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An Analysis of Dynamic Relocation

Kimio Izawa™*

Abstract
A probabilistic model for dynamic relocation is presented. And we analytically in-
vestigate some stationary characteristics of the model.
1. Introduction
In control of a multiprogramming/multiprocessing computer system, one of the pro-
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blems is how to manage the allocation of memory space of the system. In this paper
we consider a method of dynamic-relocation, namely, compacting, present a probabilis-
tic model for it, and investigate such stationary characteristics of the model as the
probability distribution of the degree of multiprogramming, the expectation for it,
the probability ditributions of the utilizations of the processors as well as the
memory space, the expectations for them, and so on.

2. Model

The model consists of a first-in-first-served queue of which the length is kept
fixed or infinite all the time and a service system which comprises some processors
and a memory space of finite capacity, say N blocks (Figure 1).

The entities to be processed, called tasks, have the following characteristics:

(1) The time x required to process a task, in other words the length of stay of a
task on the memor& space, is exponentially distributed, if the number of tasks on the
memory space, called the degree of multiprogramming, keeps constant. When the degree
of multiprogramming is m at time ¢, the probability density function of x is

~u(t)z

u(tde , where u(t) takes the value w which is determined only in dependence on m.

Usually we can expect that the following condition is satisfied:
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(2) The number j of blocks which a task requires to be allocated has a probability

This paper first appeared in Japanese in Joho— Shori (Journal of the Information Processing
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distribution of general form G(j). We denote gj as the probability that a task re-

quests j blocks, and so we have G(j)=£g=lgi.

(3) We assume that all the tasks are statistically identical and independent.

The control of the system is as follows:

(1) Tasks are transferred from the queue onto the memory space in the following man-
ner. First, a task waiting at the top of the queue is compared with the free space. If
the amount of space requested by the task is larger than the size of the free space,

the move is deferred; otherwise, as many tasks as the free space can accomodate are
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moved one by one from the top of th

<N) of tasks on the memory space.

(2) On the memory space, tasks are placed in contact with previously placed one so
that the free space is not split into fragments. Each task occupies a single continu-
ous domain of as many blocks as it requested, and it does not change the size in mid
course,

(3) when a task (say, task #n+h in Figure 1) which does not reside at the extreme
right terminates, the memory space is repacked so that the gap does not remain between
task #in+h-1 (or the left end of the space in the case where h=0) and task #n+h+l.
After repacking (compacting), loading of new tasks begins again.

(4) The overhead, namely, the time required to control the system in accordance with
(1), (2), and (3) above is neglected. Queon'Q of waiting tasks.

3. Analysis

Server § } B

In this section we investigate some BT L T inni e
Tasks which are being processed. |

stationary properties of the model.

1
Finished tasks #1, -, #n-1.

Fig. 1 Diagram for the Model I of dynamic
relocation

(Definition] Suppose that tasks #n,
#n+l,..., #m+m-1 (1<m<M) reside on the
memory space at time t, and sizes (numbers of blocks) of areas allocated to them are
il,iQ,...,im, respectively; at the same time, sizes of areas which top M tasks #n+m,..
., #m+m+M-1 in the queue will request are jl,...,jM, respectively. We define a state
Qivjrimsiv (or Qi) ) of the system as a 2M-tuple (il,...,im,o,...,0;jl,...,jM).

First, we analyse the case where the maximum degree M of multiprogramming is 2. Sub-
sequently, we expand the results to the general case where 2<M<N.

[In the case where M=2] We denote PS; (or pﬁg(t)) as the probability that the system
is in state Qﬁg at time ¢. The state transitions of the system between time t and t+At

are as follows:
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(1) Suppose that only a task of size 7 resides on the memory space, and the first
two tasks on the top of the queue are of sizes k and I, respectively, at time t+At, in
other words, the system is in state Qﬁé(t+At) (12i<N, N-i+1<k<N, 1<I<N). The system
can reach this state through one of the four ways of transition:

(a) At time t the system is already in state Qﬁé, and any transition does not occur
between t and t+At. The probability for this case is pgg(t)(l-ulAt), because the pro-
bability that a task terminates between t and t+At is umAt, if the degree of multipro-
gramming is m.

(b) At time t tasks of sizes © and h (1<h<N-i) are on the memory space, and the task
of size h terminates between t and t+At. In spite of compacting, the task of size k at
the top of the queue can not be moved onto the memory space because of a shortage of
free space. In this case, as the order of tasks of sizes A and 7 is either hi or h,
the probability is Ez;ip:ﬁ(t)uzAf(l-uzAt)+ZZ;§p$i(t)uzAt(l-u2At).

(c) At time t only a task of size h (N-i+1<h<N) resides on the memory space, and
tasks of sizes 7 and X are on the top of the queue. Between ¢ and t+At the task of
size h terminates, only the task of size 7 is moved onto the memory space, and the
task of size k advances to the top so that a task of size 1 appears at the second
place. The probability for this case is ZZ=N_i+lpZ§(t)ulAtgz.

(d) Other cases rarely occur, so that the probability for them is o(At).

As the above cases are mutually exclusive, we sum up the probabilities, and obtain
the following difference equation:

Ple+ 2= plo1—pmae)
N u Noi o u
+h§‘m.~(t)mm(l—/z=m)+h);lm(t)mm(l—mm)
+‘=N§___+IP}'.§(=)MA!0- +o(de) (2)
where 1<i<N, N-i+1<k<N, 1<I<WN.

