Running Time Delays in Processor-Sharing System
MisAkoO ISHIGURO*

An analytic method is developed to estimate the average running time for a job in a processor-sharing
system, where the running time includes the delays caused from the execution of coexisting jobs. The processor-
sharing mechanism is approximated by a finite number of pseudo processors called *“init”. In the present treat-
ment, Poisson arrival and exponential service time distributions are assumed.

An integrated expression is given to obtain the average delayed job running time for the following three
types of systems.

(1) Multiple separate system with multiple separate queues, where the inits correspond to the individual
queues.

(2) Common init system with a single queue, where all the inits correspond to the queue.

(3) Job class system with separate job class queues, which is a melting of the preceding two systems, where
the individual queues are assigned to some of the inits.

The results calculated from the present method are shown to be reasonable in light of validation of the

results by simulation.

1. Introduction

It is an interesting problem to establish a reasonable
analytic method to estimate the running-time delays of
jobs in a processor-sharing (PS) system under an open
batch type of job scheduling. In the system, a single
processor is shared among a finite number of jobs, thus
the running time of a job may become longer, depending
on the extent that the processor is occupied by other
jobs.

As for the PS mechanism, several studies have been
made [1, 2] in which the associated mean waiting time,
W(t), was evaluated for a service requirement, f. The
studies, however, were intended to investigate, not the
batch type of system, but rather the time sharing system
(TSS). In contrast with the TSS, the batch system jobs
are scheduled by job classes, and a job arriving at the
system may not immediately enter the PS service stage,
but will be held in the queue to keep the bounds of the
multiprogramming level. The level is always designated
to each job class according to the practical limitations.
Consequently, in the present PS service stage, several
classes of jobs are served in parallel, under the finite
multiprogramming levels. On the other hand, other
models that appeared in [3, 4] are the so-called “two
queues attended by a single server”. Though the server
is accompanied by two distinct queues, they were
concerned with scheduling models that are dissimilar to
the PS system. That is, in the model by Takdcs [3], two
queues are alternately served, while in the model by
Taube-netto [4], two service stage queues in tandem-
attended are served by switching one stage to another.
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In order to take the batch type multi-job-class queues
into account, a PS queuing system, as shown in Figs. 1
and 2, is considered. The PS mechanism is shown to be
approximated by a finite number of pseudo processors
called “init”. Then, we are led to the concept of init by
the job scheduling scheme used in IBM S/360 OS/MFT
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[5]. Thereupon, job scheduling is performed by an
initiator-terminator task that consists of a finite number
of job initiators, and each of the initiators, abbreviated
to “init,” corresponds to a job class queue, or queues,
and schedules jobs for the queues assigned to it by
selecting a candidate by the FIFO rule. In the present
system, all the jobs actively served by the individual
inits are alternately processed by a real processor through
the Round-Robin (RR) service discipline. Here, it is
assumed that the real processor is equally shared-used
among the active jobs, regardless of their job classes.
Because a time slice must be very small compared with
the service requirement of such a batch type of job, a
job will spend a good many cycles of the RR processes.
Consequently, at the PS stage, the use of the real proces-
sor is considered to be averaged among the coexisting
jobs.

Now, the generalized effective models of such a job-
scheduling system of queues are difficult to analyze,
except under restrictive assumptions. Accordingly, in
the present system macroscopic behaviors of the comput-
ing system are analyzed, though in an actual computing
system, a job is processed through the CPU and input/
output iteration with a requisite storage. Here, a basic
part of the multiprocessing is modelled and analyzed to
obtain a rough estimate, so the input/output times for
auxiliary storages and others are not considered indi-
vidually. All such factors are assumed to be lumped
under a behavior of a single processor.

From the above discussion, we shall make the usual
assumptions that a job entered into the i-th queue has
Poisson arrivals at a mean rate, 4;, exponential service
times at a mean value, §;, and the FIFO scheduling rule
is used for each queue.

To illustrate, the motivation to the present prob-
lem, we shall consider the simplest system, which
has two inits corresponding to two individual queues,
as shown in Fig. 3. Let us denote the average (delayed)
running time for the j-th init associated with the average
(real) service requirement §; (for i=1, 2) by y,. We shall
roughly estimate the jy;, by taking into account the
mutual influences between the two inits. Precisely, the
running time of an init, say init I, will double if another
init (init 2) is busy, assuming that the two jobs are
alternately served in the RR service processes. Then j,
is presumably calculated as

