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A Numerical Method for Extraction of Multiple
Roots of Algebraic Equation

Misako IsHiGURO*

1. Introduction

A new method is given for the numerical solution of algebraic equation with
multiple roots. First we describe that the multiple roots of the equation are
determined by existing methods with very small accuracy. So, we provide the
practical algorithm to extract the multiple roots accurately by the repeated use
of EUCLID algorithm that is called HERMITE’s method [5], and give the com-
puter program. Computer results of the new method is also given and com-

pared with that of existing one.

2. Disadvantage of BAIRSTOW’s Method when Multiple Roots Exist
The quadratic divisor of polynomial f(z) is obtained as follows.
For appropriate initial values p and ¢, f(z) is divided by z*+p-z2+q,

flz)=(x+p-x2+q) Q(x)+r-z+s. (1)
Q(x) is also divided by z?+p.z+gq,
Qz)=(z2*+p-x+q) plx)+u-x+v, (2)

and evaluate Ap:-j—(r-v—u»s), Aq:%[s-(v——p-u)—a‘—q-u-r],

d=v-[v—p-ul+tq-u’. (3)
p+4p and g+4q are more accurate approximations to p and g. Thus, we get
an accurate divisor z?+p-z+q. Then f(x) is divided by z*+p-z+¢ and process
is repeated for new f(z).

Let us suppose that the degree of the polynomial f(x) is even and f(z)=0
has multiple roots. We shall consider the case when p(x) has a quadratic divisor
z?+p+2+q with multiplicity greater than two. From (1) and (2),

flx)=(z*+prz+ @&+ p x+q) plz)turz+v]+r-z+s. (4)
Sx)=(x*+pz+ QU2+ pr2+q) p'(2)+2(22+ p) - p(x)-+2u+v]
+@u—pu)extpov—L2u-qg+r. (5)

Since (z*+p-z+¢)? is a divisor of f(x), both f(zx) and f’(z) are divided by

2%+ p.x+q without remainder. Then

r—=0, s0, 2v—p-u—0, p-v—2u-q+r—->0. (6)
So, we get p=22, =2, (7)
u u
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therefore 4 in formulae (3) vanishes in the limit:

d=v+(v—p-u)g-u?->0,
accordingly, the denominator of expression (3) is too small to calculate 4p and
4q correctly.

This fact is obvious from Table 1. The calculation is carried out for thirteen
sample problems shown in column 1. Both BAIRIS, included in FACOM
SSL.[2] and ROOTP [4] are computer subprograms for solution of equation by
BAIRSTOW’s method. We must give up almost all problems by BAIRIS. Be-
cause, for extremely small 4, next approximations of # and ¢ are not determented
from (3) but assigned to the appropriate values for the convenience of calcula-
tion. While, ROOTP is improved as in the following.

(1) The coeflicients are normalized to avoid the floating point overflow. In
some case, reciprocals of roots are computed.

(2) The simultaneous NEWTON and BAIRSTOW iteration is used.

(3) In calculating 4p and 4g, various unusual conditions, such as the very
small 4, are considerd.

But the roots found always contain the error in proportion to the multiplicity

and calculation takes much time for the loss of convergence.

We know more intuitively that, in NEWTON’s method, same situation occurs
since roots are found by the recurrence formula:

L1 =Tn—

Sf(za)
Py (8)
Consequently, it is obvious both NEWTON and BAIRSTOW methods are
useful only for the case when equation has no multiple roots. Real multiple
roots are successfully extracted by applying STURM’s theorem. But it is re-
markable that, in existing methods, multiple roots are not always obtained
accurately.
In [3] the following method is described. ‘If ‘a root is bi-multiple, more
accurate values of roots are sought from the equation

f (x,,>+f'(x,,)<xn+1~xn)+% FI(En)(@ns1— 2a)?=0, (9)

Analogously, for a tri-multiple root, a third order equation is found and so on.

In practice it is rarely happens that the multiplicity of a root is known before-
hand.

3. Separation of Polynomial into the Divisors with Same Multiplicity
Equation p(z)=0 is given. Let us assume that the polynomial p(z) has the
form
Hz)=pu(z)- pao(z)* - poi(z)' o pm( )", M2 1. (10)
{-multiple divisors are gathered and written by p.(x)’. And we see every equa-
tion pi(z)=0 (I=1, ---, m) has no multiple root and pi(x), ps(z), -, pm(x) are
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relatively prime. Let @i(z) be the greatest common divisor of p(x) and 2'(x),

derivative of p(z), then from (10)
Qux)= pa(x)« ps(x)? po(x)' ™1+ pul)" L

And let Qi(z) be that of Q:-i(z) and Q'i-1(z), analogously,
Qi(x)= pini()+ pisa()- pr(x)F - ()",
Qm-1(x)=pm(z) and Qu(x) is a constant.

From this, we give an algorithm to get the formula (10).
Qo) = p(x),
Qi(2)=G.C.D.[Qi-1(x), Q" 1-1(2)] (I=1,2, -+, m—1),
Qn(z) is a constant (=1),
Ri(z)=Qi-1(2)/Qi(x) (1=1,2, -, m—1), Rm(z)=Cn-1(z),

pr-i(x)=Ri1(2)[Ru(z) (1=2,38, -, m), pu(x)=Rm(2). (11)
After all, we solve the equations with single root,
prx)=0, (I=1,2, -, m) (12)

in place of equation p(z)=0. Computer subprogram MROOT (Fig. 1) is made
to evaluate the expressions (11). Effectiveness is shown by the computing results
(Table 1) in the cases when MROOT is used together with BAIRIS and ROOTP.

-

4. Concluding Remark

There are many methods for solving algebraic equations. But the methods
do not exist which are equally effective for all eqations. Therefore, method
proposed here gives one of the useful mean for equation with multiple roots.
The calculation is carried out on FACOM 230-60 computer.
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