On Teaching the Art of Compromising
in the Development of External Specifications”

IzuMi KIMURA**

Programming in the broad sense includes the development of an external specification. No systematic method,
however, has been made available for training programmers in this side of programming. This paper presents
a sample problem which, it is hoped, is useful for improving this state of the art. The problem concerns the
formatting of a letter, and is so designed as to require compromises between the implementor’s and the user’s
convenience. A possible solution is outlined. In a coding example, a state diagram is used as a vehicle for pseudo-
coding. Use of a table-driven technique is also described. Experiences with the use of the problem in classrooms

and other environments are discussed.

Keywords and Phrases. External specification, compromise, man-machine aspects, programmer’s training,
computer science education, text formatting, state diagrams, table-driven techniques.

0. Introduction

Programming in the broad sense includes the develop-
ment of an external specification of the product. This
first step of programming often plays a decisive role in
the success or failure of the project as a whole. A pro-
grammer cannot claim his professional maturity until
he acquires a good command of this aspect of program-
ming.

This, however, is an extremely difficult subject. An
external specification is usually a result of subtle com-
promises between the implementor’s and the user’s
convenience. It is all too well-known that a little thought-
less twist in the external specification could make the
implementation hopelessly difficult. It is also well-known
that a seemingly innocent omission made for a bit of
ease of implementation often results in a product which
is very hard to use. Some may well insist that this side
of the story can be learned only through bitter expe-
riences and by face-to-face guidance of senior colleagues.

This classical approach, however, has the disadvantage
of wasting the time and effort of both the instructor and
the student. To improve programmer’s training, it is
therefore desirable to reduce at least some of the art of
developing external specifications from unteachable to
teachable.

A standard method for teaching what is otherwise
impossible to teach is to use examples. A good example
often improves the efficiency of an educational process
by orders of magnitude. In fact, the only method for
teaching Basic, Fortran, Algol 60, PL/I, APL, Cobol,
Snobol 4 and Lisp in one semester(!) is, as was done by

*A preliminary version in Japanese of this paper appears in the
Proceedings of the 18th Programming Symposium at Hakone
(Jan., 1977) 161-168.

“lDepamnent of Information Science, Tokyolnstitute of Tech-
nology,

Journal of Information Processing, Vol. 1, No. 1, 1978

Peterson [1], to use examples. A good example visualizing
good ways of developing external specifications will
greatly contribute in improving the way in which pro-
grammers are trained.

This paper is concerned primarily with gaining an
insight into how these educational examples may be
developed. We try to do this according to our own
philosophy, i.e., by developing an instance of such an
example.

Our example relates to faircopy preparation of letters,
and simulates in a diminished scale a situation which a
professional programmer would encounter in a real
environment. In particular, it is so designed as to require
compromises between the user’s and the implementor’s
convenience. Our example consists of a sample problem
along with an outline of its solution. The solution may
not be unique, just as the solutions of any realistic
programming problems are not. The example has
actually been used for several times in classrooms, and,
as far as the author sees, has achieved a considerable
success.

The problem is presented in Section 1. Section 2
outlines a possible solution. The algorithms sketched
there may be of some interest for their own sake. Section
3 describes how our problem was useful in classroom
and other situations. Section 4 gives concluding remarks.

1. The Problem

The sample problem of this paper reads as follows:

Write a program that reads a letter in English of the
form as illustrated in Fig. 1, and edits and prints it in
a better-looking format as shown in Fig. 2. Use a
procedure-oriented language of your choice, say
Fortran. Before reading the original letter, a line
giving the left and the right margin positions of the
output, e.g. of the form “,,10_,50”, is read, and

34

used for controlling the subsequent editing opera-
tions; no further controlling information is made
available. The blank lines and the heading lines (the
addresses, date, closing and the like are so termed here)
may be left as they are. Only the text (body) of the letter
is edited with the right margin justified. Although
the sample letter given in Fig. 1 has one paragraph
only, two or more paragraphs may be present, of
course. The method of distributing blanks may be
chosen freely, provided that the quality of the result
is comparable to that of Fig. 2. The end of data is indi-
cated by placing a line starting with “~_,”’ immediately
after the last line of the letter. This additional line is
just read, but is not transfered to the output.

Your program must be accompanied with a docu-
ment sufficient for enabling other people to use it,
understand the algorithm, and modify it if the occa-
sion demands. The document, however, should be
as brief as possible.

LOCK WILLOW,
SEPTEMBER 19TH.

DEAR DADDY,
SOMETHING HAS HAPPENED AND I NEED ADVICE.
I NEED IT FROM YOU, AND FROM NOBODY ELSE IN THE
WORLD., WOULDN'T IT BE POSSIBLE FOR ME TO SEE YOU?
IT'S SO MUCH EASIER TO TALK THAN TO WRITE; AND I'M AFRAID
YOUR SECRETARY MIGHT OPEN THE LETTER.
Juny,

P.S. I'M VERY UNHAPPY,

Fig. 1 Sample letter, original form—by Jean Webster.

LOCK WILLOW,
SEPTEMBER 19TH.

