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Numerical Approach of Eigenvalue Problem of
Helmholtz’s Differential Equation by

Utilizing Green Function
SHIN-ICHI SENGOKU* AND TADAsHI ISHIKETA*

1. Introduction

The eigenvalue problems expressed by Helmholtz’s differential equation (dp—+ A9 =0,
¢=0 on boundary) can be solved for the case that the shape of boundary is easy to treat
analytically. The Monte Carlo method utilizing discrete random walk process is effective
for the case when the boundary is of arbitrary shape™®~®_ but its solution has statistical
fluctuations.

In this paper, to improve the weak point mentioned above, we employ the following
procedures, that is, first we calculate the normal derivativés of Green function by using mass
division method, and then obtain the Green function. Finally we calculate the eigenvalues
of a matrix of Green function from integral equation equivalent to Helmholtz’s differential
equation. The matrix is symmetric, because of the reciprocity of the Green function.

This method is useful to calculate the higher order of eigenvalues more precisely than

Monte Carlo method utilizing discrete random walk process.

2. Relation between random walk process and eigenvalue problems

Let M be a simply connected domain with a boundary I’ of an arbitrary shape and
Q be the interior of M as Fig. 1. Moreover let D be diffusion constant in M, if Mis
physically uniform.

At time £=0, a unit heat source is set at a pt. P(zo,%0) in Q, and the temperature
on [" is zero at all times. At time #, a function u(z,y, t) representing the temperature at

the pt. Q(z,) in ) satisfies the following equation.

Ou
w(z, y, t)=0(z—x0)0(y —y0)d(2), (2)
(u)r=0. (3)

In another expression, it satisfies(™,
o

u(z,y,t)= 21 e~ 4Dt (z0, yo)Pi(, ¥), (4)
J

where 4; and ¢; are the j-th eigenvalue and the j-th normalized (M is unit area) eigen-
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function respectively. ;
In order to show the relation between the eigenvalue problem and the discrete random
walk process, we put M on a regular square net whose cell length is A. Let I'* be the
net boundary and Q* be the interior of I'*, which are composed of links of the net.
Let U(Q/P, nt) be the function representing a probability that a random walk point
(r. w. p.) starting from a pt. P on Q* at =0 arrives at pt. QP%Q) on Q* at t=nr (T
is constant). This function U(Q/P, n7) satisfies the diffusion equation approximately and is
related to the function u(z,,t) as follows™;
. UQ/P,nt
L

w(z, v, 1) (5)

Let P(n?) be a probability that a r. w. p. starting from a pt. P(zo, o) on Q* does not

arrive at any point on I'* till t=nt. P(nt) is given as follows?;

Plae)= 5 e=1Ppi(an, vo) ([ 01(z, v)dzdy. (6)
]:

The value of @;(xo, yo)SSq>j(x, v)dzdy is constant when j is fixed, so the eigenvalue A; can

be calculated from the above equation. This method having statistical fluctuations, it is less
effective.
Now we introduce a Green function G(z,v; & ) such that
4Gz, y; & n)=—0(x—E)dy—7), (7
(G)r=0, (8)
where zo=E&, yo=1.

The relation between the eigenfunction ¢; and the Green function G is given®,

Gla,vs £.7)= 5 e, v, (9)
ei=\§ex, v, v; & n)dedy. , (10)

Now we introduce the following equation by using ¢j, 4; and G,

{§c 10~ paG)azay=({(— 106 +90)dzdy= (focazay-+ot, »).

Since the left hand side of the above equation vanishes by the Green’s theorem, we have

o(&, m=2{{ez, 0G(z,v; & ndzdy. a

We represent the pt. (z,7) with # and the pt. (§,7) with / and for simplicity we
write the functions as follows; '
oz, y)=¢r, 9 M)=0¢1, Glz,y; §1)=Crr
We represent Eq. (11) in difference type with dx=dy=A4,
Pi=2 kZ $eGrih?=2 kZ Gupeht?,

where G =Gy, from the reciprocity of the Green function.

If we express in matrix form, we have [I—Gh?]0=0. Since @0, we have
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| T—2Gh2| =0, 12)

we may get the eigenvalues from the above equation without knowing the values of

function @.

