On Defining Denotational Semantics for
Attribute Grammars

MasAYUKI TAKEDA* and TAKUYA KATAYAMA*

This paper presents a denotational semantics of attribute grammars and proposes a method of attribute
evaluation based on it. The denotational semantics of an attribute grammar is defined by the least fixpoint
semantics among attributes assigned to the nodes of a derivation tree and it is realized by a set of recursive func-
tions which perform the required evaluations. The proposed method for attribute evaluation is directly based on
this denotational semantics and handles a wider class of attribute grammars including the well-defined ones.
1t has the following characteristics: (1) the evaluation functions can be derived directly from the description of

. a given attribute grammar without resorting to augmented dependency graphs, (2) it is an outpur-oriented
evaluation, that is, only attributes which are related to the required attributes are evaluated, (3) it can be easily

implemented by a LISP-like programming language.

1. Introduction

The specification of the semantics of a programming
language can be formulated in various ways [7, 15, 18].
Attribute grammars proposed by Knuth [13] have
several advantages: (1) the semantic description of a
language is structured according to the syntax, (2) the
context sensitive restrictions can be described by
semantic conditions between attributes, (3) the cor-
rectness of the description can be verified modularly
(i.e., production-rule-wise), and (4) the description can
be utilized for automatic compiler generation. This
method has been used in various fields of computer
science, such as programming language design, transla-
tion, program correctness, optimization, and question-
answering systems.

Several authors have studied the problem of an
attribute evaluation. Bochmann [1] proposed a method
in which attribute evaluation is performed in a fixed
number of left-to-right (depth-first) passes over a deriva-
tion tree, and Jazayeri [8] extended this method to a
fixed number of alternating left-to-right and right-to-
left passes. Lewis et al. [14] defined an attributed push-
down machine, and presented the conditions of attribute
grammars so that the syntax analysis and the evaluation
of attributes can be performed deterministically.
Kennedy and Warren [12] proposed a treewalk evaluator
which traverses a derivation tree and performs attribute
evaluations according to predefined plans formed by
augmented dependency graphs. Saarinen [16] improved
this method so that it performs the output-oriented
evaluation, that is, it evaluates only attributes relevant to
the attributes whose values we are going to obtain and
that the size of the evaluator can be reduced by storing
temporary (local) attributes in a stack. Katayama pro-

*Department of Computer Science, Tokyo Institute of Tech-
nology.

Journal of Information Processing, Vol. 5, No. 1, 1982

posed an efficient evaluation algorithm in which the
entire grammar is transformed into a set of mutually
recursive procedures [10]. These evaluation methods,
however, are applicable only to restricted classes of
grammars.

Fang [5] proposed an evaluation algorithm which is
applicable to general attribute grammars. He assigned a
parallel process for each semantic function and expressed
data dependency by synchronization primitives in a
derivation tree, however this method is far from practi-
cal.

Chirica and Martin [2] have given an order-algebraic
definition of attribute grammars within the framework
of initial algebra semantics. Their approach is based on
the least fixpoint semantics and the meaning of a deriva-
tion tree is considered to be the least fixpoint solution of
equations about attributes assigned to its nodes.

The purpose of this paper is to define a denotational
semantics of attribute grammars and to propose a
method of attribute evaluation based on it. The differ-
ence between Chirica and Martin’s method and ours is
that we introduce a function associated with each pair
of a nonterminal symbol and one of its synthesized at-
tribute to evaluate only the necessary attributes using
information found in the semantic analysis phase,
whereas a least fixpoint semantic function about all
attributes of a derivation tree is defined in theirs. Our
evaluation method has the following characteristics:
(1) the evaluation functions can be derived directly from
the description of a given attribute grammar without
resorting to augmented dependency graphs, (2) it is an
output-oriented evaluation, that is, only attributes which
are related to the required attributes are evaluated, (3)
it can be easily implemented by a LISP-like programming
language, (4) it is applicable to any noncircular attribute
grammars, although it requires more computation over-
head for environment management.

The rest of the paper is arranged as follows. Section 2
gives necessary definitions and notations for attribute



22

grammars in an algebraic formulation together with an
example. In Section 3, we briefly review the least fixpoint
semantics, define a denotational semantics of an at-
tribute grammar, and propose an output-oriented evalu-
ation method based on it. Section 4 presents an imple-
mentation of our method by the programming language
LISP.

2. Algebraic Formulation of Attribute Grammars

In this section, we review and discuss attribute
grammars in an algebraic formulation according to
Chirica and Martin.

2.1 Attribute Grammar

An attribute grammar is a context free grammar
augmented with semantic rules (attributes and semantic
functions), and consists of the following four elements.

(1) A context free grammar G={Vy, Vy, P, S>. Vy
is a finite set of nonterminal symbols, V; is a
finite set of terminal symbols, P is a finite subset
of Vy x (VyUVp)*, (i.e., production rules), and S
in Vy is the start symbol. We assume S occurs
only once in the left part of a production and
never in the right part of any productions without
loss of generality.

(2) Two disjoint sets Inh{A4] and Syn[A] of attributes.
They are associated with each nonterminal sym-
bol AeVy of G and called inherited and synthe-
sized attributes respectively. When a is an at-
tribute of A, that is, aeInh[4]uSyn[A], a.4 is
called an artribute occurrence.