DEAR DADDY,

SOMETHING HAS HAPPENED AND I NEED ADVICE,
I NEED IT PROM YOU, AND FROM NOBODY ELSE IN
THE WORLD, WOULDN'T IT BE POSSIBLE FOR ME TO
SEE YOU? IT'S SO MUCH EASIER TO TALK THAN TO
WRITE; AND I'M AFRAID YOUR SECRETARY MIGHT
OPEN THE LETTER.

Jupy.

P.S. I'M VERY UNHAPPY.
Fig. 2 Sample letter, edited output.

Notes

(1) Here, and throughout the rest of the paper, “_,”
stands for a blank.

(2) The reader will note that in some places the
wording of the problem has been left intentionally vague.
For one thing, what do we mean when we say that the
heading lines are left “as they are”? The problem does
not even bother to define a heading line. It is the most
important point that from such a vague description the
student must formulate his external specification.

(3) The programming language to be used in solving
this problem is left open. Any programming language
may be used provided that it is “procedure-oriented”.
It is intended by this restriction to prohibit the use of a
language which is of a too high-level allowing the
programmer not to think himself about the implementa-
tion details. Apart from this point, the choice of pro-
gramming language does not matter very much. Fortran

I. KiMURA

is mentioned just because it is all too popular (in Japan).
Note that the problem does not talk about ANSI Fortran.
It says just Fortran. In fact, if we require an absolute
conformity to the ANSI Fortran standard effective at
the time of this writing, it will become impossible to
solve our problem.

(4) The use of “~_,” as a terminator is not beyond
criticisms. A better way to indicate the end of data might
be to use the end-of-file condition. Also, the minus sign
might better be “?”. Nevertheless this choice was made
for making the problem solvable in a wide variety of
Fortran processors.

(5) As stated, this problem is primarily concerned
with the art of developing an external specification.
It still requires that a completed product consisting of a
program with accompanying documentation be sub-
mitted. By this requirement we intend to force the student
to make real compromises.

(6) It is customary with this type of text formatters
to use control codes for telling the computer about the
position of a heading, the beginning of a paragraph,
and so on. It is by design that this problem does not
mention a control code. For avoiding control codes
man-machine aspects must be taken into account, and
it is these very aspects that are most important in our
problem.

(7) A similar text-editing example has been published
recently by Abrahams [2]. The author shares with him
the opinion that educational programming examples
should not be restricted to the eight-queen’s problem
and topological sorting.

2. A Solution

A final solution cannot be given to this problem. Our
solution, by definition, is not final since the problem
itself has been made intentionally vague. Here, our main
objective will be to indicate possible directions where
the student could profitably search for his solution.

The following subsections describing the steps of
solving the problem in fact correspond to the sequence
of sessions actually used by the author in training his
students. See Section 3.3.

2.1. Decomposing the Problem

It is first of all necessary to identify the difficult points
of the problem. As noted previously, our problem has
been intentionally made vague, and therefore has many
possible interpretations. Interpretations, however, can
be good or bad. The central issue lies in achieving a good
one. Clearly, the most basic question about this side of
the problem is:

Question a:
How do we discriminate between the heading and the
text lines in a letter containing no control codes?

In addition, we have a question concerning the general
structure of the program written:

On Teaching the Art of Compromising in the Develop
Question b:
How do we control the process of extracting words
from the input lines and repacking them to form out-
put lines?

A third basic question is:

Question c:
How do we determine the way the additional spaces
are inserted in order to right-justify the output lines?

Also, there are some additional questions of interest:

Question d:
Why don’t we hyphenate? By hyphenating big words,
we would easily obtain a beautiful result.

However, hyphenation is one of the major subjects in
text formatting [3]. The student should not be over-
ambitious by reading more out of the problem than it
actually implies.

Question e:
How about justifying, or centering as appropriate,
the heading lines?

Attempting to do this, however, can adversely interact
with solution of other parts of the problem, notably
Question a. It turns out later that a straightforward
solution will be invalidated if heading lines are to be
modified.

In fact, the decision to leave the heading lines as they
are has been made in connection with another decision,
inclusion of the facility for setting the right margin.
This alleviates the user’s difficulty by making it possible
for him to type the heading lines first, and to adjust the
placement of the body of his letter afterwards.

Question f:
How about obtaining better results by considering
two or more lines in determining which of the words
are to be packed in a particular output line?

To illustrate this point, see Fig. 3. In Fig. 3(a), every-
thing that can be packed into a line is actually packed.
In Fig. 3(b), sometimes we refrain from packing what
we can. Clearly, the latter approach can result in a better-
looking output, as it actually does in Fig. 3(b). However,
in a straightforward design, this would heavily com-

BUT BEFORE THIS CAN
BE ADEQUATELY
ANSWERED, A HOST OF
METHODOLOGICAL
QUESTIONS MUST FIRST
BE RESOLVED,

®

BUT BEFORE THIS
CAN BE ADEQUATELY
ANSWERED, A HOST
OF METHODOLOGICAL
QUESTIONS MUST FIRST
BE RESOLVED.

®
Fig. 3 Refraining from packing what can be packed.

of External Specifications 35

plicate the problem.

We shun the tempting Questions d, e, f. It is an impor-
tant part of the programmer’s job to control his own
ambition. Our problem has been designed to heavily
penalize overdesigns.

