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An approach is presented to analyze the performance of a system with the General Resources Manager
(GRM). The GRM is a periodical modifier of resource allocation priorities for throughput/response im-
provements in multiprogrammed computer systems. Because of the ¢ mplexity, its scheduling effect has so
far been investigated by only simulations or measurements.

This paper first considers the system with constant priorities and develops a new approximation technique,
termed the Asymptotic Model. Simulations results show the validity of the mode! for the prediction of
response times under priority scheduling disciplines and limited degree of multiprogramming. Secondly,
based on the model, the control policy of the GRM is discussed. Furthermore a way to predict the per-

formance under the GRM control policy is introduc-d.

The approach presented reveals very little of GRM’s dynamic behavior. For the full analysis of the GRM
much work remains to be done. However, some essential properties of the GRM are considered successfully

demonstrated by the use of the model.

1. Introduction

The need for the balanced optimization of the two
performance objectives—response and throughput—has
brought about a new set of schedulers based on a feed-
back concept [1]-[4]. The OS/VS2 Release 2 System
Resources Manager (SRM) [3] was the first explicit
attempt to achieve these two goals in various TSS/batch
applications. However, the limitation in its effectiveness
urged a more general scheduler, the General Resources
Manager (GRM) [1},"2]. The SRM controls performance
solely by swapping (real memory allocation), and is
ineffective in an undercommitted real memory environ-
ment. The GRM, on the other hand, controls perform-
ance by the allocation of various resources such as real
memory, CPU, channel, etc., thus holding effectiveness
in diverse environments.

The investigations on the performance for those
schedulers were carried out mainly by simulations and/or
measurements [1], [2], [4]. They were generally local
studies, since the high cost inherent to these evaluation
methods prevented more systematic and global studies.
The requirement for the investigation of global system
behaviors leads us to an analytical approach, especially
to queueing network theory. However, the research of this
area [8], [9] has shown its inapplicability to our problem.
This is because the current queueing network theory does
not include priority scheduling disciplines, whereas the
control of the GRM/SRM is based on priority adjust-
ment. Theoretical treatments of priority scheduling so
far are M/M/1 or M/G/1 or M/M/s setting at most,
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failing to analyze the interrelation between resources
[10], [11]. Even an approximate treatment of a queueing
network [15] is too confined for the GRM performance
analysis, since it covers solely CPU scheduling. In
addition, another difficulty is that the current queueing
theory cannot solve the multiple resource holding
(secondary resource) problem. The real memory should
be treated as the secondary resource, because it is kept
allocated to jobs which are waiting for or being served
by CPU or channels.

This paper presents an analytical approach to the
system performance under the GRM. Since the GRM is
the mechanism of periodic priority adjustment, our
approach is divided into two stages. The first stage
described in 3. and 4. concerns the performance during
the interval between the two successive priority adjust-
ments. In other words, this stage is the analysis of the
system with static (constant) priorities. A new approxima-
tion model, including both priorities and real memory
as a secondary resource, is developed. The basic idea is
to approximate the exact solution by its asymptote.
Muntz et al. [5]-{7], [14] indicated the mean response
time has an asymptote as a function of customer popula-
tion size (the number of active terminals). However,
their model assumes a single job class and unlimited
degree of multiprogramming, and neither priorities nor
real memory is included. Our model, being in the
extension of their approach, is based on two assumptions.
One is the neglect of queueing delays when the resource
can never be utilized to capacity. And once it can, the
resource is assumed always utilized to capacity. The
other is the assumption of preemptiveness, which
implies that a job is never influenced by lower priority
ones. These are the assumptions to obtain asymptotes
in multiple job class environments. And asymptotic
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solutions enable us to have a rough estimate of the
global system behavior under complex priority schedul-
ing. Detailed simulations are carried out in 4, to validate
our model.

The second stage described in 5. concerns the long
range performance under periodic priority adjustment.
This stage is much more difficult than the first one. It
is because the strict argument must include the transient
effects such as the possible influence by the lower priority
jobs immediately after the priority adjustment. The
analysis of these transient effects is a further research
concern, and this paper confines itself to giving some
analytical insights into the performance under the GRM
control. By using the first stage model, the effectiveness
of the GRM control policy is discussed. Furthermore,
one way to predict the performance under the policy is
presented.

