simulation is started. -Whenever termination condi-
tion is detected in any one of fifteen cases another test program is loaded ‘'so as
to fill the fifteen cases all the time. The termination condition is detected by the
state of the flipflop m indicating the execution of a halt instruction or some kind
of instruction which is placed at the end and at every wrong way of the test
programs. It is also possible to terminate the simulation whenever the time to
execute an instruction exceeds some predetermined value to prevent unnecessary
simulation from being continued.

As the system is often shared by several logic designers or programmers simul-
taneously, the actual parallel processing procedure is given the following capability
to accept each users requests.

A. Setting of initial program address

B. Monitoring register and flipflop contents during the course of simulation

C. Specify “dump all states’’ period.

Here “dump all states’” means recording all element states into magnetic tapes.
The period is specified by clock times.

RDPM
RDPM
: — INITIAL LOADING
RDPM _
SIML) SIMULATION PROCEDURE " |- SIMULATION BODY_

TEST 1, m, *+2
RDPM 1,
TEST 2, m, *42

RDPM 2,
. t— TERMINATION CONDITION

TEST 15, m, *+2
RDPM 15,
| JjuMP SIML

Fig. 3. Parallel Processing Logic Simulation Procedure.

4. The Simulation System
In order to handle a number of logic elements as many as 30,000, it is natural
and appropriate to automate the handling. Actually the system was madc

40 K. TAKASHIMA et al.

following four jobs.
Job 1. Data arrangement
Job 2. Translation
Job 3. Simulation
Job 4. Data conversion.
The data flow in the system is shown in Figure 4.

DATA
LOGIC f——=! ARRANGEMENT
GARDS Jos

COMPILED LOGIC FILE

SIMULATION TRANSLATION
PROCEDURE Jos
@ 0BJECT PROGRAM FILE
TEST
PROGRAM MU N
CARDS

@ STATE FILE

Fig. 4. The System Data Flow.

The data arrangement job takes care of logic data maintenance, checking, sort-
ing and compilation. The second and the third functions trace down logic trees
and check out excessive fan-ins and fan-outs and rearrange the datd in the
sequence of their logic levels. Here the logic level of a gate is defined to be the
largest number of gates required for a signal to travel from a flipflop to reach
the gate.

Undefined input terminals and the elements with excessive levels and/or with
feedback connection are checked out in this job before simulation. The compiled
logic file, the output of this job, includes compiled logic equations as well as an
address—element name conversion list for later translation and data conversion jobs.

Simulation procedure is first translated into the assembler language and the
control is transferred to commercial assembler and loader routines. And then the
simulation is started.

During the course of simulation the contents of specified registers and/or the
states of all elements are dumped into magnetic tapes for later display at the data

A LARGE SCALE PARALLEL PROCESSING LOGIC SIMULATION SYSTEM 41

conversion job.

Three kinds of display form are:

A. Register form

B. Time chart form

C. Element name form.

The element name form which shows the element names in lexicographical
order only when they changed their states, provides the most condensed and
convenient information for the final logic error shooting.

5. Application

This system was introduced in the logic design and the maintenance design of
the real time data processor. The design was fairly complex due to several
instruction look ahead control together with micro level control lockout function
for fault locating purposes.

The whole processor logic was tested under nearly 10* steps of test programs
to complete the logic debugging by simulation. Programmed checking, as shown
in Figure 5, was successfully used in the final debugging period to speed up the
voluminous testing.

The system has been used in the following three areas of the maintenance
design.

A. Simulation of duplicated processors

B. Fault isolation program testing

TEST
PROGRAM

l

LOGIC PROGRAM
SIMULATOR SIMULATOR

SIMULATION

RESULT REGISTER

TRAGE

PROGRAMMED
CHECKING

Fig. 5. Programmed Logic Error Checking.

42 K. TAKASHIMA et al.

FAULT
DETECTION

INTERRUPT

FAULT
ISOLATION

RESUME
PROGESSING

Fig. 6. Fault Isolation

MEMORY MEMORY

INSTRUCTION M INSTRUCTION
REGISTER ! REGISTER

OPERAND OPERAND
REGISTER : REGISTER

INSTRUGTION M INSTRUCTION
COUNTER ? COUNTER
OPERAND M OPERAND

ADDRESS REGISTER 4 ADDRESS REGISTER

——04— MATGHING CIRCUIT M, ~ M,

Fig. 7. Fault Detecting Circuits in the Duplicated Processors.

T

C. Diagnostic program testing

From the purpose of the real time processor, the course of fault isolation, shown
in Figure 6, must be quick and accurate, which required the circuits shown in
Figure 7 for immediate fault detection.

Duplicated processors together with these fault detecting circuits were conveniently

A LARGE SCALE PARALLEL PROCESSING LOGIC SIMULATION SYSTEM 43

accommodated in the system using the parallel processing technique by which
both the processors can be simulated simultaneously.

Communications between the processors were done by CONVERT statements in
the simulation, while various fault conditions were injected using the element state
tables and the statement SBTB.

6. Conclusion

The system has been extensively used in the development of the duplicated
processor for an electronic switching system.

The design was tested for nearly 10* steps of test programs to carry out logic
debugging in which five per cent logic elements are renewed through 20 major
logic file corrections. Further use of the system, for duplicated processor simula-
tion on fault condition and for the fault isolating atd fault diagnosing program
testing is now being done.

With this system it is possible to give various and voluminous program exercises
and get exact information about what is happening in the whole processor logic.
The process of logic data processing, from the logic data arrangement, through
the logic simulation to the final data conversion, is automated and no human
intervension is required. This made it possible to return the results to the designer
within an hour after he issued his logic changes, for most of the test programs.
Moreover fifteen exercises or fifteen people can join the debcgging or testing
simultaneously.

It is faster, more accurate and convenient than to handle the actual machine.
The ideas employed in the system have proven to be successful for the efficiency
and flexibility of the system.

References

[1] Stockwerr, G.N., Computer Logic Testing by Simulation. IRE Trans. on Military
Electronics, MIL-6, (1962) 275-282,

[2] Takasuima, K., anp H. Tsupa, Logic Simulation Programs. The Journal of the
Information Processing Society of Japan, 4, 2,(1963).

[3] Gorman, G. F., ano J. P. Anbperson, A Logic Design Translator. Proc. FJCC
(1962) 251-261.

[4] Proctor, R. M., A Logic Design Experiment Demonstrating Relationships of Language
to Systems anp Logic Design. IEEE Trans Trans. on Electronic Computers, EC-13,
August, (1964) 422-430.

[5] Zuckrr, M. S., Locs, An EDP Machine Logic and Control Simulator. IEEE
International Convention at New York City, March 23 (1965).

[6] Grrrrin, J. F., ano M. J. Hamms, An Experiment with the Simulation of Machine
Logic and Control. IEEE International Convention at New Bork City, March 23
(1965).