Moreover, extracting and repacking of words (Ques-
tion b) can be handled adequately in terms of coroutines
or pseudo-parallel processing. Even in Fortran, we can
arrange the algorithm as a collection of multiple passes
using work files, and then systematically rewrite the
program into a more conventional form if efficiency is
found important. As all these techniques are standard
in the literature, we shall hereafter restrict our atten-
tion to Questions a and c.

Exercises

Although the Questions d, e, f should be avoided in a
solution of our problem per se, the following exercises
derived from them are still interesting and suitable as
assignments for the students, each requiring a con-
siderable amount of labor:

Exercise 1:
Read Gimpel’s book [3] on Algorithms in Snobol 4,
and try to fit his method of hyphenation into our
letter formatting program.

Exercise 2:
Introduce suitable control codes so as to make right-
justification and centering of the heading lines pos-
sible. Also try pagination. Keep your use of control
codes to a minimum.

Exercise 3:
Devise schemes that avoid the difficulty as illustrated
in Fig. 3 by considering no more than two lines at a
time. Test your scheme for a variety of texts.

2.2 Question a—Discriminating
between Heading and Text Lines
This part of the problem, if programmed in Fortran
in a straightforward manner, would be intertwined with
Question b. In order to cleanly separate this portion out,
we shall consider a subproblem as follows:

Subproblem a:

Write a program that reads a letter of the form as
shown in Fig. 1, discriminates between the heading
and the text lines, and writes the lines of the letter to
an output file, with an “*” attached to each heading
line. To each text line is attached a *“‘_,”". As an addi-
tional service, we require that the first line of each
paragraph be marked with “(” instead of “_,”, and
that a line of the form *) _,_, ..., be written im-
mediately after each paragraph of the body of the
letter.

As before, ¢, stands for a blank. A blank line is con-
sidered as a heading line throughout the rest of this
paper. Note that the output file of the above is suitable

36

: = =
'l[l | pgi mm—

- } —
I — —— '
: () i mmm—]

] — . (-
* po S—

(a) (b)

Fig. 4 Schematic representation (a ‘‘cartoon™) of a letter,
(a) like that of Fig. 1, (b) another style.

for use as an input for later stages of processing the
letter.

A good way for finding a solution of a problem of
this kind is to draw “‘cartoons”, i.e., schematic pictures.
Fig. 4(a) is a schematically redrawn version of Fig. 1
(in “indented” form), with a paragraph added. Fig. 4(b)
shows another possible style (in “blocked” form). The
stars indicate heading and blank lines, while those not
starred are text lines. What we are to produce is some-
thing like these stars, with additional indications of the
placement of the paragraphs.

Note that the paragraphs are drawn as though they
are already right-justified. In drawing a ‘‘cartoon”, it is
very important to cut unnecessary details. The subject
here is discrimination rather than justification. Our
picture should not catch the eye by being overrealistic
with the unjustified ends of lines.

First look at Fig. 4(a) “with your eyelids narrowed”.
Then you will find that all those lines having long runs
of no less than, say, twelve leading spaces are heading
lines. In addition, there are some other heading lines
which can be distinguished by long runs of spaces to the
right of them. However, a line of the latter type must
be regarded as a part of the text if it immediately follows
a text line. A consistent interpretation is obtained if
we regard a long run of spaces to the right of a line as a
sign of a heading line whenever the line is at the begin-
ning of the letter, or follows another heading line.

The break points of paragraphs can be found by look-
ing at a text line whether it is immediately followed
cither by a heading line, or by a text line starting with a
space (not forming a long run). The state transition
diagram of Fig. 5 summarizes these considerations.
Here, the hatches indicate the runs of spaces, i.e., the
absence of text strings, and the dotting indicates don’t-
care: both the presence and absence of text strings are
allowed.

It is interesting to note that Fig. 5 remains valid even
if we consider the format of Fig. 4(b). Fig. 4(b) includes
a paragraph consisting of a single, short line. Fig. 5
regards this as a heading. Since the heading lines are
printed as they are, however, this will not cause any
trouble provided that the original line is typed gracefully.

I. KiMURA

{ Wy eam

Y,

heading

start

end of data
finish

Yy B8
Aak

headm

end of data
break,

break, finish

paragr.
Aext

Fig. 5 Discriminating between heading and text lines. The
hatches and the dotting indicate spaces and don’t-care,
respectively.

(Recall what we have said about Question e.) Alter-
natively, the user could type the last word of the short
line near the end of it, with the space preceding the word
boosted as necessary. This requires that the line has
two or more words, of course. However, for a single-
word paragraph, there is absolutely nothing to worry
about.

Now, what do we mean by saying that there is a long
run of spaces to the right? For leading runs of spaces
to the left of a line, we can establish a rule of thumb:
the number of spaces used for starting a paragraph
doesn’t usually exceed ten; longer runs are sometimes
used, but are rare; to ten spaces we may add one slack
to obtain our bound, i.e., eleven spaces; twelve or more
spaces may be safely regarded as starting a heading line.

No similar standard is available for runs of spaces to
the right. Thus, even the width of platen of a terminal
can affect the threshold. Here, we shall be content with
an arbitrary bound: a long run of spaces to the right is
defined to exist if and only if column 40 and the follow-
ing columns of a line are all blanks.