V=28, +5,(1-n3)=5,(1+n;), where n,=1,5,, (1)
Similarly, for init 2

V2=5(1+n,), wheren,=41,7,. @
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Fig. 3 Two separate queues.
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In these two equations, we have introduced the
definition, n;, to be the pseudo utilization rate for the
i-th init. From the consequence of (1) and (2), n; (i=1
and 2) is given as a function of p, and p,, where p; is
defined as the real utilization rate for the i-th init and
given by p,=41,5;. We have

Fi1=51(1+p)/(1=p1p2), F2=5(1+p)/(1-pip). (3)

The equations (3) resemble those obtained in Sakata’s
work (1], when 1,=1, and §,=35,. That is, the mean
time spent in the PS system, j, has been given by y=
5/(1— p), where § is the mean of the service time distribu-
tion and p=15, and 2 is the mean arrival rate to the
system. However, the results calculated from the rough
estimation are found to be considerably different from
those calculated from the simulation by GPSS, as shown
in Fig. 4.
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Fig. 4 Roughlycalculated pseudo utilization rate when p,+p,=
0.8.

It is clear that an advanced analytic approach is needed
to estimate the average (delayed) job running time.
Hence, in this paper, a reasonable method will be
developed to predict it with sufficient accuracy.

Although this approach cannot give explicit solutions
for equilibrium queue length probabilities, once the
average job running time is derived, both the average
waiting time and the average queue length for a job
class can be easily estimated from the usual waiting time
law, namely W=y/(1 —n), and Little’s results, where y
and 7 denote average running time and pseudo utiliza-
tion rate of the class, respectively.

2. Multiple Separate System

First we consider a system with multiple queues, which
are assigned to the individual inits. Then, we assume
that the i-th init corresponds to the i-th queue (1 i< m).

The following notation is used:

A;: average Poisson arrival rate to the i-th queue.
§;: average service requirement for the i-th init.
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p;: real utilization rate (=busy rate) for the i-th init
and p;=4;5;.

4P1> P25 " Pm)
expected job running time in the i~th init, including
the “delays”, for given p(1<j<m).

NP1, P2." "5 Pm)
pseudo utilization rate of the i-th init and defined as
ni=24.3:

Two-Queues— Two-Inits System

In viewing the present method, we take up the previous
two-queues—two-inits system shown in Fig. 3. In this
case, we show an approach to calculate the expected job
running time y(p,, p,) for each i (i=1, 2).

Let us first focus our attention on init 1. The method
of approach is based on the fact that the job running
time delays of init 1, at a certain time interval, may be
significantly affected by the busy rate of init 2 and, in
turn, init 2 is affected by that of init 1 at the same
interval, and the same argument is applied successively.
Hereupon, the busy rate for an init may be interpreted
as utilization rate for it.

Let i1, denote the current average service requirement
of jobs in init 1. For a small increase of the i,, Ai,, we
want to evaluate a transition of the running time from
71(r1, p2) to §(y +Ayy, p2), where y,=4,ii;. Here,
“current” means a certain time interval, including a
tagged moment. Let us suppose that init 2 is always used
with a uniform busy rate, p,. From the assumption of
the queuing model, the p, is independently given, whether
or not init 1 is currently busy. We can apply the previous
view of the equation given in (1) to the small time interval
Aii,. This is because the time spent for a cycle of RR
process for a job may double if another init is busy.
Thus, we obtain the difference equation,

A7 (v1s P2)=F1 (01 + A1, p2) = 71(01s p2) =AU (1 + 2Z5).
)

Here, the value Z, is interpreted as the current pseudo
busy rate in init 2. The value of Z, also increases by the
rate of init 1, Z,. Consequently,

Zy=py(1+2)). )

As for Z,, because it can be supposed that the elapsed
time in init 1 increases in proportion to the current
increasing rate Ay ,(y,, p,)/Aii,, we have,

Z,=1u1,A5,(7,, p2)/Aii,. 6)

To give an intuitive meaning for the last three equa-
tions, we would rather express them as the single equa-
tion:

Ay\(y1, p2) =AU [1+p{l +1,it,A7,(y,, p2)/Au}]. (7)
Solving (8) for Ay ,(y,, p2)/Aiiy,

Ayi(yss P2)= 14+p,
Aiiy 1=4yppi,"

®
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By taking the limit Aii,—0, we obtain the differential
equation,

47,01, P2) _ 140,
diz, 1=24,p,u,"

&)

Integrating over #, from O to §,, we obtain the solution
to yield an estimate for the expected job running time,

1+p,
log (1— . 10
Tp, 08 (=P1p2) (10)

1(p1, p2)=—

Once the y,(p,, p,) is calculated, the pseudo utilization
rate is easily determined from the relation n(p,, p,)=

2:7{p1» p2), bY

mor == log (1=pyp). (1)
Similarly, for init 2

7201, 0= = T 10g (1= p1p2),

n2(py, p2)=— l:f" log (1—p,p,). (12)

Multi-Queues—Multi-Inits System

The same approach is easily applied to the system with
more inits. Four-queues — four-inits system is illustrated.