(3) A Z-algebra D. Let & be a set of symbols called
sorts which represent the types of attributes, and
let D={D.},, be a S-indexed family of sets
which are called primitive semantic domains. For
a string w=s,5," " *5,6%*, we define D* as fol-
lows:

if w#¢e then D*=S, x D, x -+ x D, , and

D= {¢}.
If Z is a family {Z,, ;}(y syessx 5 Of sets which is
called &-sorted operator domain, then a X-algebra
D consists of a family D={D,},_, together with
a function f,: D¥—D, for each feX, ,, we*,
se%, which is called primitive semantic function.
We associate with each nonterminal symbol
AeVy two strings 4 and A4 of sorts which re-
present the types of inherited and synthesized
attributes respectively. The set D* and D4 are
called inherited and synthesized attribute domains
of A respectively. It is assumed that S=¢ and
S#e.

(4) Semantic functions G, and F,’s associated with
each production peP of G. For each production
p=A—byBib,---B,b, in P, where by, by, -,
beV* A,B,, -, BeVy, and r>0, there is a
function G,: DA4BiBi-B-B-,DA iff 43¢, and
for each k, 1<k<r, there is a function Fp:

M. TakepA and T. KATAYAMA

DA4B:B:--B/Br, DB iff B,#¢. These functions
are composed of primitive semantic functions f
of D and extended to have variables as their
arguments in the sence of derived operations.
Note that G, (F,) can be viewed as A-tuple
(B,-tuple) of functions which define the syn-
thesized (inherited) attribute occurrences in the
left (right) part of the production. For a terminal
production 4—b,, there are no semantic func-
tions of the form F,.

If the underlying primitive semantic functions
Jfop are continuous on flat CPO’s (Complete Par-
tially Ordered Sets),* then the semantic functions
G, and F,,’s are also continuous and we call such
an attribute grammar continuous. In the follow-
ing, we deal with the continuous attribute gram-
mars.

2.2 Example

Fig. 1 presents the Knuth’s binary number at-
tribute grammar which gives a precise definition of
binary notation for numbers [13]. Here three kinds of
attributes v, s, and / are used as follows:

1) synthesized attribute v stands for the ‘value’ of a
binary number,

2) inherited attribute s for the ‘scale’ of each digit, and

3) synthesized attribute / for the ‘length’ of digits be-

Vi={B,L, N}, Vr=1{0, 1,.},
Inh[B])={s}, Syn[Bl={v},
Inh{L]={s}, Syn[L]={v, 1},

Inh[N]=¢, Syn[N]= {v}
production semantic rules
1. B—0 v.B=0,
2. B—l v.B=21s.B,
3. L-B v.L=v.B, s.B=s.L, I.L=1
4. L,—L,B v.Ly=v.L,+0v.B, LL,=IlL,+1,
s.Ly=s.L,+1,s.B=s.L,,
5. N-L v.N=v.L, s.L=0,
6. N-L, L, v.N=v.L,+v.L,,

s.Ly=-—-1LL;, s.L;=0

Fig. 1 Binary number attribute grammar.

2+ 22 4o + 20+ o0 s+ 272

= 13.25

Fig. 2 An example of evaluation for binary number attribute
grammar.

*Let D and R be CPO’s. A function f: D—R is continuous if
for all nonempty chains X C D, the set f(X) has a lub in R and
f(lub, X)=Iluby f(X). The notion of continuity on flat CPO’s is
related to the well-definedness of the values.



On Defining D ional S tics for Attribute Grammars
low a radix point.

The meaning of a given binary number can be ex-
pressed as the value of v at the root node N of its deri-
vation tree. Fig. 2 shows the derivation tree of the
binary notation 1101.01 and its attribute evaluation.

2.3 Circularities

Several classes of attribute grammars have been
proposed in relation to circularity. Knuth [13] called an
attribute grammar ‘well-defined’ if all of its attributes
can be defined at all nodes in any conceivable derivation
tree, and gave an algorithm to determine whether a given
attribute grammar is well defined or not. Bochmann [1]
suggested the distinction between local and global cir-
cularities in the dependency relations of attributes.
Considering potential dependency chains through sub-
trees, Kennedy and Warren [12] defined the absolutely
noncircular class in which no augmented dependency
graph contains a directed cycle and showed that the
evaluation of attributes can be efficiently performed by a
table driven treewalk evaluator for this class. Katayama
[10] suggested that the evaluation of attributes in the
absolutely noncircular class can be implemented efficient
enough for practical use by translating the grammar
into a program in a procedural language such as
ALGOL, PASCAL, or PL/I. He also defined the
symbolwise noncircular class in which no symbolwise
dependency graph contains a directed cycle, and showed
that the evaluation can be performed by a simultaneous/
parallel evaluator which can evaluate the parallel at-
tributes through a single procedure call. The symbolwise
dependency graph is obtained from superposing IO
graph and OI graph of each nonterminal symbol, where
I0 (O1) graph shows how synthesized (inherited)
attributes are dependent on inherited (synthesized)
attributes. These classes of attribute grammars have the
following inclusion relation:

symbolwise noncircular < absolutely noncircular
< well-defined.

Definition 1. Noncircular Attribute Grammars

An attribute grammar is noncircular if semantic rules
are formulated in such a way that all synthesized attrib-
utes of the root node can be well-defined for any con-
ceivable derivation tree.

