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Skip System for Time-Shared Computer Scheduling

AxHIRO HASHIMOTO* AND TADAO WAKAYAMA™

Abstract

A Round-Robin (RR) system is well-known as a descipline for assigning
processor time to many requests in a time-shared computer system. But this
system lacks in flexibility. In this paper, a more flexible one named Skip system,
which is a slight extension of a RR system and is easily implemented, is pro-
posed and analyzed. In a RR system a request is served in its every cycle, but
in this skip system a request may or may not be served in its cycle according

to its past history.

1. Introduction

The simplest scheduling algorihm in a time-shared computer system is a
Roud-Robin (RR) system, which has been analyzed several times, and it is known
that the response time of a request is linealy dependent on its processing time.
A system such as Multi-Level priority Queue (MLPQ) system in the CTSS [1]
is more practical in order to-assign a higher priority to a request whose process-
ing time is short and in this case the average wait time is known to become
shorter [2].

Genelalizing a RR system, a system in which the i-th quantum g¢i of a
request can be varied according to the amount of processing time previously
received has been also proposed. Let it be called Variable Time Quantum (VTQ)
system. This VTQ system is more flexible than a RR system, in which the
request whose processing time is short can be given a higher priority. But the
VTQ system is too general and it is not so easy to know its characteristics from
the results of its analysis [3].

The Skip system proposed and analyzed here is a restricted VTQ system such
that ¢: equals zero or constant. Nevertheless the characteristics of the system
can be varied over a wide range and the rule of management of its queue is
almost the same as that in a RR system and becomes very simpler than that in
MLPQ system.

2. Analysis of Skip system

We define a cycle as a process that a request joining the end of the queue
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receive a certain time (including zero) of service and leaves the system or returns
again to the end of the queue.

Let a VTQ system in which the quantum g¢; of the i-th cycle is given by
{q, (ieS)
0, (1&S)
be called a Skip system, where S is a set of a possibly infihite number of pre-

=

determined positive integers as follows :
S={s1, 5z, c-oeeee },  si: positive integer
1< 51 5grvrnenns
When ieS, let its cycle be a processing cycle, otherwise a null cycle.

The following analysis of the Skip system is an extension of the analysis of
a RR system by Shemer [3] and some of the value estimation given below are
somewhat approximate.

It is reasonable to assume that the arrival of requests is a Poison process
with arrival rate 4, since there are an infinite number of independent users, and
moreover we assume that the processing time of the requests has a negative
exponential distribution with parameter #. Consider the variable 4 and # to be
statistically independent, and ¢ to be independent of the servicing descipline,
and also maximum queue size to be unlimited. Furthermore, we neglect an
overhead time and swapping time.

Utilizing these assumptions, the probability that a service is completed
(namely, the number of requests in the system reduces from n to n—1) on one
of the requests in a small time increment 4t is ¢4z, and similarly the probability
of an arrival (namely, from n to n+1) in 4t is Ads. Therefore, the steady-state
probaility P. that n requests are concurrently in the system is

Pr=p"(1-p0), n=0,1,2----- 5 p=Alu<l, (1)
and the expected number of requests E(n) is

E()=SnPr=p(1-0) =20 = (2)
The number N of processing cycles required to finish the service of a request

whose processing time is ¢ is given by

(N—1) ¢<t<Ngq, N: positive interger. (3)
Letting sv be the N-th element of S, the total number M of cycles is
M=sy. (4)

The expected value E(Ru) of the response time Ry is determined by the
expected wait time Wy required to receive M cycles and processing time t as
follows :

E(Ry)=Wnu+t. (5)

Let 7; be the expected wait time in the i-th cycle, then Wy is given by

M .
WM:glri. (6)



18 A. HASHIMOTO & T. WAKAYAMA

Let 7 be the rate of the number of processing cycles to the total number
of cycles. Then we have
oo iq oo ig
7=34( ﬂe‘“dt/Zs,S pe- s, (7
i=1v(i-1)q i=1 J(i-1yq
The expected value ¢ of the time length ¢’ really used when a quantum g
is assigned to a request is given by

the average processing time
the average number of cycles

q:

w0 ig
> S pte *td
i=1

=t =T (1), (8)

oo iq 1
ES;‘S ,Lze"’”dt
=1 i-1)q

The probability that when a request J arrived at the system the left time
of quantun g of the request Jo which was being processed is 7 is given by
ad q il —k(g-1
—pt —Kt wﬂe ~
Sq_r,ue dt/sodsss pe Mdt= T
Therefore, the expected value go of the time length go in which the servive of
Jo in its processing cycle is completed is given by

g —u(g—1r) 7 el -
cia:S MB tﬂemtdt-!-g rﬂe*’”dt:ldrz—gz—- g™t (9)
o T

o l—e™# 1—e ™

Utilizing the eq. (7), the average number of requests waiting in the queue of
length # which will receive services in their cycle is
dGa(z)
dzx