2. The System under the GRM Control

The system is represented by the finite population
model with limited degree of multiprogramming. In
Fig. 1 each terminal initiates a transaction at every think
time expiration. In other words, “think time” in this
model is the time interval between the completion of a
transaction and the arrival of the following one. A
resource service requester is called a “transaction” which
corresponds to a batch job or TSS command. Batch jobs
in this figure are considered to be initiated by the termi-
nals for which think times are set at zero. (The queueing
delay of job-scheduling is not covered in this paper.)

—@
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swapped-in
transactions
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swapped-out
fransactions,
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Fig.1 The system model—finite population model with limited
degree of multiprogramming.
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Since the paging load varies with the multiprogramming
degree, some mechanism for the multiprogramming
degree adjustment is indispensable to avoid thrashing
[12], [13]. This problem is out of this paper’s concern,
and working-sets are assumed rightly chosen to always
realize the light/moderate paging load. The maximum
multiprogramming degree s is obtained as V/w, where
V and w represent the total real memory amount and
the mean working-set size respectively. For simplicity,
V is assumed a multiple of w. In case the number of
non-dormant (not in the course of “thinking”) terminals
exceeds s, the excess transactions are queued for the real
memory allocation and wait to be swapped in.

The GRM periodically changes the priority for each
resource allocation for each transaction, while aiming at
balanced improvements in throughput and response.
Its control policy includes that of the SRM which con-
cerns only real memory allocation [3]. Moreover, the
GRM also covers traditional time-slicing control and
dynamic dispatching control. A detailed description is
given in [1], [2] and here only an outline is presented.

The GRM has two discrete and potentially conflicting
control objectives. The first one is throughput improve-
ment—the better use of resources. Let u; be the utilization
of resource j and g; be the lower limit of the acceptable
range. Resource j is defined to be either “busy” if
u;>q;, or “idle” if u;<gq;. The control objective is given
by

u;>q; 6))

where j refers to CPU or a channel, since only CPU and
channels need to be busy for throughput maximization.

The second objective is response improvement. It is
accomplished by an adequate resource service distribu-
tion. The resource service rate, which is the resource
service amount being supplied to a transaction per
second, is related to a service objective function called
the Performance Objective [1]-[3]. This monotonously
decreasing function represents the relative importance of
the transaction, and specifies its ideal service rate as a
function of the workload level. Let r; be the transaction
i’s service rate and g be the Performance Objective
associated with i. The Normalized Workload Level
(NWL) of i is given by

NWL,=¢""(r)) )

where g~! represents the inverse function of g (see

Fig. 2). The control objective is the reduction of the
NWL’s variance, namely

NWL,-NWL (i=1,2,---) 3)

where NWL represents the mean of NWL. Note that
eq. (3) assures a relatively high service rate (short
response time) for an emergent transaction with which a
high Performance Objective is associated [1]-[3].

The GRM control policy is an integrated priority
assignment scheme that is utilized to attain eqgs. (1) and
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Fig. 2 The computation of Normalized Workload Level of trans-

action i.

(3). In this policy, the concept of predecessor/successor
is introduced. If some transaction has to be allocated
resource J1 in order to request the service of resource
J2, J1 is called J2’s predecessor and J2 is called J1’s
successor. (Naturally a successor of J2 is also J1's
successor.) For example, real memory is a predecessor
of CPU and channels, and CPU is a predecessor as well
as a successor of channels. Assuming that J1 is ““busy”
and J2 is “idle”, the utilization of J2 can be improved by
giving precedence to J2’s heavy user (the transaction
which uses J2 by a large amount) in the allocation of
J1. In addition, the variance of NWL can also be con-
trolled by adjusting the allocation priorities for J1. This
is because a ‘‘busy’’ resource is a key resource in service
distribution.

The GRM control policy is summarized as follows.
(1) Increase the priorities of the idle resource’s heavy
users, for allocation of such resources as are busy and
predecessors of the idle resource. (2) Increase the
priorities of those transactions which have relatively
lar;e NWL and decrease the priorities of those transac-
tions which have relatively small NWL, for allocation of
busy resources.