This definition provides the weakest condition so as
to evaluate the attributes of the root node and defines a
wider class of attribute grammars than before, including
the so called noncircular (i.e., well-defined) ones. For
example, in the dependency relation of a conditional
expression shown in Fig. 3(a), the attribute x has so far
been considered to depend on not only the attribute b

(a) A al|b fc]x (b) A

Fig. 3 Dependency relations of a conditional expression x—if a
then b else c.

dependency-1
----- dependency-2

23

in ‘then’ clause but also c in ‘else’ clause together with a
in ‘if’ condition. It is more precise to consider two
dependency graphs (solid and dotted lines) as in Fig.
3(b), because the attribute x depends on either attribute
b or ¢ and not on both for any specific derivation tree.
Such considerations are applicable to a structured type
attribute. The above definition of noncircularity claims
that there exist no directed cycles in any derivation tree
if we adopt such a proper dependency.

3. Denotational Semantics of Attribute Grammars

Although several methods for efficient attribute evalua-
tion have been proposed as mentioned in Section 1 and
2.3, some of them requires the augmented dependency
graphs and others are applicable only for severely re-
stricted class of attribute grammars.

We now consider an evaluation method by going
back to Knuth’s original definition [13]. The principle
is simple and stated as follows. A set of attributes
directly necessary for an attribute evaluation is defined
by its semantic function. Thus it is possible to evaluate
the synthesized attributes at the root node of a derivation
tree by traversing the dependency relations in the
opposite direction. Saarinen [16] applied this concept to
the treewalk evaluator [12] for the class of absolutely
noncircular attribute grammars. Katayama also obtained
an output-oriented evaluator for this class [10].

The objective of this paper is to show that an output-
oriented evaluation procedure for any noncircular (see
Definition 1) attribute grammars can be directly obtained
from the description of a given attribute grammar with-
out constructing the augmented dependency gaphs.
What is necessary to realize our evaluator is (1) a seman-
tic definition of attribute values by means of functions,
that is, a denotational semantics of attribute grammars,
and (2) a programming language with a mechanism for
evaluating functions in an output-oriented way (‘call by
name’ parameter passing mechanism).

In this section, we first define a denotational semantics
of attribute grammars based on the least fixpoint
semantics and then propose an output-oriented evalua-
tion method together with a simple example.

3.1 Least Fixpoint Semantics of Attribute Grammars

The semantics of a derivation tree is defined as a set
of attribute values assigned to its nodes. These attribute
values can be obtained as the least fixpoint solution of
equations about the attributes. Here, we introduce the
least fixpoint semantics presented by Chirica and
Martin.

Definition 2. Set of Derivation Tree T ,

Let Tg, 4, be a set of all A-rooted derivation trees for a
context-free grammar G. It is defined formally as follows.
TG,A={Ap[t1" -+, t])| peP, p=A—boB;b, - - - B,b,, r>0}

U{AplpGP, p=A_)bO}’



24

where t€Tg p, 1<i<r, and A={A,|peP} is a set of
symbols in one-to-one correspondence with P.

For a production p=A—byB,- - Bb,, let x, and y,
be variables ranging over D? and D4 respectively, and
let x; and y, be variables over D® and D%, 1<i<r. For
any A-rooted derivation tree ¢ in T 4, let w, be the
vector of variables x; and y, recursively defined as
follows:

if r=0(.e., t=4,), then w,=y,;
if >0 then w,={yo, X1, " *, X, Wy ", Wy Do
Let D*=DA4B:iBrx Dtix --- x D' r>0, then an ele-
ment {x, wdeD? x D' represents a set of values of all
attributes in the derivation tree ¢.
An equation w,= H,(x,, w,) associated with ¢ is intro-
duced to represent the relationship among the attribute

values assigned to the nodes of ¢, and is recursively de-
fined by

y0=Gp(x0) Yos X15 V157" "5 Xy yr)
xk=Fpk(x0’ Yor X15 Vit 2 s Xpy yr)s
I<k<r.

I<k<r
wtk = ka(xky wtk)!

G, and F,’s are the semantic functions introduced in
Section 2.1. If r=0 then the above equation reduces to
Yo=G(xo, yo)-

The semantics of an attribute grammar is defined by
the synthesized attributes at the root nodes of its deriva-
tion trees. Let pr,: D'— D4, be the projection function
extracting the y, component of

W:=<)’o, Xips® sty Xy Wype 0oy wt,>’ I‘ZO,

i.e., pr{w;))=y,. Then we can regard the meaning of the
derivation tree ¢ in T; , as the least fixpoint (LFP)
semantic function S (t): DA— D4 defined by

M. TAakeDA and T. KATAYAMA

S (2) = AxeDA. pr (uweD*. H (x, w)).

Note that DeBakker’s u-operator [4] is used as a
convenient way of denoting the least fixpoint; namely,
let £ be a continuous function from D to D, then

pux. f(x)=fixp(f), where fix,e[[D— D]- D]
=lubg < ifi(J-D)

where 1 is the undefined value in D. If A=¢ then S (¢)
is the constant function -

S (t)=pruweD'.H(w)).

Remark. In any continuous attribute grammar, D’ is a
finite height CPO for any derivation tree 7. In particular,
the height of D' for teT; s equals the number || of
attributes of all nodes in t. Therefore, the semantics of
any tree ¢ is computable by the following expression:

Ss(t)=pr(lub, <;< mH:(l)),

Where L is the undefined value in D*. The above expres-
sion shows that, for any derivation tree ¢ in the non-
circular attribute grammar (see Definition 1), at least
one attribute on ¢ can be defined with every application
of H,. Therefore, it is possible to evaluate the values of
the attributes step by step although it is not efficient.

