Information Processing in Japan Vol. 17,1977

An Interactive Graph Manipulation System GMS
and Its Applications

Yoshihisa MANO*, Yoshio SUGITO* and Koji TORII*

An Interactive Graph Manipulation System--GMS is described which is implemented
on the basis of Graph Manipulation Language--GML. It manipulates a given graph
conversationally, according to a transformation program written in GML. And also it
may be used as & tool for constructing a procedure to solve a problem step by step
using a graphic display based on its quick response., Since the user has complete
control over GMS's running and can solve problems heuristically, it may be called as
an integrated programming system.

1. Introduction

Graph has wide application area, partly because graph theory has been established
almost completely and the graphs are adequate diagrammatical means to represent
"relations". GML (Graph Manipulation Language) is designed so that one could directly
treat graphs represented in two-dimensional form by using a computer graphic display.
GML is a graphical language, in which the graph transformation procedure is written in
flowchart-like block diagrams,

It can be expected that implementations of GML processor, one of which is GMS
(Graph Manipulation System) described here, encourage users' creative and intuitive
power of problem solving, and allow users to find solutions for his problems
heuristically.

2. Summary of GML

We could regard GML basically as Web grammar(l) augmented with control
structures, Graph processing in GML principally consists of a sequence of graph
rewriting, that is to find in an input graph a subgraph isomorphic to a given graph,
and to replace the subgraph with another given graph. These operations are called
"matching” and "embedding" respectively, and thus the given graphs are called a

"matching graph" and an "embedding graph" (a "rule graph" in a generic term)

This paper first appeared in Japanese in Joho— Shori (Journal of the Information Processing
Society of Japan), Vol. 18, No. 3 (1977), pp. 257~264.
* Computer Science Division, Electrotechnical Laboratory

127

GML programs take the form of block diagrams, and each different block has its
own meaning. Constructs in GML are shown in Table 1. Graphs manipulated by GML
programs have node labels whose form is of X(al,...,a.n), where X is a character string
and aj's are integers, while &;'s may be integer-valued variables in case of rule
graphs., The specification of GML and its descriptive power in detail are discussed in
(2).

3. Features of GMS (a) GML blocks

. form rame content function
GMS has the following features: start program to begin the execution
:) block name of the program
1) It has facilities as a (h_.L) end EXIT to exit from the program
block
text declaration|to execute the statement
programming supporting system, In I:j block |,assignment
f‘d‘i test logical to test the expression
particular it supplies users with block expressicn
f‘@‘i matching |matching to execute the matching
. . block graph
several tools as an interactive embedding |embedding to execute the embedding
@ block graph
system. subroutine [pregram to execute the program
“L_:_']] block name as a subroutine

2) It is well suited for heuristic (b) GML flow lines

ia
-
o
<
)
[
=
®

function
andyor trial-and-error approach to ® B to execute B after A

to execute B if the execution
of A resulis in true/success
to execute B if the execution
of A results in false/failure
to execute B with ''rematching’,
that is to find other matching
than those found previously
{@ and @ stand for blocks)

solve problems,

3) Tt enables us to regard graph processing as

consisting of dynamic graph transformation.

L) GMS makes use of the full facilities of
Table 1 Constructs in GML.
grephic terminal with a light pen to receive
commands quickly, to display graphs and GML

programs, to monitor the execution, and so

on. data element meaning
control program name,block, graph transformation
Data treated in GMS are shown block name,flow line process
statement text GML
rule graph node,edge,label ,number block rogram
in Ta_ble_Q’ and the flow of grep for éorre;ponder:ce } contents proer
skeleton skeleton graph name, graph used to generate
processes in GMS is summarized in graph node,edge,label similar rule graphs
input graph [input graph name, input
i node,edge,label
kl' output graph|node,edge,label output
current node ,edge ,1abel Input graph being
4, GMS from users' viewpoint input graph processed

4,1 GMS as an interactive system Tsble 2 Data treated in GMS.

GMS users only deal with the graphic display. The commands, such as mode change,
editing graphs or GML programs and so on, are transmitted using light pen, function
key or typewriter attached to the display. In most cases users can operate by only

hitting one of the "menus" or an element of figures found on the display using light

129
pen. The display is also used to show diagrammatical output graph immediately, and to

monitor the execution of GML program.

Two blocks shown in Table 3 are added to extend interaétive facilities. When
program execution is interrupted at a breakpoint block, the current input graph is
displayed and users can utilize GMS's all facilities including modification of the GML
program and the current input graph. Breakpoint blocks and continuation mode
described later have been proved greatly useful to develop new algorithms. Another
extension of GML is an introduction of some built-in functions, such as the degree of
a specified node, the number of nodes with a given label and so on.

GMS 1is divided into

several modes according to

‘——)[define skeleton graph—l\fsystem facilities)

display a GML program
or input graph

the roles, which are shown (prepare data for execution)

in Table L. Because of the \[make GML programs !
(control and contents of blocks)
H

physical size of the ' | '
1

edit a GML program,input
graph or output grarch

make input graphs

(by manual or user's program)
GML programs are STo T DTS- oo TTTT oo ---
(execute) J
constructed separately in _,[execute of a GML program

or continue the executicn

I
preserve data to I
external memory |

L

relcad data from
external memory
'

1
|
1
1
1
i
'
]
]
.

flow and content mode. (output)

display the output graph
Except in execution or ’I or current input graph

Fig.l The flow of processes in GMS.

continuation mode users can
select an arbitrary mode.