3. The Asymptotic Model for Priority Scheduling

3.1 Single Class Model

First the model for a single transaction class without
priorities is discussed as an introduction. Let T, R, z and
s be the mean response time, mean resident time, mean
think time and maximum multiprogramming degree
respectively. R represents the mean time when real
memory is allocated to a transaction. In other words, R
is T minus the mean queueing delay for real memory
allocation. Since CPU and channels are treated equally,
they are all called ““processors”™ hereafter. The mean use
time of processor j by a transaction is denoted as d,.
The lower bound of mean response time is given by

R, =§ d;. 4

Note that R, corresponds to the mean response time
without queueing delays.

The utilization of processor j u; and that of real
memory u,, satisfy

{uj=Nd)-/(T+Z) (]=1’2")
Un=N(R[)[(T+2) ®

where N is the customer population size (the number of
active terminals). Note that eq. (5) holds for any inter-
arrival/service time distribution. Letting max d; be d,,
eq. (5) yields !

max u; = u, ©

i
for any value of N.

The first assumption for our approximation model is
as follows:

ASP1. The queueing delay for a resource service is
neglected when the resource can never be
utilized to capacity. And when it can, the
resource is assumed always utilized to capacity.

This is the assumption to obtain asymptotic solutions. It

should be noted that asymptotic solutions correspond to

the “minimal” queueing delays for any inter-arrival/
service time distribution. Apparently, actual queueing
delays can be significant even when the resource is not
utilized to capacity. The difference between exact and
asymptotic solution depends upon inter-arrival/service
time distribution. Since the distributions in a queueing
network with priority scheduling disciplines are generally
not known [8], [9], [15], our approach is to approximate
queueing delays by their asymptotes. As a general rule,
this approach tends to underestimate the actual response
time.

In case s is infinite, ASP1 leads to the following

simple approximation which is widely known [5], [6].

R, :1<N<(Ry+2)/d,
T= . Q)
d,N—z : otherwise.

The approximation with finite value of s is obtained by
using ASP1 and eq. (5) as follows:

{T= d . N-z: for N yielding u,=1 ®

R=R,: otherwise.

_ {(R/S)N —z: for N yielding u,,=1 )
R : otherwise.

The second equations in eq. (8) and eq. (9) each indicate
the neglect of queueing delays when the population size
is too small to attain the full utilization of the resource.
Thus we obtain from egs. (8) and (9),

d.N-z : for N yielding u,=1
T=1{(R,/s)N—z: for N yielding u,<1 & u,,=1 (10)

R, : otherwise.
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Fig. 4 The asymptotes (planes) of mean response time T with
limited degree of multiprogramming.

The above model is basically an extension of the discus-
sion by Kleinrock [7] and Muntz [6]. Muntz discussed
the case of s being infinite, and showed R, and (d N —z)
become the asymptotes of the mean response time (see
Fig. 3).

The T as a function of N and s is depicted in Fig. 4.
There are two cases according to the value of s. If
1 <s<R,y/d,, the system becomes ‘“‘memory neck” but
never both “processor x neck” and “memory neck”.
(Hereafter we call the system is “processor x neck” if
u,=1, and “memory neck” if u,=1.) This is because
egs. (5), (6), (8), (9) give eq. (11) in the memory neck
situation (N > (R +2)s/Ry)-

u,=sd,/Ro<1. an
On the other hand, if s> R,/d,, it becomes first *‘processor
x neck” and then both “processor x neck” and “memory

neck” as N increases. This can be explained by the next
equation, which is given by egs. (5), (6), (8), (9) in the
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processor neck (and not memory neck) situation ({s+
(2/d.)} > N =(Ro +2)/dy).

Un={N—(z/d,)}/s. 12

Eq. (12) tends to 1 as N approaches {s+(z/d,)}. Obviously
T depicted in Fig. 4 coincides with the Muntz’s result
when s is infinite.