3.2 Denotational Semantics of Attribute Grammars in
terms of Output-Oriented Evaluation Functions

The LFP semantic function S,(t) of Section 3.1 re-

turns the values of all the synthesized attributes when
given the values of the inherited attributes at the root of
t. In this section, we introduce a function associated
with each pair of a nonterminal symbol and one of its
synthesized attribute, describe its construction algo-
rithm, and show that its normal order (call by name)
evaluation is output-oriented.
Notation. Let at, ,: D4 D, be the projection function
extracting the value of the attribute a in Syn[A4] from
yeDA, where s is the sort of a. For a derivation tree t=
Alt;, - -, t,] and =0, let prod(t) be the production p at
the root node of ¢, i.e., prod(¢)=p.

Definition 3. Output-Oriented Evaluation Function ¢, ,

Let AeVy, aeSyn[A], and s be the sort of a. For t=
Aty -, )T 4, where p=A—boBb, - Bb,, rz0,
and xeD4, we define a function g, ,: T, s.a—[D D] as
follows.

qA,a(t)(x)=atA,a(ﬂyED4'Gprod(t)(x’ ¥, 23, @, (8:)(2)),- - -,
z,, 08,(1)(z))),
where
M) <zyeeeh2z0
=UXy-- ‘erDF'mB'-Fprod(r)(x, ¥, X1, Qg (8)(x1)," - -y
%,, Qg (tXx,)),
@ Fprod(r)=<Fpmd(r)1:' Ty Fprod(f)r>9 and

(3) if <ay,--*,a,> is a vector of attributes corres-
ponding to sorts 4 for a,eSyn[A4], 1 <i<n, then

QA(I)(x) = <qA,ax(t)(x)5 s qa ,a,.(t)(x)>'



On Defining D ional S ics for Attribute Grammars

Obviously, if r=0 then
44 () x)=at, ,a(I‘.VED“4 G oroaqny(%» ¥))-

q4.4(t) defined above returns the value of the syn-
thesized attribute aeSyn[A4] associated with the root node
of teT; 4, when given its inherited attribute values. The
following theorem shows the correctness of the attribute
evaluation based on g, , and guarantees the well-de-
finedness for any noncircular attribute grammars.

Theorem 1. For teT 4, and xeDA4,
at 1, (SA(Dx) =4 o))
Proof. By structural induction on the derivation tree .
(@) Let p=A—b, and t=A,eT; 4. If xeD? then
S()(x)=pr(uweD" . H(x, w)) (Definition of S,)
=pr(wyeD4.G(x,y)) (Definition of D', H,)
=uyeDA.G (x, y). (Definition of pr,)
Therefore
atA ,a(SA(Ap)(x)) = qA ,a(Ap)(x)' (Deﬁnition Of qA ,a)
(ii) Let p=A—byB,---Bb,, r>0, t=At,," ", t]e
T4 and 4,€T; 5, 1 <k <r. Let xeD? then, by Defini-
tion of S,

S ()(x)=pr{uweD". H(x, w)).

The expression uweD'.H/(x, w) is, by Definition of H,,
the least fixpoint solution of the following equations.

y=Gp(xsy’ x17y1""9xnyr) (1)
Xy =FplX, p, X1 157+ s X )y 1<k<r  (2)
w,=H, (x, w,), 1<k<r. 3)

The above equations can be solved iteratively as follows.
First, taking the projection (pr,,) of w,, yields the solu-
tion for y,.
Y= prtk(#W'Htk(xk, w))
=S, (1)(x)
={atg, ,,(Sp(B)(x), - -, atp, .. (Sp ()
(Definition of atp, ,)

= <q8k,n1(tk)(xk)s Y tha,.(tk)(xk)>
(induction hypothesis)
= Q5 (t)(x) (Definition of Q),

where {a,,-‘-, a,>, aeSyn[B,), 1<i<n, is a vector of
the attribute symbols corresponding to sorts B,.
In order to solve the equation (2) for x,, substituting

Q5,(1)(x) for y, yields

25

<Z‘, R} Z,)
=UX e Xy FP(X, V> X1 QBl(tl)(xl)a' cts Xpy QB.-(tr)(xr))-
Substituting z, and @y (,)(z,) for x, and y, respectively
in (1) and solving (1) for y yields
v=uy. Gp(xa Vs 21 QBl(tl)(zl)v' t5 Zy QB,(’!)(zr))'

The above solution is called an iterative solution and
it is shown in [17] that the simultaneous and iterative
solutions are equal. Therefore
aty (S()x)

= atA ,a(v)

=atA,a(#y' Gp(xa Vs 2y, QB,(’I)(zl)a Tty 2y QB,-(tr)(zr))

=q4,1)(x) (Definitin of g,,) [

Least fixpoint operations in ¢, , can be reduced by a
single p-operator as follows.

q4.4(2)(x)

=(Ayx, - - X,€DAP B G gy o %, s X15 @, (10X, - -,
x,, Qp,(1,)(x,))

B Vorody(%s Zos 215 @, (01 )(21)5-* -
2y, 5,2,

where Goar).. is the semantic function for the syn-

thesized attribute aeSyn[A] associated with a production
prod(t)=A—byBb,- - Bb,, and

(uzoz, - - -2,€DAP"

Vprod(1)= <Gprod(t)’ Fprod(r)l" ) Fprod(!)r)-

The following algorithm presents a construction of
such a function g, , directly from the description of a
given attribute grammar.