Exercise 4:
A better solution for determining which line has a
long run of spaces to the right might be to use another
pass, in which the input data is scanned and an ap-
propriate threshold is computed. Try it. Note that
this exercise involves a significant amount of man-
machine considerations.

Our method will naturally fail if the user desires a
heading line, with a long run of spaces to the right, to
follow a text line immediately. This problem can be

On Teaching the Art of Compromising in the Development of External Specifications 37

C
CE#8#% MATN DRIVER #8sa
[+

INTEGER COUNT

10 CALL DISCR(COUNT)
IP(COUNT.GT.1) GOTO 10
STOP
END

c
C##8% DISCRIMINATE BETWEEN HEADING AND TEXT LINES ####
c

SUBROUTINE stcn(counw)
INTEGER COUN

LOGICAL LEFT, RIOHT TOP,LAST
INTEGER CARD(BO) iy {80),

c
CR&88 INPUT AND OUTPUT ####

SUBROUTINE GET(CARD,COUNT)
INTEGER COUNT

INTEGER CARD(80)
READ(5,500) CARD
FORMAT(80A1)

COUNT = COUNT + 1

RETURN

END

50!

=1

SUBROUTINE PUT(FLAG,LINE)
INTEGER PLAG,LINE(80)
WRITE(6,600) FLAG,LINE
FORMAT(' ',Al,' '',80A1)
RETURN

END

60

o

c
C®e8® PROPERTIES OF INPUT LINES %###&

LOGICAL FUNCTION LEFT(CARD)
INTEGER CARD(80),SPACE

$ TITLE '.I'EXT PARAGR BREAK,FINISH INTEGER I
DATA DUMMY /5 * ' DATA SPACE/' '/
$ TITLE /"'/ TEXT /' '/, LEFT = .FALSE.
$ PARAGR/'(P/, BREAK ')}/, DO 10 I =
$ FINISH/'-'/ IF(CARD(IS NE SPACE) RETURN
10 CONTINUE
COUNT = 0 LEFT =,TRUE.
[RETURN
[of ##s TITLE/HEADING STATE ### END
10 CALL GET(CARD,COUNT) c
IF(.NOT.LAST(CARD)) GOTO 20 LOGICAL FUNCTION RIGHT(CARD)
CALL PUT(FINISH,DUMMY) INTEGER CARD(80),SPACE
RETURN INTEGER I
20 IF(.NOT,(LEPT(CARD),OR,RIGHT(CARD))) GOTO 30 DATA SPACE/' '/
CALL PUT(TITLE,CARD) RIGHT =,FALSE.
GOTO 10 DO].OI-‘JOS
30 CALL PUT(PARAGR,CARD) IF(CARD(I).NE,SPACE) RETURN
C 10 CONTINUE
c #88 & & TEXT STATE ® # ¥&# RIGHT =,TRUE.
40 CALL GET{CARD,COUNT) RETURN
IP(.NOT.LAST(CARD)) GOTO 50 END

CALL PUT(BREAK,DUMMY)
CALL PUT(PINISH,DUMMY)
RN

RETU
50 IP(.NOT.LEPT(CARD)) GOTO 60
CALL PUT(BREAK,DUMMY)
CALL PUT(TITLE,CARD)

GOTO 10
60 IP(TOP(CARD)) GOTO 70
CALL PUT(TEXT,CARD)

GoTO 40
70 CALL PUT(BREAK,DUMMY)
CALL PUT(PARAGR,CARD)
GOTO 40

END

LOGICAL FUNCTION TOP(CARD)
INTEGER CARD(80),SPACE
DATA SPACE/' '/

TOP = CARD(1).EQ.SPACE
RETURN

END

LOGICAL FUNCTION LAST(CARD)
INTEGER CARD(80),MINUS,SPACE
DATA MINUS/'='/,SPACE/' '/
LAST = CARD(1).EQ.MINUS

$ LAND. CARD(2).EQ.SPACE
RETURN
END

Fig. 6 A Fortran program for Fig. 5

solved simply by requiring a little discripline on the
part of the user. For, what will be gained by allowing
such a sloppy practice?

Fig. 6 shows a Fortran program coded on the basis
of Fig. 5. Here, the subproblem has been slightly modified
to allow two or more letters, each being terminated by
a line starting with “~_,”. This has been done for easier
experimentation. The program can be stopped by an
empty letter, i.e., an immediate succession of terminating
lines. Fig. 7 shows a sample output.

Central to this program is the subroutine DISCR.
The rest are a driver and support routines. The DISCR
routine follows the pattern of Fig. 5 very closely. There
are two parts corresponding to the Heading and the
Text states. Each part begins with a call to the GET
subroutine for reading a card. After a test for an end of
data, it successively tests for the applicability of the
state transition arcs that go out from that state, and
yields an output using PUT.

The last call to PUT in DISCR could be dispensed
with if the succeeding “GOTO 40" is changed into
“GOTO 30”. We don’t do this, however. This will make
the correspondence to Fig. 5 less clear. This type of a

saving is best left to an optimizing compiler.

For coping with the six-letter restriction of Fortran,
some of our identifiers are strained. Thus, TITLE and
TEXT are the names of marks for a heading and a text
lines. PARAGR and BREAK marks the start and end
of a paragraph. FINISH marks the end of output.