3.2 Multiple Class Model

The system is assumed to have the static (constant)
priorities. Any variable related to class i transaction is

indicated by an index i such as T, R;, d;;, R, z;, 5,
N, etc. Using eq. (5) we obtain
UJ=Z Nd ;(T:+z) G=1,2,-++)
Un=Y, N(R/s)(T:+2z). 13
i

Another assumption is introduced in addition to ASP1.
ASP2. Preemptive resume priority scheme is assumed.
Therefore a transaction is never affected by
lower priority transactions. The lower priority
transactions will be supplied with only the
remainder of the resource service.
Channels in an actual system are nonpreemptive. And
even real memory can be sometimes nonpreemptive,
since a transaction in the course of I/O operation
cannot be swapped out until its completion. Therefore
ASP2 makes the model underestimate the high priority
transaction’s response time, and overestimate the low
priority transaction’s response time.
Unlike the single class case, the range of N(=Y N))

to be analyzed is limited, so as to ensure a finite vallue of
T, for any transaction class. In other words, the number
of high priority customers is assumed small enough to
utilize none of the resources to capacity. This is because
the low priority transaction’s response time becomes
infinite when some resource is completely occupied by
the high priority transactions. This, as combined with
ASPl and ASP2, means that the queueing delay at a
resource is neglected except for its lowest priority
transactions. (The limitation in N does not affect the
generality of the argument. If T} is infinite, other classes’
response times can be obtained by simply neglecting
class i in the analysis.)

The service discipline at a resource in the model is as
follows (see Fig. 5): (1) There are as many priority
queues as priority levels. A transaction in a queue is
served only when the higher priority queues are all
empty. (2) No particular discipline is assumed for the
service to the transactions in a given queue (except for
the neck resource’s lowest priority queue). It may be
First Come First Served, Processor Sharing, etc. This is
because the asymptotic solution is the same for any
service discipline, although the actual queueing delays
might be affected by it. As for the lowest priority queue
of a neck resource, it is assumed that the service is dis-
tributed among the lowest priority transactions on a
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Fig. 5. The service discipline for the multiple class model.

““fair share’ basis [17]. That is, the average use amount of
the neck resource is the same for any active terminal
which initiates the lowest priority transactions.

The equations to obtain asymptotic solutions are
presented below. First the model of infinite value of s;
is introduced. Let y; be the set of processor j’s lowest
priority transaction classes, and H be the set of processors
of which the utilizations are 1. Note that all transaction
classes become the member of y;, unless processor j is
under priority scheduling. In case H is empty, T;=R;,
for any i. Otherwise they are given by next equations.

Z_ {1 —ei)deij/(Rio +zi)+eiNidij/(Ti+zi)} =1

(jeH) (14)
diil(Ti,+2)=dp, (T, +2,)= -
(iy, iy, - -ey;; jeH)  (15)
where

1: if 9keH such that iey,
= (16)
0: otherwise. .

Eq. (14) is obtained by substituting T; by R,, in eq. (13),
for such i as joins none of y,(k € H). The fair share service
discipline [17] is reflected in eq. (15). In other words,
eq. (15) defines ‘““the equality of priority” in this model.
The number of unknown variables T, is |U yil-

(Hereafter | | denotes the number of members i m a set,
and (] denotes the union of sets.) The numbers of eqgs.
(14) and (15) are [H| and Z (Iy,[— 1) respectively.

Therefore we can obtain the solutlon if

U »l
JjeH

This mutual exclusiveness of y; can be interpreted that a
transaction in this model never waits at two or more
processors. The T;’s given by eqs. (14)—(16) must satisfy

0<u;<1
Ryp<T;

=Y 1yl an
JjeH

(=1,2+)

18
(i=1,2,---). (18)
In other words, H is determined by egs. (13)(16), (18)
for each set of values of N,. It is noteworthy that egs.
(14) and (15) can be reduced to independent linear
equations if eq. (17) holds. The reduction is done by
equating each of eq. (15) with a new variable of j and
substituting T'’s by it.

The finite values of s; might cause the memory neck
situation. In case they do not, T;’s are given by eqs. (14)-
(16). Therefore we assume u,, =1 hereafter, and the set
of transaction classes with the lowest real memory
allocation priority is denoted as y,,.

The next equations are those for finite s;, given as an
extention of eqs. (14)(16).

