26

A Langunage for System Programs and Its
ing

ia adBlanimuwoms~ <

Implementation Us

Shuichiro YANO*, Jun OKUI** and Nobuki TOKURA***

1. Introduction:

A new programming language ML-11 has been designed and implemented with the
following features:
(1) system implementation language
(2) structured programming oriented language
(3) implemented by using macro assembly language MACRO-11 for the PDP-11/20.
The space and time efficiency of the program is an important factor in the system
programming. The structured programming is useful for productivity inrluding the
documentation, the debugging and the mainteﬁance of the programs. But these require-
ments are often conflicting. To resolve this conflict, ML-11 is implemented as a
compound language of a low level assembly language and high level varietal macros.
A set of new macros listed in Table-1 are defined. They are classified into four
groups.
(1) control macros (2) subroutine macros (3) data macros (4) field handling macros.
This language is implemented by adding the macro definitions to the system libra-
ry of the macro assembler. This approach is much easier than preparing the complier.
Furthermore, the modification and the extension of this language are very easy.

2. An outline of ML-11:

An ML-11 source program is a sequence of source lines, where each line contains
a single assembly language statement or a ML-11 macro call statement.
Several macros make up an ML-11 statement. Any ML-11 statement may be nested within
another statement. Indentation may be used to emphasize the control structure as
shown in Fig.l. The ML-11 macros are underlined in Fig.1l.
(1) Control macros: Several control macros oriented to siructired programming are

available. In Table-l, cond. is a conditional expression. Possible conditional

This paper first appeared in Japanese in Joho— Shori (Journal of the Information Processing
Society of Japan), Vol. 16, No.9 (1975), pp. 760~ 766.

* Fujitsu, Ltd.
** Department of Information Engineering, Nagoya Institute of Technology
*** Faculty of Engineering Science, Osaka University

27

expressions are summarized in Table-2. SUBROUTINE MAX, <R@,R1>, <R@,R1>
In the teble, cperand A and B can be a IF R GE R1 sRE2R1
RETURN <R@> 3 YES
register, a variable or a field. ELSE
(2) Data macros:The field is a consecutive RETURN <R1> ;NO
bit string in a word or a register LFEND
SUBEND

(Fig.2).
Fig. 1 An example of ML-11 program

__Tabel-1 ML-11 macros

Control macros

IF* cond. 1 IF statement WHILE* cond. WHILE statement
[ELSE] WHEND J
. UNTIL#* cond,} DO UNTIL statement
IFEND e
SELECT# op’ The o and y may UNTEND
[a] be empty, SWITCH# op | SELECT# op
CASE nl NODE ¢ CASE ¢
Bl B¢ B¢
CASE n2 NODE 1 CASE 1
B2 Bl Rl
CASE nk NODE k CASE k
Bk Bk Bk
THER SWEND | SELEND
Y
SELEND _‘
DOINC op, %, m[, n][, UNSIGN] Iterate o increasing op index by n from % to m.
o If n is not specified, then n=1. If UNSIGN is spcc~
DOEND ified, then &, m and n are treated as unsigned integers.

o4 Iterate a decreasing op index by n from £ to m.
DOEND
EXIT n Jump to the statement next to the END macro(IFEND, WHEND, UNTEND, DOEND,
SELEND, SWEND) of the n-th surrounding scope.

DODEC op, &, m[, n][, U'NSIGN]]]

Subroutine macros
SUBROU[TINE] name[,formal parameters)|,registers and variables to be saved)

{RETURN rp} Subroutine definition.

e The rp is a unique formal return parameter.

SUBEND

Call name[,formal parameters][,return parameter)[,registers and variables to be saved]
The subroutines are called by value.

Data macros

DCLB name Declaration of a data block.| MAP name, formal parameters
{$ name|$$ name<i, J> |FILLER} ve Definition of address
DCLEND {RETURN rp} mapping
DCLF name<i,Jj> Declaration of a field ‘e
MAPEND

_Field handling macros
MOVE A,B Extended MOV instruction which moves the field A to the field B. Some oth-
er extended instructions to specify the field in the operands are available.

notes: [] denotes that it is optional. {b|c|...] denotes that there may be an arbitra-
ry number (3;) of b, ¢ or the others.]denotes the scope of the execution. * is space,
B or C and # is space or B. If *(#) is space, word data or field will be tested. If
*(#) is B, byte data will be tested. If * is C, the processor status will be tested.

28

The field specifier

<i,j> denotes the field
from the i-th bit to the

(i+j-1)-th bit, where

0<i<15, 1<i+j<16.

Each field can be re-
fered to directly by the
field specifier or by the
field name defined by

DCLF macro as follows:

t .
word name <i,j>

word name <field name>

A block consists of n

consecutive words.

L A I

For the

convenience of block refer-

ence, a block template

definition facility

introduced.

of a block is declared by

using DCLB ..

macros (Fig.2).

name of each word of the

block is given by using

"$" macro.

word of the block which

has no logical name, FILLE-

R macro is used.