3. Method for calculating Green function

The relation between the random walk process and Green function was already made
clear®™- ™ In this paper we take a physical view of random walk process.

Whenever a r. w. p. arrives at any point of I'*, it is absorbed there. This process is
like the heat diffusion process that heat flows out of a boundary I. Let JE be a calorie
which flows out of I" through unit length ds on I" during a unit time dz. We havet®

dE=—dsD%a;, (13)
On

where 0/0 n denotes the normal derivative.

Let E be the total calories. From Egs. (4) and (13), we have

E=—dsD2- 3 g,(zo, wpsz, )| e-pnds
nj=1 0

210 S0k e, ) )
nj= A; ‘

On the other hand, in random walk process, let @(P—>S) be a probability that a r.w. o
starting from a pt. P(xo, 40) on Q* arrives at pt. S(Zr+ ¥r+) on ['* without distinction of

time.  Using the probability U predescribed, @(P—S) was represented as follows ;
(P>8)=1/4 3 U(Qu/P, nt), (15)
n=0

where Qs is the point inner by % from pt. Q on I'*, and its co-ordinate is (zs, ). From
Egs. (15), (4), (10) and (5) we have,

@(P—S)=1/(4c) f}l 120, o) sz, Ya)I?,
P

SV g~ Dijnep_y 3y (20, Y0)Os(Zh, ) (¢, h->0), (16)
n=0 ) J=1 2]’

where i e—Diinrr-»S me—mi’dt (t, h—0).
n=0 0

And we represent Eq. (14) in difference type,
E= —p 51 @20 40) LOAZrs Yre) — @s(2n, )]

7=0 /2]' h
- ﬁo@(xo, yo)/{?f(xh, yr) an
J= J

Since the identity of Eqs. (16) and '(17), we have o(P-S)=FE.

From Egs. (9), (10) and (11), we have
Gla,y; &)= 5 LBVHET) (8
= A
Here, we substitute Eq. (18) into Eq. (14) and set £€=x,, 7=y, we have
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o(P—S)= ——dsaa%:G(Qh, P), 19)

where we choose 0/0 n so that @ is positive.

Now, we have following difference equations from Egs. (17) and (8),

G(Q,P)=1/4 3 G, ) (PxQ) P,Qe0%, (20)

G(P, P)=14L3 G(P,, P)+1] Pe0*, @)
i=1

G(Q P)=0 QeI 22)

where Q; and P; are four neighbouring points of Q and P respectively. We may calculate
the values of G by using Egs. (20), (21) and (22).

There are several methods of numerical calculations to evaluate the function @(P->3),
such as (i) Monte Carlo method®™ @, (i) Mass division method™ (Explosive method‘®).
The method (i) is stochastic, on the contrary the method (ii) is deterministic. According to
the purpose of this paper, we adopt the latter.

A unit mass being initially set at pt. P is divided into the four neighbouring points
with equal weight (1/4). Next, each of the mass is divided into the four neighbouring points
respectively. This process is continued one by one. If a piece of mass arrives at any point
of I'*, it is absorved there. It is known that @(P—>S) is the sum of mass which has been
absorved at pt. S. This process being continued infinitely, we stop dividing the mass at a
proper amount of division. Accordingly the undivided masses remain on Q*.

Let M(P—S, m) be the mass that arrives at pt. S on Q* at the m-th division. From
Eq. (14), we have

M(P—S, m)=D 3} o:(P)pi(Qu)e~Diimrc= 3} kse=Diime, (23)
Jj=1 i=1
I |
N
y y Qh S
VYA
il P |
—Y
] |
[
Lo £ 3]3/7/ CCr:

Fig. 1. Continuous boundary I' of a simply
 connected domain M and discrete
boundary I™.
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where k; is a constant. Since the eigenvalues have the relation <A, <..., M(P—-S, m)
decreases in proportion to exp (—DAm7) in large m. So we can estimate the total mass

that will be absorved, and we can get the approximate value of w(P-S).