Y I—e)1-
+{l-(1—e)1—-

emNd;;/(Rio+2)
emINd /(T +2)]=1
(eH) (19)

di /(T +2,,)=d; (T, +2;,)=---
(i, iy, - -€y;; jeH) (20)



Zi [(A—e)(1—em)N{(Riofs)/(Rio+2))
+{e(1—eIN(Tis)/(Ti+2)
+{(1—e)em}NdR:o/s)/(Ti+2)
+(eemN(R/s)/(T;+z)]=1 (21

{(1—e, )(Ry,0/5:,) +e;,(Rus /s INT 1+ 2,)

={(1—e, ) (Ryofs:,) +e,,(Ri /s (T, + 2, )=+ - -
(1 iz 6v) (22)
where
1: if iey,,
e.-...={ (23)
0: otherwise.

Eqgs. (19), (20) are the same as egs. (14), (15), except
that T, includes the queueing delay of real memory
allocation for i in y,. The equation u,=1 corresponds
to eq. (21), where the relation 7,=R, is assumed from
ASPI1 and ASP2 unless i belongs to y,,. The fair share
service of real memory among its lowest priority transac-
tions is reflected in eq. (22). The numbers of unknown

variables T, and R, are |(U ) yml and I(U )
() ¥ml respectively, and the ‘sum of them is {IU y,|+

[¥ml}. (Here () denotes the intersection of sets) On the
other hand, the numbers of egs. (19)«(22) are |H]|,
Z(Iy,l—-l), 1, (Iy.|—1) respectively, and the sum of

them is (|y,,,|+2| yjl). Therefore the above equations

jeH
can be solved if eq. (17) holds. In addition, eq. (17)
eables us to reduce eqs. (19)~(22) to independent linear
equations. The reduction procedure is, essentially, to
equate each of eq. (20) and eq. (22) with a new variable
and substitute T’s and R;’s by it. The solution has to
satisfy the next conditions as well as eq. (18).
Ry <R, <T; (i=1,2,---). 24)
Note that y,, and y; are not necessarily mutually exclu-
sive; ie., a transaction may wait at real memory in

addition to a processor. This has already been exemplified
in 3.1.

4. Example

A simple example is studied and compared with
simulation results. In the example, N terminals are
divided equally into two, corresponding to transaction
class 4 and B (N,= Ny= N/2). Since all related variables
such as Ry, d;;, $;, 2, etc. are assumed the same in the
two classes, the indices 4 and B are omitted hereafter.
A transaction utilizes two channels CHl1 and CH2
(ee Fig. 1.), each of which a disk is assumed to be
connected to. CH1 and CH2 might be interpreted to
execute file I/O and paging I/O operations respectively.
However, a channel in this example is assumed never to
become a neck resource; that is, d, is always d,,,. This
assumption is considered reasonable, because light/
moderate channel loading is possible by 1/O buffer size
modification. Moreover the working-set size is assumed
large enough to prevent thrashing.
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Two priority scheduling disciplines (1) P(A, CPU)>
P(B,CPU) & P(A, MEM)>P(B, MEM) (2) P(A,
CPU)>P(B, CPU) & P(A, MEM)<P(B, MEM), are
investigated, where P(i, CPU) and P(i, MEM) represent
the priority of class i transaction for the allocation of
CPU and real memory respectively. The next results
are obtained by using egs. (19)(23).

(1) P(A,CPU)>PB,CPU) & P(A, MEM)> P(B,
MEM)
(@) s<Ro/d,,, (memory neck)
1<N<s(Ro+2)/Ry:
T,=Tz=R,
S(Ry+2)/Ry <N <2s(Ry+2)/Ry:
=R,
Ty=[Ro(Ro+2)N/{25(Ro+2)— RoN}]—z
(b) Ry/d.,, <5 (CPU neck, CPU & memory neck)
1<N<(Ry+2)/d,,,:
T A= TB_ 0
(R0+Z)/ cpuSN<2(R0+z)/ cpu
{T 4=R,
Ty=[dopu(Ro+2)N/{2(Ro+2)—
(2) P(A, CPU)>P(B, CPU)
MEM)
(@) s<R,/d,,, (memory neck)
the same as (1) (a), by exchanging 4 for B
(b) Ro/depu<s<(2Ry+2)/d,,, (CPU neck, CPU &
memory neck)
1S N<(Ro+2)/d,
T,=Tg=R,
(R0+Z)/ cpu SN<S+(Z/dcp")
T,=R,
Tp=[d.pu(Ro+2)N/{2(Ro +2)—
5+ (2)dep) SN <2s+(z/dop, )}
{TA [ pn(RO + Z)N/{2(Z+Sdcpu)
TB [dcpu(R0+z)N/{ cpuN 2(S
(© (2Ro+2)/d,p, <5 (CPU neck)
the same as (1) (b)