(2) Suppose that, at time t+At, tasks of sizes 7 and j reside on the memory space,
and the first two tasks on the top of the queue are of sizes k and 1, respectively, in
other words, the system is in state Qﬁ;(t+At) (122<N-1, 1<j<N-i, 1<k<N, 1<l<N). The
system can reach this state through one of the four ways of transition:

(a) Any transition does not occur between t and t+At. The probability for this case
is pﬁé(t)(l-uzAt)z.

(b) At time t tasks of sizes ¢ and h (1<h<N-i) are on the memory space, and tasks of
sizes J and k are on the top of the queue. Between t and t+At the task of size h ter-

minates, and the memory is repacked. Then, the task of size j is moved onto the memory
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space, the task of size k advances to the top so that a task of size I appears at the
second place. The probability for this case is Eﬁ;ipiﬁ(t)uzAt(l—uQAt)gZ+Zz;§pg£(t)u2
BE(1-uyAt)g, .

(c) At time ¢ only a task of size h (N-i+1<h<N) resides on the memory space, and
tasks of sizes 7 and J are on the top of the queue. Between t and t+A¢ the task of
size h terminates, tasks of sizes 7 and j are moved onto the memory space, and tasks
of sizes k and 1 appear on the top of the queue. The probability for this case is
z:=N-1:+1p;fc7>(’5)“2‘“91@' Z'

(d) Other cases rarely occur, so the probability is o(At).

Also, as the above cases are mutually exclusive, we obtain the following difference
equation:

et dty= pHeNlmsadeP 475 piMeyue el — 2l
pije+An=pijeXl—u + B Phileadi(1—pdegs

N—i i B N i
+ I pROmd—ndig + Z (O t0:0i+o(40) (3)

where 1<Z<N-1, 1<j<N-i, 1<k<N, 1<I<N.

Rewriting (2) and (3), and letting A#+0, we have simultaneous differential equations.

Then, assuming that the system reaches an equilibrium state as ¢+, and the limits:

k1

1im p’;é(thpio, 1lim p’_;;(t)=p’7§§ exist, we have the simultaneous linear equations:
1o

¢ S NS oa, N
mpl=pm El"’:'*""*"“"huz-sn?‘” (%)
H Nob ik ik N i 5
2#:?.-,'=llﬂlh§l(i’ii+Pih)+F"0“7'h=NZ_,-+1P"° (5)

The solution relevant to the problem is as follows:

5 =LongiKan,
m

(8)
(1<3<N, N-i+1<k<N, 1<I<N)
Pf}=2imammmf<z. w, (7)
(1<i<N-1, 1<j<N-i, 1<k<N, 1<I<N)
where, because p_, pij are probabilities, K?,IV must be as follows:
Kone L (8)

L exGN)+La-cxrewy
2p2 th

(the symbol % denotes convolution)

This result is extended to the case where the maximum degree of multiprogramming is

M (2<M<N) as follows:

Pj%.--.{:l:ioh( ﬁl g, )KM ~ A
A Vel Mk
P‘f"-i'a‘j'():—l 01.01.( an- )Kx,)v

#4007 20, k=14

(9)

e (K o) (o)
DI T M s \k=1" ) \k=1 I,
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where K, .= — - =i 11 (10)
> p—— L/ -— e Gl
MﬂuG (NH-”‘E:l mp.[G (N)-G (N)]

(m-1)%

(the symbol m# is defined as G *(W)=G(N), I (N)=Gx(¢ YN).)

The stationary probability Poy of the degree m of multiprogramming is given by
>

N-(m—1) Noii—(m—2) N—(ir+- +im.) N N
pmw= I Pl
h=1 i=1 in=1 i=N=~ (i1t +in) +1 ja=1 ju=1
=L mH(N)— G+ (11)
by Ku, v {G™¥N)—G =+ *(N)}
where m=1,2,...,M-1, and
N=(M=1) N~iy~(M~2) N (s +inos)
Pu.n= pa)
=1 ia=1 in=1
N N P 1
JijzeJM — M 2
ji=1 j.:lp""""" MﬂuK‘"'NG ) (12)
The mean degree ﬁu y of multiprogramming is, then,
MK
M M-1
Muv= 3 mpan =Ku,~[—1-G~“'(N)+ by L{G“(N) ~G‘-’"'(N))] (13)
m=1 U W=1 fhe

The stationary probability pn/N of the number n of blocks in use is given by

£ T B pirent = 3 LK () (LGN - m) (14)

”n
bn=Z k=1 ks

R 2 YN M
k=liy+ - +iv=nji=N—n+1j1=1 ju=1

in the case where n=1,2,...,M-1; and

M-1 N N N N
Paw=Z .-,+<.§,-.=,.,-,=»;L‘:n+:j§1“ ju=t i:+-~~§‘u=.,-E,”'J.EII’{.'-’,TI}Q"
=E K g ) =GN =) + Koot (15)
in the case where n=M, M+l, ... , N.
The mean ﬁM,N (the utilization of the memory space) is given by
Tuw= E npu (16)
The output rate FM,N of the system (i.e. the number of tasks which terminate in a
unit of time) is given by
17

M
Ru,n=u§lmﬂap..~=Ku,~
In particular, if M=1 (uniprogramming), we have RTl Pralig
3

4. Conclusion

If we consider some particular distributions for G(j), we can obtain numerical re-
sults which are greatly useful. For example, in the case of the uniform distribution
G(J)=d/N (J=1,2,...,N): if pl=2u2=3u3=- «+, then we have Um’m=e—2=0.71828...; if P
LIS then we have ﬁw w=l/2(e—2)=0.69510...; and others.
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