LEFT, RIGHT, TOP, and LAST are conditions
holding for a run of spaces to the left, a run of spaces
to the right, a leading space, and an end of data, re-
spectively.

The program as a whole is driven by a main program
looping for successive letters. COUNT counts the
number of input cards for each letter. The card starting
with ‘-, ;> for terminating the input is included in the
count.

Some may object that the this program is not “struc-
tured” in the “narrow” sense. To this we answer that
it is, we hope, still structured in the spirit of Dijkstra.
The seemingly intertwined goto’s are merely the result
of compiling the “program” of Fig. 5 into a machine
language, Fortran. For a related idea, see [4].

The program could be made more “structured” by
rearranging the statements to form nested loops with

38

LOCK WILLOW,
SEPTEMBER 19TH.

DEAR DADDY,
SOMETRING HAS HAPPENED AND I NEED ADVICE,
I NEED IT FROM YOU, AND FROM NOBODY ELSE IN THE
WORLD. WOULDN'T IT BE POSSIBLE FOR ME TO SEE YOU?
IT'S SO MUCH EASIER TO TALK THAN TO WRITE; AND I'M AFRAID
YOUR SECRETARY MIGHT OPEN THE LETTER.

EL LR R

JUDY.
P.S. I'M VERY UNHAPPY,

1l asas e

Fig. 7 A sample output.

occasional exits. It can be made even more “‘structured”
if we note that a long run of spaces to the left in a line
automatically implies at least one leading space. How-
ever, this is a really small point. The programs thus
obtained are by far less understandable than the state
transition diagram of Fig. 5. Besides, the additional
knowledge about the relationships between the con-
ditions should best be left unused: its use might well
invalidate unforeseen areas of future application.
Certainly, we have the following

Exercise 5:
Use the ideas of this paper in a general purpose
formatter suitable for typing a scientific paper.

Here, the additional knowledge mentioned above
could still be used safely. However, this exercise indicates
that there are areas that require similar but subtly
differing considerations.

A similar exercise could be formulated for pretty
printing of programs.

2.3 Question c—Right-Justifying the Text Lines

This part of the problem is old. Various solutions are
known and actually used in production text formatters.
No final solution, however, seems to exist for the situa-
tion considered here: no half spaces are available, and
hyphenation is not attempted.

A commonly-used solution is to distribute the excess
spaces evenly to the breaks of words, and to allocate
those that still remain to as many word breaks that
stand to the right (or left) of the line. Alternatively, the
remainder could be allocated to the middle, or to both
ends of the line.

A known drawback of this method is that it is apt to
give rise to “islands” and “rivers” of blanks. It is also
well-known that this difficuity can be alleviated by switch-
ing the direction of adding the remaining blanks alter-
nately [3, 5].

A solution of our problem could use any of these
known techniques, say, the alternating method. Gries
[6] gives a detailed analysis about how this latter method
might be implemented in a well-organized manner.

Before closing our discussion, however, we shall try
another application of our principle: by requiring a
little discipline on the part of the user, we wish to make
him happy. In a sense, we are ourselves committing an

I. KiMURA

#8488 INTELLIGENT ##es

ALICE WAS BEGINNING TO GET VERY TIRED OF
SITTING BY HER SISTER ON THE BANK, AND OF HAVING
NOTHING TO DO : ONCE OR TWICE SHE HAD PEEPED INTO
THE BOOK HER SISTER WAS READING, BUT IT HAD NO
PICTURES OR CONVERSATIONS IN IT, "AND WHAT IS THE
USE OF A BOOK," THOUGHT ALICE, "WITHOUT PICTURES
OR CONVERSATIONS?"

#%88 RIQGHT FIRST ###

ALICE WAS BEGINNING TO GET VERY TIRED OF
SITTING BY HER SISTER ON THE BANK, AND OF HAVING
NOTHING TO DO: ONCE OR TWICE SHE HAD PEEPED INTO
THE BOOK HER SISTER WAS READING, BUT IT HAD NO
PICTURES OR CONVERSATIONS IN IT, "AND WHAT IS THE

USE OFP A BOOK," THOUGHT ALICE, "WITHOUT PICTURES
OR CONVERSATIONS?"

a#ud ALTERNATE ##u8

ALICE WAS BEGINNING TO GET VERY TIRED OF
SITTING BY HER SISTER ON THE BANK, AND OF HAVING
NOTHING TO DO: ONCE OR TWICE SHE HAD PEEPED INTO
THE BOOK HER SISTER WAS READING, BUT IT HAD NO
PICTURES OR CONVERSATIONS IN IT, "AND WHAT IS THE
USE OF A BOOK," THOUGHT ALICE, "WITHOUT PICTURES
OR CONVERSATIONS?"

#4#8 DELIMITER ORIENTED #8##&

ALICE WAS BEGINNING TO GET VERY TIRED OF
SITTING BY HER SISTER ON THE BANK, AND OF HAVING
NOTHING TO DO: ONCE OR TWICE SHE HAD PEEPED INTO
THE BOOK HER SISTER WAS READING, BUT IT HAD NO
PICTURES OR CONVERSATIONS IN IT, 'AND WHAT IS THE
USE OF A BOOK," THOUGHT ALICE, "WITHOUT PICTURES
OR CONVERSATIONS?"

