Generation of Stack Sequences in
Lexicographical Order

ICHIRO SEMBA*

An efficient algorithm is presented which generates all stack sequences (obtained, by using a stack, from
input sequence) in lexicographical order. The average time per stack sequence is shown to be bounded by a con-
stant. Our algorithm is derived from properties of a stack.

1. Imtroduction

We consider the problem to rearrange, using a stack,
a sequence s,5,° * S, (5, <§,<-*-<s,) into a sequence
t,t,- - t,. We say as equence £,£," - - 1, is a stack sequence
on {s,, 55, ", s,}. Particularly, if s;=7/ (1<i<n) then a
sequence ¢,Z,- * -1, is called a stack permutation. It is an
interesting problem to generate all stack sequences on
{s1, $2," " *, S,}. Since there is a one-to-one correspond-
ence between stack sequences and binary trees, all binary
trees can be generated. A one-to-one correspondence is
shown in Trojanowski [1]. He has developed an efficient
generating algorithm for stack permutations in lexico-
graphical order, using a different (although equivalent)
definition of stack sequences also his derivation is not
made by way of a stack. He has shown the average time
per stack sequence is bounded by a constant.

In this paper, we establish an efficient generating
algorithm for stack sequences in lexicographical order,
using the above definition of stack sequences. Our
derivation is made by way of a stack. It is based on the
generating algorithm [2] for sequences on {s;, 5,," " *, §,}
in lexicographical order. The average time per stack
sequence is shown to be bounded by a constant.

2. Preliminaries

In this section, we give definitions, fundamental
theorems and examples. We denote by a=a,a,--'q, a
sequence on {s;, s,,""",s,} and by next(a) the next
sequence succeeding a sequence a=a,a," * *a, in lexico-
graphical order. If a sequence a=a,a, " -a, is a stack
sequence, then we denote by NEXT(a) the next stack
sequence succeeding a stack sequence a=a,a," - 'a, in
lexicographical order. Three indices k(a), /(a) and
m(next(a)) are defined as follows.

max {i|a;<a;4,}
15isn-1

ka)= 10 if a sequence a=a,a, - - -a, is the lexically last

sequence.
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k(a) is the index of the rightmost pair such that a;<
a;,,ina,a,- - a,(k(a)is defined to be zero, if a=a,a, - - -
a, is the lexically last sequence).

l(@= max ({i|lg,<a;}
k(a)<isn

I(a) is the index of the rightmost g, such that g,,, <a;
in @ygy+1° a, (I(a) is not defined, if a=a,a, " -a, is
the lexically last sequence).

Let next(a)=>b,b,- - b,.

m(next(a))= max {i|b;<by,}
k(a)<isn

(@)

m(next(a)) is the index of the rightmost b; such that
b;<bya in byqy+1" b, (m(next(a)) is not defined, if
a=a,a," " -a, is the lexically last sequence).

We say a sequence a=a,da," * *a, contains a pattern
a,a;a,, if there are three elements a;, @; and g, such that
a;<a,<a;and i<j<k. We give a fundamental property
of stack sequences.

Theorem 1 A sequence a,a,- * " a, is a stack sequence,
if and only if there are no patterns.

The proof is omitted, since a similar property and its
proof is found in Knuth [3, §2.2.1, Ex 5].

Example Let n=4. We show all sequences a,a," - -a,
in lexicographical order and three functions, k(a), /(@)
and m(next(a)). Stack sequences are marked ‘O’ and
patterns are listed.

a,a,asa, k(@) la) m(next(a)) mark  pattern

51525354
51525453
5,535,584
5153545,
51545553
5154538,
55515354
5515453
52835184
52535454
$2545153
5354538,
538185284
53515452
53525154
5352545,

S45253

545153
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53854515, 3 4 4 535152,
545152
53548528y 1 2 4 o
54515253 3 4 4 545182,
545153,
545253
5451535, 2 4 3 S45(83,
54515
54525153 3 4 4 545253,
545153
548,538, 2 3 4 545253
5453515, 3 4 4 545182,
535152
54535254 0 (0]

3. Generating Algorithm

In this section, we shall establish an efficient algorithm
generating all stack sequences in lexicographical order.

By the definition of lexicographical order, we obtain
the following relation between the sequence a=a,a, " - -a,
and the sequence next(a)=b,b," - -b,.

Property 3.1 If the sequence a=a,a," - *a, is not the
lexically last sequence, then

b=a, (1<i<k(a)

byay=aya)

(b.lk(a)<i<n}={ak(@)<i<l(@), (@) <i<n}
byay>bray+1 <+ <b,

Namely, two elements a,,, and gy, are exchanged.
Then, the subsequence string gy, * *a, is reversed.