Construction Algorithm of ¢, ,

The arguments of ¢, , are a derivation tree teT, , and
inherited attributes xeD%, so q,, is rewritten in the
following form.

q4,0=At. Ax. [prod(t)=p1 -EXP,, ,,

prod(t)=pk—~EXP,, ],

where pl,---, pk are the productions with left part
nonterminal symbol 4. EXP,, is the expression to
compute the value of the attribute a based on the produc-
tion p, and is composed of 1) semantic functions G, and
F,’s, 2) evaluation functions for the output attributes of
right part nonterminal symbols in p, and 3) formal
parameters ¢ and x of a, ,. In the following, we present
this process with a simple attribute grammar shown in
Fig. 4(a).

[step 1] Let p=A—-byB, - B,b,, r=0, where by, -,
beV% and 4, B, -+, B,eV)y. Construct the dependency
graph D, for the production p, which is defined by

D,=(V,, E,)

rhere (1) the node set V, is the set of all attribute oc-
currences of p and (2) an edge (v,, v,) is in the edge set



26

1. S—AB
x.8S=x.B Dy
aA=c
b.A=g4(y.B)
a.B=f(y.4)
b.B=x.4

2. A—aa
x.A=h(b.A)
yA=a.A

3. A-a Dy 4
x.A=a.A l 1
y.A =b.A a

4. B-b D, 5 1ol x]]
x.B=i(b.B) |
y.B=a.B b

(a) Production and semantic rules.

Gs,x= At (Aurlizli3.qp {t2) (U2, U3))

(1010203, <g(gp,,(#2)(02, v3)),
£(ga.»(11)(c, vy)),
qaa(t1)(c, 01)>),

ga,x=At.Aab.[prod(t)=2—h(b), :
prod(t)=3—a],
qa,y=At.Aab.[prod(t)=2—a,
prod(t)=3—b],

gs.x=At.Aab. [i(b)],

qs.y=A4t.ab.[a]

(c) Evaluation functions.

Dy

(d) A derivation tree r=A,[A;A,).

Fig. 4 An example of construction of output-oriented evaluation
functions.

E, if (a) v, is required to evaluate v, or (b) v, and v, are
the inherited and synthesized attribute occurrences of
the right part of p respectively. In this graph, the de-
pendency relation of a conditional expression, for
example, is considered as shown in Fig. 3(a). That is,
the attribute x depends on a, b, and c.

D, shows how attribute occurrences in p are inter-
related when all attribute of B, 1 <k <r are reduced to
a single one. Fig. 4(b) illustrates the dependency
graphs of the example grammar.

[step 2] To construct an expression EXP, , where p=
A—boB,---B,b, and aeSyn[A], traverse the directed
edges in D, starting from the node a.4 in the opposite
direction. In this process, if an attribute occurrence is
encountered which is either a synthesized one of 4 or an
inherited one of B,, 1 <k<r, then we call it the defined
attribute occurrence of a.A.

[step 3] As the dependency graph D, is constructed
based on the semantic functions in p, at most only the
values of attribute occurrences u,, - -, u,, which are the
defined attribute occurrences of a.4 are necessary to
evaluate the value of a.4 when given a derivation tree ¢
and its inherited attribute x. Therefore, let G, .(¢):
DA4B:B, D, V(t): DAAB:Br_, DABi-Br be the follow-
ing functions

G’p,n(t)(x: Vs X150 70y xr)
=Gp,n(x: Vs X1 QB;(’])(xl)" Yy
where
(1) teTg ,, xeD?, and s is the sort of a,

xr’ QB,.(t r)(xr)):

M. TakepA and T. KATAYAMA

(2) <y! Xis® s xr>

=uzoz, - - -z,cDAB " Br, V(EXx, 29, 215+ -5 2,),
and
(3) V;(t)(x5 Z0s Z157 " s Z,.)

= Vp(x’ 20y 215 QB,(tl)(zl)y' * 2y QB,(tr)(zr)),

then G, ,(t)(x, y, x,," * -, X,) is rewritten as follows.

Up,a(t)(x9 Vyye oy vm)
where

[CITERE
=Uv, -+ 'U,,,ED'““""". <Vp,l(l)(x’ Uy, e ey Um)" ce
Vp,m(t)(x’ Ups oo vm))’
and s;, 1 <i<m is the sort of u,, i.e., the sort of the de-
fined attribute occurrence of a.A4.

The function U, (t): DA sm—D; is obtained from
G, . by assigning L’s to attribute occurrences of its
arguments except for x, uy,* * -, 4, and in the same way
V, () DFvsmaD , 1<i<m is obtained from the
semantic function which defines the value of u; in V.
Note that the argument y or x;, 1<k<r of G,, is a
tuple of attribute occurrences and the above assignment
of 1’s to their occurrences does not essentially influence
the evaluation of a.4. Thus EXP, , is written in the
following form.

EXPp,a=()‘u1 cc Uy Up,a(’)(xs Uy vy um))
(.uvl c Upe <V ,l(t)(x’ Ugyo oy vm))' R
Vp,m(t)(x' L2TA U,,,)))-

That is, we construct a tuple of defined attribute oc-
currences of a.A4 and substitute its least fixpoint solution
into U, ,(¢).