4. Examples of calculation

We choose a simple example shown in Fig. 2 for evaluating the applicability of this
method. First, in Table 1 the probability @(P->S) is shown. In this case the values of ®
are exactly calculated by this method. We have confirmed the correspondence of the com-
puted values and the exact values. In Table 2 the values of Green function G are shown.
In Table 3. the eigenvalues are shown. By the usual Monte Carlo method, we got nothing
but Ai.

Secondly, in Table 3 a part of eigenvalues for the case that a side of squares is divided

4 5 6 Table 1. @(p—>S) of square boundary shown
in Fig. 1.

a 103|105 |iog p~>1123456789101112

10116722 77 6 3 3 6 7 72267
102 105 108 102 2274222214 6 610 6 61422
103 722676722 77 6 3 3 6 7
104/2214 6 610 6 61422227422

]
w

1 = 1tz Ll 9 0=105/142814142814 1428141428 14 ><—1—
106| 614222274222214 6 610 6 224
107 7 6 3 3 6 7 722676722 7
2110 108 610 6 614222274222214 6
Fig. 2. An example of square boundary. 1090 3 6 7 722676722 7 7 6 3
Table 2. G(P—Q) of square boundary Table 3. Eigenvalues of square by this
shown in Fig 1. method.
}-\Q 101 102 103 104 105 106 107 108 109 Expe. value
101 67 22 72214 6 7 6 3 3;?1‘1 division number
102) 22 74 22 14 28 14 6 10 6 4 5 6
1030 7 22 67 6 14 22 3 6 7
104 22 14 6 74 28 10 22 14 6 A 19.74 | 17.87 | 19.10 | 19.29
G=105 14 28 14 28 84 28 14 28 14 xﬁ 42 49.35 | 41.37 | 44.10 | 45.65
106] 6 14 22 10 28 74 6 14 22 A3 49.85 | 41.87 | 44.10| 45.65
107 7 6 322 14 6 67 22 7 As 78.96 | 64.00 | 69.10 | 72.00
108 6 10 6 14 28 14 22 74 22 As 98.70 | 64.00 | 75.00 | 81.65
1000 3 6 7 6 14 22 7 22 67 As 98.70 | 64.00 | 75.00| 81.65
Az 128.3 86.63 | 100.0 | 108.0
28 | 128.3 86.63 | 100.0 | 108.0
Ao | 167.8 | 110.1 | 100.0 | 117.6
A0 167.8 100.0 | 117.6

Monte Carlo estimate A4 is 22.2 (devision
number is 4).
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Table 4. A part of 69 eigenvalues of circle dividing
the radius into 10 equal parts by this method.

Theo. Expe. I Theo. Expe.
value value | value value
B 16 21 18.17 18.02 A9 154.6 137.9
A2 46.12 44.74 A1 154.6 137.9
10]184 1891 186 by s 46,12 | 44.74 | A 180.9 | 152.9
12181} 132 133 18 A4 82. 86 76.81 A1z 180.9 160.9
) i : As 82.86 79.27 Ais 222.6 179.2
: A6 96.73 89.29 Aus 222.6 194.5
2 Az 127.9 115.7 Ais 235.3 197.5
2l s 127.9 115.7
00 Monte Carlo estimate A; is 18.5 (the starting point P is
23 the center).
24 :
: o Table 5. A part of 36 eigenvalues of figure shown
. <o in Fig. 4 by this method.
4 & Expe. value Expe. value
3 27
A 41,92 s 117.6
2 [ ot Toe o5, [0 2s 44.07 2 122.2
O v A3 64.96 28 125.5
35 3] 30 n 77.55 Ao 141.7
Fig. 3. Anexmple of arbitrary % 95. 94 Ao 154.9
shaped boundary. In this case the rank of matrix is 36.

into five and six equal parts are shown. Further, in Table 4 a part of eigenvalues of a
circle to be divided the radius into ten equal parts are shown. Last for the case of an

arbitrary shape shown in Fig. 3, a part of 36 eigenvalues are shown in Table 5.

5. Conclusion

By this method we may improve a little the weak point of Monte Carlo method utilizing
discrete random walk process, for we may calculate the values of Green function using the
relation of Egs. (19), (20), (21) and (22). Further we can calculate the eigenvalues of arbi-
trary shape more precisely, but the undivided masses remain on Q* and accordingly error
exists.
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