Herein, the job running time for an init, say init I,
should depend on the busy-situation of the other three
inits. Then, for a small increase Au,, increase of the
associated job running time Ay,(y,, p,, p3, p4) for given
P2, P3» Pa Can be written as

Ay, =Au,(1+Z,+Z,+ Z,),
Zy=p,(1+Z,+2Z3+2,),
Zy=p(1+Z,+Z,+Z,),

where y; =4,ii,,
Zy=ps(1+Z,+Z,+2Z,),
Z,=2,u,Ay,[Ai,, (13)
henceforth, y,(---) is often abbreviated to y,. Solving
the last equations for Ay,/A#,, and using the same

process as in the previous system, we can obtain the
solution for init 1 as follows:

_ 1+4
F1(P1: P20 P13, p)=— 7 log (1= 4,p).  (14)
1 1

Here, A4, is given by,

_ (P2+P3+Ppa)+2(p2p3+ p2ps+P3ps)+3pP203P4
1={p2p3+p2ps+P3ps+2p103P4}

A,

(19)

Thus, A, is interpreted as a summary factor to init 1’s
delay that is caused by coexisting jobs. The solutions for
the other inits can be found in a way analogous with
the last three expressions.

Furthermore, the present approach can be generalized
into an m queues system, for an arbitrary m. The solution
is written as,
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- 1+4
yi(pla Pas s pm)=_ l.A‘HOg(lﬂAipi)’ (16)

for each i (1<i<m).
Here, A, is similarly interpreted and is given by,

Ai=m§:lka(k)/{l“mil(k“l)a(k)}- an
k=2

k=2
And the a® (1 £k<m—1) is given by,
a®= Phys Phys™ " "5 Phy (18)

(hihz, - mhi), # i
where for a certain i, summation X 4. .- ho,¢: IS
taken over all the k-combinations formed from | to m,
except for i.

Fig. 5 shows the pseudo utilization rates calculated
for three-, four-, and six-inits systems.

We now show the cases where distinct rates are
assumed for the individual queues.

Case 1: three-queues - three-inits system

p,=0.16 p,=026 p;=048
n7,=0.38 1n,=0.56 n;=0.86

(calculated by our method)
1,=037 n,=0.56 #5,=0.83 (simulation)

Case 2: six-queues — six-inits system

p1=p2=P3=ps=0.1 ps=pe=02
ni=n=n3=1,=028 1n;=n,=0.48

(calculated by our method)
=1, =n3=n0,=027 ns=047 ns=0.46

~ (simulation)

init=6 init=4 init=3
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Fig. 5 Multiple separate model.
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3. Common Init System

We now proceed to the second type of queuing system
in which all inits are accompanied by only one queue.
The following notation is used:

A: average arrival rate to the system.
§: average service requirement for an init.
p: real utilization rate for an init, and p=A45/m, if
m-inits system is assumed.
y(p, m): expected utilization rate for an init when real
utilization rate of an init is given by p.
n(p, m): pseudo utilization rate for an init and defined
as n(p, m)y=Ajy(p, m)/m.

The two-inits system shown in Fig. 6 is considered
first. The system seems to be an interesting variation of
the basic two servers system in which service times are
not mutually influenced. But in the present system, a
single processor is assumed to be shared-used between
the two inits, even though the inits themselves individu-
ally behave as the servers.

Let us assume again that init 1 is currently used. Then,
the current busy rate of init 2 should be evaluated,
because the busy probabilities of them are considered to
be dependent, as may be identified with the conception
of conditional probabilities in the basic M/M/2 system.
We now formulate the queue length probabilities in the
basic M/M/m system [6]. Let p, denote the statistical
equilibrium probability when the system contains &
jobs waiting or in execution. Then the p, is given by:

k
(—",1—’f)~1>0, I<k<m—1
Pr= s
—m_"kaO’ kém
( (mpy"

mst (mp)) !

o= mii=p) * 2 k1 J 0 P=Hm (9
Let us define ¢(y,i,.i,, - - -.i 88 the conditional proba-

bility for an init-busy status (/), i}, iy, -, i in the k-th

multiprogramming level, namely

qaty iz siseip=Pr [iNits i3, i3, - - -, iy are busy
|init / is busy]

Hereafter, we should pay attention to the particular
case where /=1, because the conditional probability for
the init 1, namely g,y ;,.5,, - - ..o i definitely obtainable
as a common value for all / (1L/<m). Furthermore,
this probability is found equal to every such (k—1)-
combination. Consequently, we need to ecalculate only
Gi1y.2.3,---a foreach k 2sk<m).