Let 7; be the conditional expected wait time of a request between finishing

E%(1~77+x77)" (10)

z=

=1
the (i —1)-st cycle and initiating the i-th cycle, given that the request has under-
gone (i—1) cycle allocations. Here, ¢1 means the expected value of the wait
time t: of a newly arriving reqeust J in its first cycle. Then

o= By = E( SPagrt 5 PuGuta)| ) =00t L. an

n=1 Tn=2 z=1 1—p

Next, 72 of the request J in its scond cycle can be given as follows utilizing the
number of requests in the system. Namely, the time required for the first cycle
of J is (¢14+q¢1) and the average number of new requests which will arrive during
this time is (¢1+q¢1)+A.  The probability that the service of a request J, which
was being serviced when a request J arrived is not completed and J, is returned
to the end of the queue is given by

q —#(g-1) aed —kq
Hte - _ Hge
LD ([ wema)ar=£97 (12)

The average number of requests which were in the queue of length n and are
returned to the queue again is

dH(x)

—4a gy - ~nq }n
e —dx[v(l e ") +2(1—n+ne~"9)

1=n(1—7}+7?6"”q)- 13)

x=1 =
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)

rg
=gt qua+ G- 77+77e‘”)] ar+orte, a9

Thus we have

To= { ((t1+q1)z+2Pn”qe EP Hoos

n=1

where
7=Ag+H(1=1)+ e
01=2g:q
e=10e7"(q—~go)—~(1=7).
In the case of 7 (>3), considering the average length of the queue in the (:—1)

-st cycle to be 7i-1/§, we have
ti=g[ it g 55 - P+ne™9) | = 1ot 0, (i29), @15

where
o [Aqq, (i€S)
n=taa={ 1%L
Rewriting the eq. (15), we have
Ti=Ty ey TR 01y R Gy T - 0, (622). (16)
From these results, we have

M M- M- M-
Wm e, 2Tl r™) _eQ=p) 0= | Bl =) g
i=1 1— 7 1— 7 1- 7 1— 7

3. An example of Skip system
When S={si=1, s, -} is given, let a. be given by
An=Sn+1—Sn, (n=1, 2,7+ )
and let such a system be called a.-Skip system. A 1-Skip system is a RR system.
Now, rewriting the above mentioned results, we have

E(Ru)= Wt = Scitt= fl(l A I et )

i=1 -7 1- -7
+—~~(N~1—217M~ i)+, 19
where
M=sy, n=(l—e "9t (1+ %aie~iﬂq)—1, [02%
i=1

(N-lg<t<Ng, 7=Ag+d=vhne™, q,,=i(1—i(1—e»ﬂq)>
0=12qq, “ H“q

= 0F _ﬁ_— — By 7 kg
a=pgoty 00 E=T0e (g—do)—(1—17), q~7[—(1 e7").

By selecting S or {a.} properly, we can get various Skip systems. In the
following with reference to the Fig.1 through Fig.3 we show some examples

of the results of such Skip systems :
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(2-Skip system)

n=1)(1+¢7*9)
_all=y) 1y,
Won-1= 1—7 17 i 1=
((n+1)—Skip system)

p=(1—e"), M=N(N+1)/2

7 N (727t e 29)

W= BT S T) s O (N (e (17 (7))

1—-r  1—y
(2" —Skip system)
_1—2¢™™

1 N
n= i Mo M=2N—
1 “kq Wlth e < 2 y 1

_n(d—=7") ed—y"*Y 9 N— (1 — 72811 L p2¥=2( ...
Wi==2— =+ =0 iy WA= (- (7 (1))

Fig. 1 through Fig. 3 show the results of these as well as the results of a
first-come-first-served system, a RR system and a MLPQ system. We assumed
that the MLPQ system shown there has the infinite number of levels and the
quantum in every level is ¢, and all requests arrive only at the first level with
Poison arrival of parameter A and we also used the equation ([4], eq. (22a)) by

Coffman.

4. Conclusion

In such a case as {a.} is given as the form of a.+1= f(ax), it is easy to manage
a queue and to vary the characteristics of response time. As one of such cases,
we give the following example by setting a pair of positive integers I and J on
a request, where the integer I represents @., and the integer J is used as a
parameter in order to determine whether a service of a request in its cycle should
be executed or skipped.

(1) I=1, J=1 for a newly arriving request (namely, n=1).

(2) If I=J in a certain cycle of the request then I=f(I) and J=1, and its

service is executed.

(3) I IxJ in a certain cycle of the request then J=J+1 and its service

is skipped.

In order to vary the characteristics of response time, we only change the
form of f in the procedure of case (2). For example, if /=1 then this system
becvomes a RR system, if I=7+1 then (n+1)-Skip system, and if I=IX2 then
2-Skip system. Taking the merit of such a wide adaptability into consideration,
this system would be effective if it was used in a time-shared computer system.

On the other hand, because the quantum in the Skip system is constant,
programs must be swapped as many times as in a RR system. And in comparison
with the swapping method in CTSS, the loss due to swapping time can be con-
sidered to be large.
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The authors examined and compared of this schedulihg algoritnm with others
by simulation. From the result of this simulation, it was shown that the standard
derivation of response time by Skip system is nearly equal to that by RR system
and smaller than that by MLPQ system.
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