In the attribute grammar shown in Fig. 4(a), since
only production 1 is the one with left part nonterminal
symbol S and S has no inherited attribute, an evaluation
function gy , is written as

gsx=ALEXP, ..

By traversing the dependency graph D, starting from the
node x.S we know that the defined attribute occurrences
of x.Sarea.A, b.4, a.B, and b.B, so we introduce lambda
variables u,, u,, u,, u; for them into EXP, , and we
have

EXP, = (Augu,ust3.qp (t2)(Us, 43))
(1vgvv203.<¢c, 9(g5,,(1:)(v2; v3)),
@4, ,(t:)(vo, v1)),
94,511 )(vo, v1))).

Especially, if an element of the tuple is, for example,
a constant value then it can be removed from the tuple
and the above expression is rewritten as follows.

EXP, . ={(Au uyt3.95,(12) (42, u3))
(1v,0,03.€9(gp,,(12)(v2, v3)),
S(q4.(t:)e, v1),
g4,(t1)(c, v1))).



ics for Attribute Grammars

On Defining D ional S

Such a removable element is the one which does not form
a directed cycle in D, and is found in the traversing
process of step 2.

The remaining process of this example grammar are

exactly as above, and the complete definition is given in
Fig. 4(c).
[step 4] In case of implementing a function ¢, by a
programming language, an expression with p-operator
can be represented by a set of recursive functions as
follows. When an expression EXP,, , is given by

EXP, ,=(Au; - -ty Uy, J(INX, Uy, - -5 )
([UJ‘ o 'vm'< Vp,l(’)(x’ Vyye ooy vm)a' Tty
Vp,m(t)(x’ Voo s Um)>),

then it can be rewritten by a set of recursive functions as
follows.

Expp,n = Up,n(’)(x’ hl(t)(x)9 B hm(t )(X)),
hi=4t. 2x. V, (t)(x, hi(¢)(x),- - -, Bp(1)(X)), 1<i<m.

Namely, a tuple <{A,(t)(x),- -, h,(t)(x)) is the least
fixpoint solution of the expression

poy - - 'Um'<Vp,1(t)(x5 Uiyt ooy Dm),' Y
Vp,m(t)(xi LZTARA Um))’

The set of recursive functions for gg,, in the above
example are given by

Gs,x=At. g (2)(h(2), hy(t))
hy=At. g(gg,,(t,)(ha(2), hy(2)))
hy=At. f(qa,,(t:)(c, hy(2)))
hy=2at. g4 (t,)(c, hy(1)).

Remark. The attribute grammar in the above example
is not-well-defined (see Section 2.3), because there is a
directed cycle (y.A—a.B—y.B—b.A—y.A) in the deriva-
tion tree t=A,[A;A,] shown in Fig. 4(d). In this paper,
however, we regard the meaning of the derivation tree as
the value of the synthesized attribute (x.S) at its root
node, and so it is possible to define the semantics of this
grammar as there are no cyclic dependencies containing
x.S.

Output-Oriented Evaluation

An attribute aeSyn[S] of start symbol S is computable
according to the computability of Sg(t), 2€T¢ s, which is
shown in Section 3.1. In particular, if the attribute
grammar under consideration is noncircular, then there
exists a normal form expression for the value of the
attribute @ in lambda notation [18). Thus, by Church-
Rosser Theorem 11, there exists a normal order reduction
to obtain its value [3], and evaluation of our recursive
functions with ‘call by name’ parameter passing mecha-
nism is out put-oriented.

In the rest of this section, we compare our output-
oriented evaluation with the method of Katayama [10]
for the absolutely noncircular attribute grammars.

The attribute grammar shown in Fig. 5(a) is absolutely

s 2 . A
3 A £y
1) f
A [cT2] aa s [afv]xTy]

<]

4. /113 S. B ﬂ-ﬂ.

bb
(a) Production and semantic rules.

proc Az(c.4, t, var z.4);

o

proc Sr(¢, var r.S);

case prod(?) of c.A-1;

2: begin call Az(c.A4, t,, 2.4);
a.B—c.A; r.S—f(z.A)
call Bx(a.B, t,, x.B); end;
b.B—x.B;
call By(b.B, t,, y.B); proc Bx(a.B, t, var x.B);
2.A—g(y.B) x.B—a.B
end; end;

3: begin
b.B—c.A; proc By(b.B, ¢, var y.B);
call By(4.B, t,, y.B); case prod(z) of
a.B—y.B; 4: y.B-2;
call Bx(a.B, t,, x.B); 5: y.B—b.B
z.A—x.B end
end end

end

end;

(b) Translation to recursive procedures.

(©) A derivation tree t=A,[A;[A]l.
Sr=At.[f(Az(z,)(1))],
Az=2t.Ac.[prod(t)=2—g(By(t,)(c, u@)c))),
prod(t)=3-Bx(1,)(v{t)(c), ©)),
u=At.Ac.[Bx(¢, Xc, u(z)c))],
v=I1t.Ac.[By(t,)(v(t)(c), )],
Bx=At.Aab.[a],
By=At.Aab.[prod(r)=4—-2,
prod(t)=5-b]
(d) Translation to recursive functions.

