How can We Use a “slow” Computer
Comfortably?

Kozo Itano*

In order to establish a more comfortable user interface, a system should inform the user the behavior of
his program during execution. For this purpose, a mechanism for monitoring a program during execution
is implemented, and examples of the monitoring are given for several practical cases in an experimental

system.

1. Introduction

Interactive use of time sharing systems has been
widespread among contemporary users, and a rapid
response of the system is indispensble for establishing
a good user interface. For example, if the system re-
sponses within 0.1 second, a user would not be concern
about the response time. However, when the response
time exceeds several seconds, the user would be irritated
against the “slow’” computer, even if he knows that the
excution of the program needs long computation time.
The essential reason why he is irritated is that he is
forced to be kept waiting for an indefinite time and he is
never given any information about when the execution
of the program is finished. When the turn around time
exceeds several seconds, the user has to keep his nerve at
some tension until the system responses to him. This
kind of situation may disturbe his creative thinking
especially in case he engages in intelligent work. In such
an enviornment, if the system could inform the user of
the current execution state of his programs, a more
comfortable user interface would be established.

There are two kind of turn around times: waiting time
and execution time. A successful example of reporting
system of the waiting time is the Cambridge 370 system
[1] which reports to the user when his job will be executed.
In case of execution time, however, there is no attempt
to predict the whole execution time in advance, except
that only the used cpu time is given when requested by
the user [2].

The new idea devised can monitor the behavior of the
program during execution and can predict when it is
finished. In this paper the author gives the detailed
mechanism, implementation of the system, and examples
of observation of the actual execution of the programs.

2. How an Interactive System Should be

In this section, we would analyze a mechanism of

*Institute of Information Sciences and Electronics, University of
Tsukuba, Sakura-mura, Niihari-gun, Ibaraki 305, Japan.

Journal of Information Processing, Vol. 3, No. 4, 1981

interaction between a user and a computer. A typical
example is a time sharing operating system, where a
user usually types commands through a terminal and
a response is printed or displayed at his terminal. In
the case of a program which needs strong interaction
such as a text editor, a rather rapid response is indis-
pensable to make a good user interface. However, we
cannot expect such a short response time in all the cases;
some may need long computation time. In most cases,
the computation power of the machine is limited and
the system cannot execute all jobs in an instant. In this
situation, a user as a human being is forced to wait for
some time, and he usually cannot accept it; hence his
creative thinking is disturbed.

One of the successful solutions to these situations is
given in the UNIX operating system [14], which supports
the two major capabilities: full duplex terminal input/
output and multi-process. In this system, a user can
input his commands independently from the meassage
outputs or responses to them. He need not wait for the
response of the system unless necessary. Further, the
multi-process capability permits a single user to execute
several programs in parallel. For example, he can edit
a text during compilation of other programs. This means
that the user can get to the next work and need not wait
for the completion of the programs which has a long
computation time.

In many cases, however, we must wait for the com-
pletion of the current program. For example, we cannot
execute or test a program until the compilation and
likage are finished. Unfortunately he might not have
a text to edit while waiting for the completion of the
computation. Hence, “how to know the current state
of the programs” remains as an important problem in
order to use a “slow” computer comfortably, even if the
system supports full duplex input/output and multi-
process capabilities.

3. Basic Algorithm
A basic strategy to understand the behavior of pro-

grams during execution is to monitor periodically an
execution probe (E-probe is used) which indicates how

How can We Use a “‘slow” Computer Comfortably ?

the execution is proceeding [3]. Usually, an E-probe is
a function of several variables in the program or data
to be monitored. In order to eliminate the overhead due
to the observation of programs, we evaluate the E-probe
only when it is observed, for example, each one second.
The E-probe is 0 when the execution begins, and 1 when
the execution is finished. If this E-probe is completely
proportional to the time from the beginning of the
execution, it would be known precisely how the execution
of the program is proceeding by monitoring the E-probe.
Further, we can know how much time is necessary to
finish the execution of the program. For example, when
the E-probe is observed as 0.3, it indicates that 30
percents of the total execution has been finished.