== LEWIS CARROLL -~

Fig. 8 Right-Justification Methods and Possibilities.

overdesign here. The rest of this section might best be
regarded as an exercise for ourselves.

What we are going to do concerning Question c is
formulated as follows:

Subproblem c:
Obtain a better-looking right-justified output by
allocating more spaces to those semantical breaks of
the text that are apparent from punctuation.

For a motivation, look at Fig. 8. The paragraph
marked “INTELLIGENT” has been composed manually
using the formatter’s human intelligence. In general,
it leaves more spaces in those breaks at which a pause
is expected if the text is read aloud, but it does not carry
this principle to the extreme, because it is still desirable
that adjacent breaks are evenly spaced.

It would be nice if we could mechanize this “intel-
ligent” justification, but of course we can’t. Natural
language understanding is one of the greatest unsolved
problems of the computer industry; we should not open
our Pandora’s box.

Compare this “INTELLIGENT” paragraph with
those marked “RIGHT FIRST” and “ALTERNATE”
illustrating previously outlined methods. They are
tolerable, but certainly less comfortable to human eyes
when compared with the “INTELLIGENT” paragraph.
We desire something in between.

The worst aspect of the known methods is that they
make no distinction between ordinary breaks and the
breaks that delimit larger units of the text. Hence, the
Subproblem c.

On Teaching the Art of Compr ing in the Develop

In Fig. 8, the “DELIMITER ORIENTED”’ paragraph
illustrates what we have in mind. We don’t require our
formatting program to know that the phrase “ON THE
BANK?” forms a unit, but do wish that, if a single excess
space is to be allocated to a line, and the line has a single
comma and no period, then the space is given to that
comma. (See, however, a discussion in Section 2.3.2
about being conservative.)

In this connection, the following exercise for a very
ambitious student deserves mention:

Exercise 6:
Devise a simplified grammar of the English language,
and use it in a justification scheme for obtaining
something better than our “DELIMITER ORI-
ENTED” paragraph.

The student, however, should be forewarned that his
solution must be such that the cost of computation is
not excessive considering the relative importance of a
beautiful right-justification of the text. He must be re-
minded that the “RIGHT FIRST” paragraph is after
all tolerable.

We now briefly sketch a possible implementation of
our delimiter oriented right-justification.

2.3.1 Decomposition of Subproblem ¢
Let us first identify the difficult points of our sub-
problem. The questions are:

Question cl:
How do we determine the kinds of the breaks of a
given line?

Question c2:
How do we compute the number of spaces actually
allocated to the breaks?

We wish to separate our implementation efforts cleanly
into two portions corresponding to these questions. To
do so requires some means for transmitting information
about the kinds of the breaks from one module to
another. For this we shall use a vector consisting of a
small number of integers. They might eventually mean:
the minimum number of blanks that must exist at the
given break, and a first and a second relative weights for
use when the number of excess spaces is small and large.
However, at this stage of the design, we shall leave the
significance of the components of the vector open. For,
various man-machine considerations are coming in, and
hence experimentation is a must. It is definitely unwise
to fix the interface at this early stage.

A possible alternative is to transmit the information
in a single code number indicating the kinds of breaks.
If a higher sophistication is desired, however, there
could be a great number of possible combinations. For
example, we may wish to handle a period followed by
two blanks (““.,_,_,"") differently from a period followed
by a right parenthesis, which in turn is followed by two
blanks (“.)_,_,"). The reader will see that it would
become very hard to stabilize the design of the code

of External Specifications 39

numbers if this latter approach is taken.

2.3.2 To Determine the Kinds of Breaks—Question c1

Here we must make the computer behave as though it
understands the material it has been told to type.

How do we find a fullstop in a line? It is not so simple
as it might at first seem. There are at least four kinds of
periods: (1) periods within a word; (2) periods indicating
abbreviation; (3) dots; and (4) fullstops or sentence
separators. Examples are: (1) L.E. (2) C. L. DODGSON
(3) BUT ... (4) THAT'S ALL.

Challenged in this way, a typical reaction from the
student is to suggest a ‘“rule” which regards those
periods immediately following a single (capital) letter
as abbreviations. To this we answer by another example:
“WE ARE FRIENDS— —YOU AND L” Excluding
“L.’? Never! The author of this paper happens to be
I. Kimura, not to advertise himself.

Our solution consists in asking the user to type with a
bit of care. If he wishes that “C.” of “C. L. DODGSON”
be regarded as an abbreviation, he must be sure to put
no more than one blank immediately after it. Our
program will simply distinguish three classes: periods
followed by no space, one space, and two or more
spaces. This should be enough for our purposes. A user
will get an unsatisfactory result if he is sloppy enough
to type “C.” at the end of a line, but it is his fault!

A similar problem exists between apostrophes and
single quotes. For example, in

THE TELEVISION SHOUTED 'READ READERS’
DIGEST.’

the first and the third occurrences of “ * ” are single
quotes. (We apologize to the Editor of Reader’s Digest
for an intentional misspelling.) We may wish to boost
the breaks before and after them. The second occurrence
is an apostrophe. The break after it should not be
boosted.

Our solution is simply to prohibit the use of single
quotes as quotation marks. The user is requested to use
double quotes instead. If he does use *“ "’ for a quota-
tion, he would get a tolerable but less pleasing result,
which is, again, his fault.