Fig. 5 Two evaluation methods for an attribute grammar.

noncircular and it can be translated into the set of
recursive procedures as Fig. 5(b) in the method of
Katayama. In this method, the attribute grammar is
completely compiled into procedures in the syntax
analysis phase and the semantic analysis phase can
concentrate only on the attribute evaluation. This
carries out an efficient evaluation, however, it requires
augmented dependency graphs and is applicable only to
absolutely noncircular attribute grammars, although this
class is amply wide for practical applications. The
strategy of complete compilation may have another
problem in connection with conditional expression. That
is, there are cases where it executes unnecessary com-
putations. Consider, for example, a derivation tree
shown in Fig. 5(c). As it does not investigate whether



28

there is a dependency indicated by the dotted line in
semantic analysis phase, it evaluates the attribute b,
which is not necessary for this derivation tree.

On the other hand, the set of recursive functions ¢, ,
for this attribute grammar is constructed as in Fig. 5(d),
where the name of each function is represented by the
pair of a nonterminal and one of its synthesized attribute
symbols. The normal order (call by name) evaluation for
this derivation tree is the following and it does not
compute b.

S/(A[AAID =1(A.(A;[A(D)
=f(9(B(A)1, u(A[AD)(1))
=f(g(2)).

As known from this example, our method directly*
interprets the description of a given attribute grammar

*It means that the set of recursive functions can be constructed
using the dependency graphs D, obtained at the cost of 0(/G|).

DEFLIST((BV(LAMBDA (X Y)

M. Takepa and T. KATAYAMA

and evaluates only the necessary attributes using infor-
mation found in the semantic analysis phase, i.e., deriva-
tion trees, and semantic functions which may be
conditional expressions.

4. Implementation of Evaluation Functions by LISP

In this section, we construct the evaluation functions
for the binary number attribute grammar shown in
Section 2.2, and implement them by the programming

By=At.As.prod(t)=1-0,
prod(f)=2-2{s],
Lo=2t.As.[prod(t) =3—Bu(t,)(s),
prod(£)=4—Lo(t,)(s+1)+ Bu(:)(s)],
Li=At.As.prod(t)=3-1,
prod(t)=4—LI(+,)(s+1)+1],
No=At.[prod(t)=5— Lo(t,)(0),
prod(#) =6—Lo(t, }0) +Lo(t: X W())],
W=At{—LI(t:; X W(t))]
(a) Recursive functions for binary number attribute grammar.

(COND((PROD X Y 1}QUOTE 0))
((PROD X Y 2)(LIST(QUOTE EXPTYQUOTE 2)

DEFLIST((LV(LAMBDA (X Y)

(SCALE X Y)))))))FEXPR)

(COND((PROD X Y 3)(BV(SUBTREE X Y 1)(SCALE X Y)))
((PROD X Y 4)(LIST(QUOTE PLUS)

(LV(SUBTREE X Y 1)ADDI(SCALE X Y)))
(BV(SUBTREE X Y 2)(SCALE X Y))))))))FEXPR)
DEFLIST(LLLLAMBDA (X Y)
(COND((PROD X Y 3) 1)

(PROD X Y 4)ADDI1 (LL(SUBTREE X Y 1)

»))FEXPR)

DEFLIST((NV(LAMBDA (X Y)

(ADDI(SCALE X Y))))

(COND((PROD X Y 5)LV(SUBTREE X Y 1) 0))
(PROD X Y 6)LIST(QUOTE PLUS)

DEFLIST((W(LAMBDA (X Y)

(LV(SUBTREE X Y 1) 0)
(LV(SUBTREE X Y 2)
(W(TREE X Y)))))))))FEXPR)

(LIST(QUOTE MINUS)LL(SUBTREE X Y 2)

(W(TREE X Y)))))))FEXPR)
DEFINE((PROD(LAMBDA (X Y N)

(EQUAL(CAR(TREE X Y)) N))))

DEFINE((SCALE(LAMBDA (X Y)
(EVAL(CADR X) Y)))))

DEFINE(((TREE(LAMBDA (X YXEVAL (CAR X) Y)))
DEFINE(((SUBTREE(LAMBDA (X Y N)

(ST(TREE X Y) N)))))

DEFINE(((ST(LAMBDA (X N)

(COND((ZEROP N)CAR X))
(TST(CDR X)SUBI N)»))

(b) Translation to LISP functions.

F EVAL

A ((NV(QUOTE(6(44(4(3 )X D)2AG)2)))NIL)
=(PLUS(PLUS(PLUS(PLUS(EXPT 2 3WEXPT 2 2))0)(EXPT 2 0))(PLUS 0

(EXPT 2(MINUS 2))))
(c-1) Functional notation.
F EVAL

A ((EVAL(NV(QUOTE(6(4(4(4(3(DNXNM)NAB(1X2)))NIL)NIL)

=1.325000E +01
(c-2) Decimal notation.

(c) An example of evaluation for the derivation tree shown in Fig. 2.

Fig. 6 An implementation of evaluation functions for binary number attribute grammar.



On Defining Denotational Semantics for Attribute Grammars

language LISP.

Fig. 6(a) shows the set of recursive functions. There
exists the least fixpoint representation in the expression
EXPg , of the function Nv and we replace it by the
recursive function W.