However, an ideal E-probe which is completely propor-
tional to the time cannot be implemented in practical
programs, therefore we have to use some approximation.
As an approximation of the E-probes, we present two
mechanisms below.
(1) Mechanism 1

In this mechanism, as an E-probe we use the size of
data which are used during input or output. For example,
let Q be the size of total input data to be processes, and
q be the size of input data which was been processed
already. Then, the E-probe E is defined as:

E=q/Q.

Q and q are commonly used in most read routines, and
the use of these variables would not produce any over-
head during execution.

This mechanism can be used in the case of translators
such as compilers and assemblers. In the case of a
multi-pass compiler, the E-probe becomes somewhat
complex, because the relation between passes should be
considered.

(2) Mechanism 2
In this mechanism, we should analyze the behavior of

processing rate

I

100

INTCODE GEN.

227

the program during execution and define the E-probe. As
a simple example of this case, a matrix multiplication
program P1 is shown below.

DO 10J=1,N

DO 10I=1,N

c(d, =0

DO 10K=1,N

10 C(d, H=C{, D+A(, K)*B(K, J)

Pl. Matrix multiplication
In this program P1, the statement 10 is executed N?

times, then the E-probe E is defined as shown below.

E=(J -)N24+(I—)N+ K~ 1)/N°.

As an E-probe, also we can use EO and E1 as an approxi-
mation of this E.

E0=(J—1)/N
El=((J—-DN+I-1)/N%
By the use of this E-probe, we can predict the total
execution time. Let t be the time from the beginning of

the execution, E(t) be the E-probe at time t, and T be
the total execution time to be predicted, then T is

r MINIOS-BCPL ‘\\
$BCPL

FILE=COMPIL
64 ¥ DONE

updated periodically

g J

Fig. 1 Display Format.

90 OCODE GEN.

80 o
70 7
60
o]
40
30 7
20 o

10 -+

AE TREE GEN.

0 T T T

0 4 8 12 16

T T T T T
20 24 28 32 36
TIME (sec)

Fig. 2 Relation between the E-probe and execution time in case of the BCPL compiler.

228

estimated as follows:
T=t/E(t).

And how much the execution has been proceeding is
indicated by the E-probe E(t) itself.

4. Implementation

An experimental system to monitor the execution of
programs is implemented on a small computer system
the TOSBAC-40C which is equipped with 64K bytes
of main memory, five mega bytes of magnetic disks, two
magnetic tape drives, a character display console,
a real time clock, and a printer. For easiness of the
modification of the operating system, MINIOS [4]
was used.

For the implementation of the mechanism 1, we used

input data size
(bytes)

11000 —

10000

9000 —

8000 —

7000 —

6000

o ©
5000 —

4000 —

3000 o

2000 o

1000

K. Itano

a BCPL compiler [5] and runoff program [6) written in
BCPL. Since the data size of the file should be definite
before the execution, the byte size of files was installed
in the file system of MINIOS. For the implementation of
the mechanism 2, a Gaussian elimination program [7]
was chosen. The results of the monitoring of the execu-
tion is displayed on the character display console in real
time. This console is connected to the computer through
a high speed communication line interface which allows
quick updating of the screen. An example of display
format is shown in Fig. 1. In order to avoid a noisy
message, the message is updated in the same position of
the screen each one second.

5. Precision of the Monitoring of Execution

Measurements of program behavior are made for the

T I T T
80 100 120 140

time (sec)

Fig. 3 Relation between execution time and input data size in case of BCPL compiler.

How can We Use a “‘slow” Computer Comfortably ?