Still another problem area is the distinction between
hyphens and dashes. Thus, “A- AND B-REGISTERS”
and “WE HAVE TWO REGISTERS— —-A AND B”
must be distinguished if hyphens are to indicate con-
nection, and dashes, separation. Here, a case-by-case
analysis based on the number of contiguous minus
signs, and their relations to blanks gives a usable result.

Commas may be problematic: they may delimit from
a very long clause down to a single word. Thus, in
“WE HAVE SIX QUESTIONS A, B, C,..., F.”, it
would be undesirable if the blanks after the commas
are markedly more in number than those after the
ordinary words. This indicates that we must be con-
servative about commas. Otherwise, a control code
would become necessary. In fact, we must be conserva-

40

tive not only with commas but also with virtually every
side of our design.

As noted earlier, we may wish to put more spaces
after ““.)_," than after ““._,_,”. This may be handled
by first calculating a vector for “.”, and then adding
an increment vector for *“)”’. However, a detailed design
of our vector is best postponed until enough experi-
mentation is over.

2.3.3 To Compute the Number of Spaces-—Question c2

Here, we are facing a human reader. We are to give
him comfort by allocating spaces appropriately.

If we were using a phototypesetter, in which the unit
length is, say, one-sixth of the width of a thinnest
character, our job would be very simple. We could use
any of the methods shown in Fig. 8. In all cases the
spacings would be very nearly of equal lengths. Each of
the methods would appear as beautiful.

Actually, even half spaces are not available here. We
can manipulate only hopelessly large units, the full
spaces. Integer programming? Okay, try it. But certainly,
it’s too much.

Our solution here is as follows: First, a weight for
each break of the given line is obtained as a function
of (1) the weight parameters given in the vector
mentioned above, and (2) the number of extra spaces
per break. Second, the extra spaces are distributed to
the breaks in proportion to the weights, but here the
fractions of spaces are cut off. Finally, those extra
spaces that still remain are successively distributed to
the breaks, where those, of which the ratio of the weight
to the number of actually distributed spaces is the highest,
are given the highest priority. Those breaks having equal
weights are treated in sequence from right or from left
according to a prescribed order. The order is switched
alternately each time a new line comes in.

3. Experience

Our sample problem has a rather long history. To
describe some of it will be of help for understanding
implications and possible uses of our problem. It is
noted that the academic year begins in April in Japan.

3.1 Early Attempts

In the fall of 1971, the author for the first time used
an earlier version of this problem for second-year
undergraduates of the Department of Information
Science (D.I.S.) of Tokyo Institute of Technology
(T.I.T.). The version, to be solved in Fortran on a mini-
computer, required that a commercial correspondence
answering an inquiry be composed on the basis of data
given in conversational mode for date, customer name,
merchandise, quantity, price, and delivery. Right-
justification was optional. Less ambitious students were
allowed to use a fixed format into which the variable
items were written appropriately. The students had no
previous experience in programming except for another

I. KIMURA

simple exercise requiring to print a table of square and
cubic roots of 1, 2,..., 10. One of the students dis-
covered the “alternate” method for himself.

Similar problems were used by the author and by one
of his colleagues for a number of times in their classes
subsequently. It is interesting to note that the author
always used no control codes, while his colleague used a
large set of them (leaving the design of the codes to the
students).

3.2 A Readers’ Contest in a Tutorial Journal

A problem almost identical to that of this paper was
used by the author in August, 1973 in a contest for the
readers of a tutorial journal [7]. A different letter was
used as a sample, and the terminator was “-” rather
than “-__,”, but the main difference was that the problem
explicitly stated the criterion for the choice of the winner:
the solutions were to be evaluated mainly on the basis
of the ease of understanding the program as combined
with the accompanying documentation. It was also
stated that the contest results were to be determined by
a jury consisting of two or more people in an attempt to
be fair.

The contest, as did all other contests given by the
journal each month, allowed only 40 days or so to the
contestants. The result was at the same time gratifying
and disappointing. Three persons submitted solutions,
and two of them made some efforts to cope with the
man-machine aspects of the problem. However, their
programs were basically brute-force ones, and con-
tained several bugs. The bugs were of such a character
that the author could not, and in fact had no intention
to, complete debugging within about 50 days allowed
to him in the presence of other duties. In [7] the contest
results were published with a record of discussions of
the jury, and complete listings of these two programs
as modified by the author. A warning was included that
there might be remaining bugs, and this was actually the
case.

A third contestant intentionally misinterpreted the
problem. He submitted a program which considered
only that particular letter given as a sample in the
problem.

3.3 Later Classroom Experiences

In the spring of 1976, the author used exactly the same
problem as was used in the contest of [7] in a laboratory
course for third-year undergraduates at D.I.S. of T.I.T.
The following assignments were given to the students:
(1) Deciphering the contestants’ programs of the above;
(2) Drawing Nassi-Shneiderman charts [8] for the con-
testants’ programs; (3) Preparing test data that reveal
the remaining bugs in the programs; (4) Evaluating the
previous reports of other students, by exchanging them
(borrowing the idea of Weinberg [9]); (5) Overall design
of the student’s own solution, by drawing a picture of
data structures and writing a general pseudo-code;
(6) Carefully redrawing on a large sheet what was

On Teaching the Art of Compromising in the Develop
written in (5), which was used in oral presentations by a
few students selected by a lottery; (7) Overall design
and a pseudo-code preparation for Subproblem a;
(8) Coding in Fortran for Subproblem a, with the method
of Fig. 5 disclosed at this point; (9) Pseudo-coding a
multipass algorithm for a combination of Questions a
and b; (10) Recoding in Fortran for (9); (11) Incorporat-
ing right justification, with the algorithm left to the
students; (12) Rewriting the Fortran program into a
form using no work files; (13) Additional assignment
on a separate topic: Snobol.