4,2 GMS as a problem solving system

GMS is useful for solving general problems described by using "relations". The
graph model of such problem plays an important role, and various graphs could be
candidates for the model, GMS allows users to include in the system their own
programs to generate input graphs as the models. The program written by users, called
modelling routine, takes the form of a Fortran subroutine which receives an integer
parameter given by users themselves at run time.

One can trace the graph

transformation process dynamically

form name content function

by using breakpoint blocks and P To terminate the program
é block ERR and output an error

continuation mode. For example, it message

Vb ‘breakpoint|an to break the executicn
. . block integer and dispiay the current
is possible to write a GML program * input graph
to simulate the derivation process Table 3 Appended blocks.

of a Web grammar.

130

L

k!

3 GMS as an integrated programming

It may be impossible to have any consensus as for what general purpose
programming system is to be, GMS is considered to be a pilot system towards a problem
oriented programming language system. Users in front of the display can use various
GMS facilities and I/0 devices interactively, such as :

1) To list input graph names or GML program

task to be vnerformed

0
names. declaration [to make skeleton graphs

mode
input mode |[to make input graphs
2) To edit two-dimensional graphs and GML Tlow mode to make control part of

GML programs

content mode|to fill the content of blocks
with a statement or rule graph
output mode [an output graph or current

programs, for example deleting nodes,

edges, blocks, or flow 1lines, and moving input graph at breakpoint
block is displayed
nodes or blocks. execution a GML program begins to execute
) mode for given input graph
. interpretively
3) To construct rule graphs easily by copying contInuation[to continue the execution of
mode a GML program interrupted at
skeleton graphs, These rule graphs are breakpoint block

Table k GMS modes.
also modifiable. =8ble 5 modes

4) Hard copy facility is supported by software.
5) Data treated in GMS can be preserved in MT or cards, and can be reloaded. This
serves for portable file system.

5. Internal structure of GMS

5.1 Data structure

From the nature of GMS, dynamic modification of data must be done easily and data
retrieval must be done efficiently. One of such data structures is associative
triples, introduced by Feldman(3)., EDSP (ETL's Data Structure Package)(}) supports
such data structure which GMS makes use of. Triples are denoted by [Attribute,
Object, Value], where each component is an item with its own identifier and data.
Triples in GMS are, for example, as follows, where upper case letter items are
keywords.

[INPUT GRAPH, graph name, graph id] [NODE, graph id, node id]
[EDGE, node id, node id] [LABEL of graph id, node id, labell]

5.2 System structure |

GMS, written in Fortran and assembly language, is implemented on HITAC 8410 and
H-8283-1 computer graphic display. GLP (Graphic Line Printer) as a hard copy device,
disc as the secondary storage, and MT or card for data preservation are also used.

Modules composing GMS are as follows, where F and A stand for steps in Fortran

and in assembly language respectively : main module (250F), interaction module (2810F

131
and 960A) in which GML programs and graphs are constructed and/or edited
interactively, GML interpreter (3870A) including text processing and graph rewriting,
a module to support modelling routine (100F) and a module for data preservation

(2130A). GSP (Graphic Subroutine Package) supports input/output processing via the

display.
6. Conclusions
Buneman(S) has presented an algorithm which generates a tree representing

topology of a plane black and white figure. By using GMS, modified algorithm which
also processes ares infomation simultaneously was implemented easily. This is one of
the GMS applications, and it is expected that GMS will be utilized in wider fields.
One can state some effects GMS has caused :
1) It makes possible to understand graphs not only from theoretical viewpoint but also
from the dynamic transformation one.
2) GMS offers programming environment, in which users can use various facilities and
I/0 evices freely and try to find solutions interactively.
3) One can solve problems reducible to graphs rather quickly, since it is no need to
elaborate the details such as special data structures for graphs.
Acknowledgement
The authors wish to thank Dr. 0.Ishii and Dr. H.Nishino for encouraging them to
do this project. We also thank Mr. K.Furukawa, and Mr. M,Arisawa (Assistant Professor
of Yamanashi Univ. currently) for their assistances and advices in many ways in the

development of the system.

References

(1) U.G.Montanari : "Separable graphs, planar graphs and web grammars", Information
and Control, Vol.l6 No.3, pp.243-267 (1970).

(2) Y.Sugito, Y.Mano and K.Torii : "On a two-dimensional graph manipulation language
GML", Trans. IECE Vol.59-D No.9, pp.597-604 (1976),in Japanese.

(3) J.A.Feldman and P.D.Rovner : "An Algol-based associative language", CACM, Vol.1l2
No.8, pp.439-Lu49 (1969).

(%) K.Furukawa and S.Yamazaki : "EDSP: A general purpose data structure manipulating
system", Bulletin of the Electrotechnical Laboratory, Vol.37 No.l,2, pp.91-100
(1973),1in Japanese.

(5) 0.P.Buneman : "A grammar for the topological analysis of plane figures", Machine
Intelligence Vol.5, pp.383-393 (1969).