Processor
2 Job queve i1 | — I/5(t.2)
~ | itz | — 14502

Fig. 6 Common queue (two inits).
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d(1),2,3,..x=Pr[inits 1, 2,- - -, k, are busy]
/Pr [init 1 is busy]
From the results of (19),

b
P a<k=m-1
Y a,p,+ Y ps
h=m
901),2,3,k= & (20)
Z Py
m—1 hzm ) > k=m

where a, and b, are given by
a,=h/m, b,=1/,C,

the ,,C, denotes the number of k-combinations formed
from 1 to m.

Illustrated again is the four-inits system. Here we
explain the derivation of its difference equation in
correspondence with the previous four-separate-queues
system.

At present, we want to evaluate the associated running
time increase of an init, say init 1, Aj(y, 4) for an increase
of the service requirement Aii, where A, =1/4 and y=
Aqid.

Now let us recall the previous equations (13) and
rewrite them as a single expanded equation.

Aj=Aa[l+p{1+Z, +p3(1+Z +po(- - )+ pa(- - )
+pu(1+Z +p5(- - )+ ps(- - N}
+p3{1+Z;+p(1+Z,+p3(- )+ pa(--+))
+pu(1+Z +pa(- - )+ p3(-- - D}
+p{1+Z+p(1+Z +p5(- ) +pa(-- )
+p35(1+Z +p5(- )+ pa(- - N}
Z,=A,aAy/AG. Q1

According to the structure of the equation (21), we
would draw up a diagram to represent the paths by
which every init-busy status is reached. Fig. 7 shows a
busy status tree for the present purpose. Then, the
equation (21) is reformulated in due consideration to
the multi-programming levels, enumerating the relevant
init busy occurrences along the corresponding path,
from bottom to top. Thus we have,

only init |
is busy

(1) odditional one
init is busy )2

{2} additional two
inits are busy

(3) additional three

inits are busy  (N.2,3.4

1,243 (13324
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Aj=Aull+{(q1y,2+91),2,3+91).2.4F 91y,2,3,4 X1 + Z5)
+(@1y,2.3+91).2,3.4) +(G1), 2.4 +91),2,4.3)
+29(1),2,3,4) + {similarly for init 3}

+ {similarly for init 4}]. (22)
As the conditional probability ¢, ...;, Was

known as an identical value for every such (k—1)-

combination from the preceding discussion, the equation

(22) is reduced to,

Ay=Au{l+3q,),(1+Z,)+6q,,,:2+Z))
+3490),2,3,4(5+Z)}. (23)
Using the relation Z,=A,iiAj/Aa, and solving (23) for
Ay/Au, we have,
Ay 1+B

A 1= Ai’ 24

where: A=3q.1),+64(1),2,3+391),2,3,4

B=3q(1),,+129(1),2,3+15¢1),2,3,4

In a similar manner, we now obtain
1+B
W, 4)=——7—log(1-4p), with 1,=2/4 (25)
1

The method used can be readily generalized into the
system with an arbitrary number of inits. The difference
equations for an m-inits system are given by:

85=8(1+ 3 = 1)a Cos Zas,a)s QO
Z,=2,uAy/Au, with A;=21/m,
for each k 2<k<m),

Zy 3, k=91),2,3, s@-1+Z)).

The quantity, d,, is introduced to denote the busy
degree for the (k+ 1)-th level busy status. Constructing
the busy status tree to a higher level in analogy with the
preceding system, we can compute the 4, from the
recurrence functions:

d =1,
dy=1+(k—1)d,_,. @7

24 m),3,2 ) ma,2 1),4,3
2 3 ]Z
0,342 1423 432

Fig. 7 Busy status tree.



Running Time Delays in Processor-Sharing System

n
or 876 5 4  inits3 init=2
0.9t
0.8t
-E
s o7}
e
o 06}
8
§ 0.5+
g
5 04r
3 0.3t
o o simulation
0.2}
o.tr
0| 005 G10 015 020 025 030 035040 045 G50 |
Real utilization rate of an init
Fig. 8 Common init model.
From (26), the following solution is obtained:
_ 1+B
Fp, m)= = =— log (1= 4p), (28)
1
where:

A= Z k=1 o 1Cim 1 4(1y,2,3, 0

k=2
B=kzz(k_l)dh—l m-1Ck=19(1),2.3 - 29)

The results shown in Fig. 8 are calculated to validate
the present solutions for systems with from two to eight
inits.