The pseudo-codes were written in Japanese in the
standard, unromanized notation of the language. In the
“nationalistic” view of the author, this form of a pseudo-
code is one of the world’s best means for designing
programs.

In parallel with these assignments the following topics
were covered: Guy de Balbine’s structuring engine [10];
Coroutines and multipass algorithms; A brief summary
of “The Elements of Programming Style” by Kernighan
and Plauger [11]; Top-down design explained using
Mills’ example on supermarket checkout control [12];
JCL on an OS, files; The Snobol language. The above
corresponded to a fifteen-week semester with each week
containing 100 minutes of lecture and 400 minutes of
laboratory work.

Although it is difficult to give a long-term assessment
now, it is at least true that the course evoked the students’
unusual enthusiasm, especially when the algorithm of
Fig. 5 was disclosed to them. All in all, the author feels
that he was successful. (However, it is noted that the use
of the contestants’ programs in the initial stages had
some negative effects. Some of the less diligent students
imitated bad points of these programs in writing theirs.)

In the fall of 1976, the same was tried at the Depart-
ment of Information and Computer Sciences, Osaka
University for third-year undergraduates. This time
twelve 100-minute classes in three chunks each of which
lasted two days were available to the author. Here, our
problem was covered less extensively, with more em-
phasis on the decomposition of the problem, and the
right-justification algorithms. Exercise 4 was used as
one of the assignments. Apart from our problem, some-
thing like what Kernighan and Plauger did in their
book [11] was done for a sample Fortran program
obtained from a Japanese textbook. Again, it is difficult
to assess now, but the author feels that he was more
successful than previously expected.

t of External Specifications 41

4. Conclusion

This paper discussed a text formatting problem.
However, it was merely an example. A single text
formatting problem is clearly not enough. For pro-
grammer’s training we need a great many other problems.
It is very important to accumulate similar problems,
and they can be found in virtually every field of com-
puter application. In fact, any nontrivial programming
project involves some compromises between the con-
venience of the user and the implementor.

To accumulate these problems, however, requires
much more than an author’s effort. By this paper the
author wishes to advertise, perhaps with a fanfare, the
importance of thus accumulating similar problems.

Acknowledgement

The author is indebted to the following persons for
discussions and comments: Eiiti Wada, Masako
Takahashi, Hirohiko Nishimura, Ken Hirose, Takashi
Tsuji and Kojiro Kobayashi. He is also indebted to
Gerald M. Weinberg for encouragements, and to
Joseph C. Berston for suggestions regarding presentation.

References

1. PetersoN, W. W. An Introduction to Programming Languages,
Prentice-Hall, New Jersey, 1974.

2. ABRAHAMS, P. W. On Realism in Programming Examples,
SIGPLAN Notices 11, 2 (Feb., 1976), 17-19.

3. Gwmvpew, J. F. Algorithms in SNOBOL 4, John-Wiley, New
York, 1976, Chap. 10.

4. TakaHasi, H, Programs and the GOTO, (in Japanese), In
“Suri to Gensho” (Mathematical Reasoning and Physical Phe-
nomena), Iwanami Shoten, Tokyo, 1975, 214-218; originally in
Sugaku Seminar 11, 8 (Aug. 1972), 38-40.

8. GriswoLp, R. E. String and List Processing in SNOBOL 4,
Prentice-Hall, Englewood Cliffs, New Jersey, 1975, Section 6.2.

6. Gries,D. An Illustration of Current Ideas on the Derivation
of Correctness Proofs and Correct Programs, JEEE Transactions on
Software Engineering, SE-2, 4 (Dec., 1976), 238-244.

7. KmMurA, I. Nano-Pico Kyoshitsu (a readers’ contest, in
Japanese), bit 5, 9 (Aug., 1973), 63 and 5, 12 (Oct. 1973), 63-71.
8. Nassi, I. AND SHNEIDERMAN, B. Flowchart Techniques for
Structured Programming, SIGPLAN Notices 8, 8 (Aug., 1973),
12-26.

9. WEINBERG, G. M. Personal communication.

10. DE BALBINE, GUY. Better Manpower Utilization Using Auto-
matic Restructuring, Proc. 1975 National Computer Conference,
AFIPS 44, (May, 1975), 319-327.

11, KERNIGHAN, B. W. AND PLAUGER, P.J. The Elements of Pro-
gramming Style, McGraw-Hill, New York, 1974,

12. MiLis, H. D. (with appendix by LINGer, R. C.) On the
Development of Systems of Men and Machines, In Hackel ed.,
Programming Methodology, Springer Lecture Notes on Computer
Science 23, (1975), 1-10.