Detailed simulations were carried out to investigate
the errors of the above results. The simulation model
was developed in CSS (Computer System Simulator),
which is an event-driven type simulation language [18].
To imitate the actual system as closely as possible, I/O
operations were simulated nonpreemptive, based on the
seek time distribution of HITAC H-8589-1 disk. (Refer
to [16] for its seek time curve. Random access was
assumed.) On the other hand, since the distributions of
think time and CPU service time are generally not
known, we simulated two distributions—exponential
and deterministic. If the actual distribution is Erlangian,
the result should be between the above two. The values
used in the simulations were: d,,=0.285 sec, d,,; =
0.086 sec, d,,,=0.129 sec, Ry=0.5sec, z=20.0 sec, s=
1~20.

The scheduling effect of discipline (1) and (2) are
shown in Fig. 6 and Fig. 7 respectively. The memory
neck situation (1) (a), the CPU or CPU & memory neck
situation (1) (b), are each exemplified by s=1 and s=10
(or 20) in Fig. 6. Naturally T, < T, for any N. In the CPU

cpuN}] it
& P(A, MEM)<P(B,

cpnN}]_z

cpuN}] -z
cpu RO)}] -z
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Fig. 6 The validation of the Asymptotic Model by simulations
in the case of P(A, CPU) > P(B, CPU) & P(A, MEM) >
P(B, MEM).

neck situation, Ty of (1) (b) is the same whether or not
real memory is a neck. Therefore no difference is noticed
between s=10 and 20. The error of T, becomes signifi-
cant at the critical point of N, above which a resource can
be utilized to capacity. And this is especially true for
exponential service.

The examples of (2) (b) are shown in Fig. 7 (s=10, 20).
The case of (2) (a) and (2) (c) are omitted for simplicity.
An interesting behavior of T is indicated in Fig. 7—
decreasing as a function of N in the CPU & memory neck
situation. The CPU neck situation causes queueing delays
in Ty, but once it becomes CPU & memory neck, real
memory begins to be occupied by class B transactions,
resulting in increased T, owing to the real memory
queueing delay. Consequently, the CPU queueing delay
decreases, and notable reduction in Ty is achieved. In
Fig. 7, the overestimation of Ty can be explained by the
overestimated CPU utilization by class A transactions
as accompanied by the underestimation of T ,.

The results are summarized as: (1) The error of the
Asymptotic Model is negligible when the load is either
heavy or light and significant when it is moderate, as is
easily seen from ASPl. The increased variance in
service time distribution causes greater errors. (2) Even
with considerable errors, the Asymptotic Model is
useful to investigate the rough behavior of the system
with various priority scheduling disciplines.
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Fig. 7 The validation of the Asymptotic Model by simulations

in the case of P(A, CPU) > P(B, CPU) & P(A, MEM) <
P(B, MEM).

5. Considerations on the GRM Control

The analysis of the system performance under the
GRM dynamic priority adjustment is not possible by
the simple combination of static priority cases. It is
because the changes in priorities cause transient effects.
The argument of these effects have not been obtained,
and this paper only gives some analytical insights into
the GRM performance control.

There are two objectives, egs. (1) and (3), in the GRM,
and each corresponds to control policy (1) and (2).
First we examine eq. (1). Assume that processor j’s
utilization is very low (u,«q;). Let i be the transaction
which has large d;;. (It might make the following argu-
ment easier to understand to consider a transaction class
is composed of only one transaction; since each transac-
tion in a class is not identified in 3.) The control policy (1)
mentioned in 2. urges the increase in i’s priority for the
allocation of “‘currently neck* and j’s predecessor”
resources. It is shown in 3. that this change will decrease
T,. Consequently, u; given by eq. (13) tends to increase,
resulting in the achievement of the objective eq. (1).