These recursive functions can be directly implemented
by LISP, as shown in Fig. 6(b). In this program, each
LISP function corresponds to a recursive function, and
has the FEXPR property so as to perform the normal
order (call by name) evaluations. The LISP function
with FEXPR property is interpreted as a function with
two parameters: the first one is the list of given arguments
and the second one is the association list containing the
calling environment of its function. These functions
return list expressions in functional notation. A deriva-
tion tree is represented by a list of production numbers.
An example of evaluation for the derivation tree

1= Ag[AL[AL[AL[A3[A2]A,]A,]14,]A,[A5[A]A,]]

of the binary number 1101.01 (see Fig. 2) is shown in
Fig. 6(c). Fig. 6(c-1) represents the meaning of its
binary number in terms of functional notation and the
expression in the decimal notation is obtained by further
evaluating it as shown in Fig. 6(c-2).

Remark. In general, the normal order (i.e., call by
name) evaluation is slower than applicative order. The
former evaluates operands as many times as necessary.
The latter, on the other hand, evaluates them only once
before they are substituted into the body of the operator.
However, the normal order evaluation could be per-
formed with less computation overhead by an associative
computation mechanism which is realized, for example,
in HLISP [6].

5. Conclusion

We have formalized attribute grammars by denota-
tional semantics and proposed a method of attribute
evaluation based on it. The denotational semantics of an
attribute grammar is defined by the least fixpoint
semantics among attributes assigned to the nodes of a
derivation tree and it is realized by a set of recursive
functions which perform the required evaluations. This
semantic definition is more general than Knuth’s original
formulation, and is able to define the meaning of cir-
cular definitions by viewing them as recursive definitions
[18].

The attribute evaluation method using the denota-
tional semantics can handle a wider class of attribute
grammars than before, including well-defined [13] ones.
Our evaluation functions can evaluate only necessary
attributes to determine the meaning of the derivation
tree, and can be derived directly from the description of
a given attribute grammar without resorting to aug-
mented dependency graphs.

29

A verification procedure for atribute grammars has
been proposed by Katayama and Hoshino [11]. This
procedure, however, is not applicable to noncircular
attribute grammars defined in this paper. We can apply
our denotational semantics to the problem of proving
the properties of attribute grammars and this will be
the subject of a future paper.

Acknowledgements

The authors wish to thank Professor Hajime Eno-
moto for his valuable advice, and Naoki Yonezaki and
Toshio Miyachi for careful reading of the original
manuscript.

References
1. BocumaNN, G. V. Semantic Evaluation from Left to Right,
CACM, 19, 2 (1976), 55-62.
2. CHRicA, L. M. and MARTIN, D. F. An Order-Algebraic De-
finition of Knuthian Semantics, Math. Syst. Th., 13 (1979), 1-27.
3. Curry, H. B. and Fevs, R. Combinatory Logic, I, North-
Holland, Amsterdam (1968).
4. DEBAKKER, J. W. Recursive Procedures, Mathematical Center,
Amsterdam, Report No. MC-24 (1971).
5. Fang, 1. FOLDS-A Declarative Formal Language Definition
System, Rep. STAN-CS-329, Comp. Sci. Dept., Stanford U.
(1972).
6. Goro, E. Monocopy and Associative Algorithms in an Ex-
tended Lisp, University of Tokyo, Japan (May 1974).
7. Hoar, C. A. R. and Lauer, P. E. Consistent and Comple-
mentary Formal Theories of the Semantics of Programming Lan-
guages, Acta Informatica, 3 (1974), 135-153,
8. Jazaver, M. On Attribute Grammars' and the Semantic
Specification of Programming Languages, Ph. D. Th., Comp. and
Inf. Sci. Dept., Case Western Reserve U. (1974).
9. Jazaveri, M. and OGpDEN, W. F. and Rounps, W. C. The
Intrinsically Exponential Complexity of the Circularity Problem
for Attribute Grammars, CACM, 18, 12 (1975), 697-706.
10. Katavama, T. Translation of Attribute Grammar into Pro-
cedures, Tech. Rep. CS-K8001, Dept. of Comp. Sci., Tokyo Inst.
of Tech. (1980). Also submitted to TOPLAS.
11. Katavama, T. and HosHino, Y. Verification of Attribute
Grammars, Proc. 8th ACM Symp. on Principles of Programming
Languages (1981).
12. KEeNNEDY, K. and WARREN, S. K. Automatic Generation of
Efficient Evaluators for Attribute Grammars, Conf. Rec. POPL
(1976), 32-49.
13. KnurtH, D. E. Semantics of Context-Free Languages, Math.
Syst. Th., 2 (1968), 127-145.
14. Lewis, P. M. and ROSENKRANTZ, D. J. and STEARNS, R. E.
Attributed Translations, J. Computer and System Science, 9 (1974),
279-307.
15. MaRrcorTtY, M. and LEDGARD, H. F. and BocHMANN, G. V.
A Sampler of Formal Definitions, Computing Serveys, 8, 2 (1976),
191-276. :
16. SAARINEN, M. On Constructing Efficient Evaluators for At-
tribute Grammars, Lecture Note in Computer Science, 62, Springer-
Verlag (1978), 382-396.
17. Scorr, D. Data Type as Lattices, Unpublished Lecture
Notes, Amsterdam (1972).
18. Stoy, J. E. Denotational Semantics: The Scott-Strachey
Approach to Programming Language Theory, MIT Press (1977).
19. WILNER, W. T. Declarative Semantic Definition, Rep. STAN-
C5-233-71, Comp. Sci. Dept., Stanford U. (1971).

(Received March 3, 1981: revised September 17, 1981)