E-probe/T
1.257

1.20 7

229

0 :ROFF
o0 :BCPL
a:Gaussian elimination

T T T T T T
0.5 0.6 0.7 0.8 0.9. 1.0

Execution time: T

Fig. 4 Relation between the E-probe and execution time in case of the BCPL compiler, the runoff, and the Gaussian elimination.

BCPL compiler, the runoff program, and the Gaussian
elimination program. The BCPL compiler has three
phases: (1) AE tree generation, (2) OCODE generation,
and (3) INTCLDE generation. Although the first and
third phases of the compiler gave good results, the
second phase gave rather poor results. This is because
the input of the second phase is an AE tree whose data
structure is not a linear one.

In the actual estimation of the total computation time,
the E-probe is not so precise in the beginning of the
program execution. However, it becomes more precise
as the execution proceeds. We show the measured relation
of the E-probe and actual execution time as in Fig. 2,
and the relation between execution time and size of
input data in Fig. 3. The results measured for the
Gaussian elimination are also shown in Fig. 4.

6. Concluding Remarks

Quality and adaptability of the monitoring is mostly
dependent upon the E-probe. Therefore, the most
important problem is to make a good E-probe systemati-
cally in the programs to be observed. Many analyses
have been done concerning the behaviors of the programs
during execution [8-13] and there is a good possibility
to make up a good E-probe by the use of this kind of
analysis.

The applications discussed above are restricted in the
limited class of programs related to the man-machine
interface. However, the E-probe could be applied to
many other situations of computer system. For example,
a more optimum job scheduling algorithm based on
the prediction using the E-probe would enable rearrang-
ing the execution of jobs. Also, the E-probe might be
useful in debugging facilities, because the users can

monitor their programs under test implicitly or explicitly.

Acknowledgement

The author would like to express his thanks to Dr.
Tetsuo Ida at Institute of Physical and Chemical
Research and Mr. Kiyoshi Ishihata at University of
Tokyo for their helpful discussions.

References

1. StewarD, P. and SmiBes, R. J. Cambridge 370/165 user’s
reference manual, University of Cambridge Computing Service
(1976).

2. DEC SYSTEM-20 User’s guide, DEC (1976).

3. Irano, K. Prediction of the actual execution time of programs
and its application (in Japanese), Programming Symposium,
Hakone Japan, 21 (January 1980), 185-194.

4. MINIOS Reference Manual (in Japanese), University of Tokyo
1974).

5. RICHARD, M. BCPL: A tool for compiler writing and system
programming, SJCC (1976), 557-566.

6. Ipa, T., ITanO, K. and IsHIHATA, K. Implementation of the
alphanumeric text formatter: ROFF (in Japanese), Annual Report
of Computer Centre, University of Tokyo, 7 (1977).

7. ForsyTHE, G. and MOLER, C. B. Computer solution of linear
algebraic systems, Prentice-Hall (1976).

8. UsuiMa, K. and HarADA, K. Tools for analysis and evaluation
of software (in Japanese), Johoshori, 20, 8 (1979), 703-711.

9. INGALLs, D. The execution time profile as a programming tool,
In design and optimization of compilers edited by Rustin, R.,
Prentice-Hall (1972), 107-128.

10. KNuTH, D. E. An empirical study of FORTRAN programs,
Software Practice and Experience, 1 (1971), 105-1433.

11. Knutd, D. E. and STeEvENsoN, F. R. Optimal measurement
points for program frequency counts, BIT, 13 (1973), 313-322.

12. RAMAMOORSEY, C. V., KM, K. H, and CHEN, W. T. Optimal
placement of software monitoring aiding systematic testing, IEEE
Trans. SE., SE-1, 4 (1975), 403-411.

13. Fospick, L. D. and OsTERWEIL, L. J. Data flow analysis in
software reliability, Computing Surveys, ACM, 8, 3 (1976), 305-330.
14. RircHIg, D. M. and THompsoN, K. The UNIX time sharing
system, CACM, 17, 7 (1974), 365-375.

(Received April 7, 1980: revised July 25, 1980)