The template

. DCLEND

To denote the

The logical

EQ
NE
GT
GE
LT
LE
HI
HIS
Lo
LOS
PL
MI

W W W W W W W

#¢
#¢

Table-2.

A=B

A#B

A>B (signed)
A>B (signed)
A<B (signed)
A<B (signed)
A>B (unsigned)
A>B (unsigned)
A<B (unsigned)
A<B (unsigned)
A>0 (signed)
A<0 (signed)

DCLB BKNAME

$ WORD1
$$ FIELD1<3,6>

FILLER

$ WORD2

FILLER
$$ FIELD2<g,8>
$$ FIELD3<15,1>

DCLEND

DCLF SIGN <15,1>

DCLF LOW <@,8>

Conditional expressions

BQ z=1"
NE z=¢
MI =1
PL =6
cs =1
cc c=¢
Vs V=1
ve V=4

+ 2, N, C and V are Zero,
Negative, Carry or oVer-
flow bits in Processor

Statue Word, respectively.

FIELD1

15 8 /3 4
worD 171

s WORQﬁ P

% V/{////

FIELD3 FIELD 2

(,SIGN

K\

7

[
oW/

Fig.2 Declarations of block and field

The logical name of the field in a block is given by "$$" macro.

These declarations give the relative position from the block address and do not assign

any area of the main storage.

in the block is;

block name

The format of the reference to the block and the field

<block address, word name or a field in the block>

+ The word name is a character string which represents a word in the assembly

language.

29
The block name defines the data structure of the block, and each field of the block is
identified uniquely on the main storage by the block address.

The procedure which computes a unique address of the main storage with some ac-
tual parameters for date access (for example, hashing function) can be defined by the
address mapping mechanism. Fig.3 shows an example of the address mapping of an array.
The reference format of the address mapping is;

(1) mapping name <<actual parameters>>

(2) mapping name <<actual parameters>, field name>

(3) mapping name <<actual parameters>, i, j>

The field of the word whose address is computed by address mapping can be gained

by using (2) or (3) formats. Fig.l shows an example of the reference to the data
structures. All the reference mechanism so far (field, block and address mapping) can
appear as an operand in the following way:

(1) the operands in the conditional expressions

(2) the operands of extended instructions

(3) the parameters of subroutines.

MAP ARRAY <R@,R1> ; SIZE = ARRAY SIZE
WHILE R GT #1; RO > 1 7
ADD #SIZE , Rl ; Rl « SIZE + Rl
DEC R§ ; RP « RO - 1
WHEND
ADD #START - 1 , Rl ; START = START ADDRESS OF THIS ARRAY
RETURN <R1> ; Rl « START + SIZE (Rf-1) + Rl - 1
MAPEND

¥ig.3 An example of address mapping definition

3. Macro expansion:

IF RP NE <BKNAME<#1¢p@ , FIELD1>>

(a)
(b) MOVE <BKNAME <R@,WORD2>>,<Rl <@,1¢>>
(c) AND #PATTERN , <ARRAY <<R2,#1>, LOW>>

Fig.5 shows an example of the

macro expansion of "if" statement.
In the expanded text, .1, .2 and .3 Fig.4 Some references to data structures
are newly generated labels. To gen-

erate these labels, a label generating counter $n macro and a stack are used. When $n
macro is called, it assigns the new value to "n" of the label .n and push down its
value to the stack. In Fig.5, "n" is 1 for the label .n of the first IF macro expan-
sion, and "n" is 2 for the label .n of the second IF macro expansion. The stack
contains 2 and 1 in this order. The IFEND macro corresponding to the second IF macro

pops up the stack using .2 as its label. The ELSE macro pops the stack, gets new

30

IF A EQ B CMP A , B ; compare
BNE .1 ; Jump to ELSE if A # B
IF C GT E cMP C, D

BLE .2 ; skip [a] if C <D

[a]

. .

IFEND .2
sl el
ELSE BR .3 ; skip else clause
10
iy] c vyl
IFEND .3
(a) before expansion (b) after expansion

Fig.5 An example of macro expansion

label .3 by calling $n and generates

BR .3

The last IFEND macro pops up the stack using .3 as its label. In this way,
$n macro and the stack are used to transfer information between macros.

To enhance the efficiency of the object code, ML-11 includes several facilities to
control object codes. For example, user can specify which instructions should be used
between Branch instructions and Jump instructions. ML-11 is implemented in about 60
man-~days which include the period of the design, the coding and the debugging.

References:
1) D.E. Knuth: Structured Programming with Go To Statements, Stanford CS Report,
Th-416 (1974).
2) E.C. Haines: A Structured Assembly Language, SIGPLAN Notices, Vol.8, No.l, pp.15-
20 (1973).
3) N. Wirth: PL 360, A Programming Language for the 360 Computers, J. Association
for Computing Machinery, Vol.15, No.l, pp.37-T4 (1968).

4) BATCH-11/D0OS-11 Assembler (MACRO-11), DEC (1973).