4. Job Class System

Now, we recall the queuing system in Fig. 1 where the
previous two types of systems are collectively modeled.
Here, we assume that there is a separate job class
associated with each average value (4, 5). The following
notation is used:

: average arrival rate to the i-th job class.
: average service requirement to an init of the i-th
class.
: number of inits of the i-th class, namely multipro-
gramming level of the i-th class.
p;: real utilization rate for an init of the i-th class and
pi=Asim;
Jip1s my, pay My, pp Myt
pseudo utilization rate of an init of the i-th class.
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Two Queues—Five Inits System

Fig. 2 shows a two-job-class system, in which the
first job class queue corresponds to the first three inits,
and the second corresponds to the remaining two inits.

Once again, we shall concentrate on the first job class,
especially on the behavior of init 1. Then, we estimate,
Api(y1, 3, 3, 2), where A,y =4,/3, y =2, u;.

It can now be assumed that the init-busy probabilities
are independently given among job classes, but they are
interdependent within the class. The previous approaches
used for the two distinct systems are melted to derive the
difference equation; that is, the approach for the multiple
separate system is applied to the relation among the job
classes, while within the job class, the approach for the
common init system is applicable. Then, we have:

Ay, =Ai {1+Z"+ZP},
ZW=Z,+2Z3+2Z, ;,
Zy=q{1+Z, +Z®y,
Z,,3=q2,312+Z, +Z®y,
Zy=q {1 +Z,+Z"},
Z45=44,52+Z,+ 2"}
Z,=Ay,u,4y,/4u,, (30)

ZO=Z,+Z,+2Z, s,
Z3=q1)3{1+ 2, +Z@3,

Zs=qs{1+Z,+Z"}

where, ¢;, ;, ..., denotes the init-busy probability given
by

Giy iz i =Pr [inits i, i, - -, i, are busy].
From (30), and applying similar processes, we have:

_ 1+B
Vi(p1s 3, p2, 2)=— ! log (1-A4,p,), @a3n
A4,

where 4,,=42,/3,

and A, and B, are given by:

A, =(e,+e,+2e,e,)/(1—e,e,),

B, ={ei(1+e))+es(1+e)}/(1—e ey),

€1=4qm).,2+%m,3F24(1),2,3=29(1),2+ 29(1),2,3

€1=qmy,2+ 91,3+ 44(1),2,3=241) 2+ 441,2,3,

er=q4+qs5+2q4 5=2q,+2q, s,

€3=qs+qs+49, s=294s+444 5, (€7)
With respect to the second job class queues, init 4 is
chosen as a tagged init. Consequently, the equations (32)
are slightly modified.

The results obtained by this analysis are validated
against those of simulation, as shown in Fig. 9.
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Fig. 9 Job class model.

n-Queues—m-Inits System

Finally, we reach a generalized job class system with
n job classes, as shown in Fig. 1. The solution to the
i-th job class is obtainable as:
1+B;
yi(pl» my, pa, My, -, P,mn)= - R IOg (l _‘Aipi)a

il

where 4;, =4,/m;, (33)

where A; and B, are analogously given by:

A= 2 ka""/{l— Z (k—l)a“"},
k=1 k=2

n n—1
Bi:k; eé[l - u; {m,fz,-};if o T 'ef’}]
/ {1— ¥y (k—l)a""}, G4)
k=2

Here, for each k (I £k <n), a® is given by

a® = €r€r i (335)

S1.f20 1)
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where the notation Y, ,, ..., in (35) denotes the
summation taken over all the g-combinations formed
from I to n, while the notation ¥, ,, ... r,)#k in (34)
denotes the summation formed from 1 to n, except for k.
In (35), for each f (1= f<n), e; and ¢] are calculated as:

my—~1
Zl J m,-le U+ 10+ 2,000 0p+ o f=i
e=¢ " (36)
Py Sf#i
my~ 1
ZI 4iJ my=1Ci Qupagriape2,mipep S=1
=1 €l
'21 d,jm,Cjqt,.1,+|.~--.1,+j#|» J—i
j<

Herein, the quantity d; in (37) is the value recurrently
calculated by function (27).

It is easily seen that the expressions obtained for this
final queuing system are consistent with those for each
of the previous two types of systems. That is, when we
let m=n and m;=1 for all i (1<i<n), the expressions
(33)-(37) are reduced to (16)(18) in the m-multiple-
separate system. On the other hand, by letting n=1 and
m=n, the expressions are reduced to (28)-(29) for the
m-common init system.
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