Secondly the objective eq. (3) is examined. Let C; be
the total resource service amount to complete transaction

*A “busy” resource can be approximated by a “neck” resource.
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i, and r; be i’s resource service rate. Naturally,
T,=Cyr,. (25)

Assume the NWL of i is too large (NWL;>NWL). The
control policy (2) urges the increase in i’s priorities for
the allocation of “neck’ resources. It is shown in 3. that
this adjustment will decrease T;. From eq. (25) and eq.
(2), we can see NWL,; is expected to decrease, since
NWL, is monotonously decreasing as a function or r;.
As the similar argument can be applied to the case of
NWL,«NWL, it is considered that the objective eq. (3)
is achieved. Note that the essential feature of the GRM
is to control performance by the priority adjustment at
the neck resources. The SRM, on the other hand, is not
expected to achieve egs. (1), (3) in a non-memory neck
situation, since it controls performance only by swapping
(11-31.

The two objectives might conflict with each other,
making the performance prediction virtually impossible.
This paper concentrates on the case where the response
is of supreme importance. In other words, it is such a
situation as only eq. (3) is pursued and eq. (1) is ne-
glected. Therefore we can make the following assump-
tion.

NWL,2NWL (i=1,2,---). (26)

Even with eq. (26), however, the response time is hardly
predictable if a transaction is associated with a Perform-
ance Objective of complex shape. Two simple types of
Performance Objective are studied below: (1) Perform-
ance Objective yielding static priorities (2) Performance
Objective yielding constant ratio of r;. The examples of
type (1) and type (2) are shown in Fig. 8. Here g, and gg
each represent the Performance Objective associated
with transaction 4 and B respectively. Since r; never
exceeds C;/R;o (i=A, B), the next relation holds for the
type (1) example.

L, <NWLg<L,<NWL, <L,. 27
This means that A’s priority is always kept higher than

that of B for any resource allocation. In the type (2)
example, on the other hand, the ratio of r , to ry is always

h,/hg regardless of fluctuations in NWL.
From a practical viewpoint, these two types are

resource resource
service service
rate rate

ha
he

worklood workload
level Level

The type( 1) example The type(2) example

Fig. 8 Examples of Performance Objectives which specify pre-
dictable response times.

T. Nisaigaki, K. NocucHr and K. OHMACHI

considered sufficient to cope with various user require-
ments. The former was already discussed in 3., and here
we focus on the latter. Given the set of Performance
Objectives which yield

Feirpiryieeo=hyihyihyie- (28)
we obtain from eq. (25),
Cl/(T1h1)=Cz/(T2h2)=C3/(T3h3)= trt. (29)

The utilizations of resources are given by eq. (13).
Therefore if both 3 Nd,;/(Rip+2) (j=1,2,"-*) and

> N,(R,-o/s,)/(R,-o+zi5 are less than 1, T; coincides with

Ry (i=1,2, ). Namely eq. (28) does not hold in a
system without neck resources. Otherwise some processor
and/or real memory become the neck resources. If the
system is processor x neck, T,’s are obtained by using
eq. (29) and

1 =Z Nidix/(Ti+zi)~ (30)

On the other hand, if the neck resource is solely real
memory, eq. (29) and
1 =Z N{Rio/s)/(T;+2) @n

give the solution.
6. Conclusion

The Asymptotic Model developed gives approximate
throughput/response of the system with priority schedul-
ing disciplines and a limited degree of multiprogramming.
The detailed simulations ensured that this model is
useful to predict the global system behavior.

The analysis based on the Asymptotic Model makes
it possible to examine the control policy of the GRM and
showed its relevancy to achive the two objectives—
improved throughput and response. In addition, the
analysis presents a way to predict the response times
under the GRM control, for two types of service objective
functions.

This approach is expected to give analytical insight
into the system performance with complex scheduling
disciplines, which has so far been investigated solely by
simulations and measurements. However, it should be
noted that this approach is only the first step toward the
GRM performance analysis. The estimation of approxi-
mation errors is to be given more consideration. In
addition, the dynamic system behavior under the GRM
control is still unknown. More precise arguments,
including transient effects caused by dynamic priority
changes, would be a further research concern.
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