For example, let a=us,s,55575¢5,5;. Since the index
k(a)=3 and Il(a)=5, two elements a;=s5 and as=sg
are exchanged. Then, the subsequence string s;55545; is
reversed. Thus we obtain next(a)=s,5,5¢53545557.

In what follows, we assume the sequence a=a,a," - -a,
is a stack sequence and k(a) #0. If next(a)=>b.b, - -b, is
not a stack sequence, then by Theorem 1 nex?(a) contains
a pattern b,b,b,, such that b,<b,, <b, and u<v<w. If we
fix our attention on the index k(a), then we can see that
a pattern bbb, satisfies one of the following four cases.
Case 1. 1<u<v<w<k(a).

Case 2. l<u<v<k(a)and k(@)<w=n.
Case 3. 1<u<k(a)and k(@)<sv<w=<n.
Case 4. k(a)<u<v<wsn.

Property 3.2 If next(a)=bb,---b, is not a stack
sequence, then a pattern bbb, does not satisfy Case 1
and 2.

Proof. If a pattern bbb, satisfies Case 1, then by
Property 3.1 we have b,=a,, b,=a, and b,=a,. By
Case 1 we obtain a pattern a,a,a,, such that a,<a,<a,
and u<v<w. This contradicts the assumption that the
sequence a,a,- * *a, is a stack sequence. Thus a pattern
bbb, does not satisfy Case 1. If a pattern bbb,
satisfies Case 2, then by Property 3.1 we have b,=aq,,
b,=a, and b,=a; (k(a)<i<n). By Case 2 we obtain a
pattern a,a,a; such that a,<a;<a, and u<v<i. This
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contradicts the assumption that the sequence @,a," * ‘a,
is a stack sequence. Thus a pattern 4,5,b,, does not satisfy
Case 2. This completes the proof.

Now we consider to determine whether or not
next(a)=b,b,- - b, is a stack sequence.

Property 3.3 If m(next(a))=k(a)+ 1, then next(a) is
a stack sequence.

Proof. We assume that next(a) contains a pattern
bbb, such that b,<b,<b, and u<v<w, so we derive
a contradiction.

By Property 3.2, a pattern b,b,b, does not satisfy
Case 1 and 2. We prove a pattern b,b,b,, does not satisfy
Case 3 and 4.

If a pattern bbb, satisfies Case 3, then there is a
pattern b,by )+ 1bxs)+2 Such that by, <byy+2<b,
and 1<u<k(a), because the subsequence b&y(,4¢-
byay+2° ° *b, is monotone increasing. Since m(next(a))=
k(a)+ 1, we have by, + ; =ay(,)- By Property 3.1 we have
b,=a, and by, ,,=a; where k(a)<i<n and i#l(a).
Namely, the sequence a=a,a," - -a, contains a pattern
a,a,,a; such that a,,,<a;<a, and 1<u<k(a)<i<n,
i#l(a). This contradicts the assumption the sequence
a,a, --a, is a stack sequence. Thus a pattern bbb,
does not satisfy Case 3.

If a pattern bbb, satisfies Case 4, then we have
m(next(a))>k(a)+ 1. This contradicts the assumption
that m(next(a))=k(a)+1. Thus a pattern bbb, does
not satisfy Case 4.

Consequently, we have proved that a pattern bbb,
does not satisfy any of the four cases. However, this
contradicts the fact that a pattern bbb, has to satisfy
one of the four cases. Thus next(a) is a stack sequence.
This completes the proof.

Property 3.4 If m(next(a))>k(a)+ 1, then next(a) is
not a stack sequence.

Proof. Obvious.

When next(a)=b,b,- - -b, is not a stack sequence, we
reverse the subsequence byy+1° ' Dmrextiay) and con-
struct the sequence c=c¢,c;" " *C,.

Property 3.5
. (1 <i<k(a),
= : m(next(a))<i<n)
buestapy+x@y+1-1 (k@) <i<m(next(a)))

Proof. Obvious.

Property 3.6 The sequence c=c;c," " "¢, is a stack
sequence.

Proof. We assume that c=c,c,' ‘¢, contains a
pattern c,c,c, such that ¢,<c,<c, and u<v<w and
derive a contradiction. In a similar way as Property 3.2,
we can show a pattern c,c,c, does not satisfy Case 1
and 2. We prove a pattern c,c,c,, does not satisfy Case 3
and 4.

If a pattern c,c,c,, satisfies Case 3, then there is a pat-
tern €,Cacay + 1Cmnextiapy + 1 SUCH that Gyt 1 < Cpnnexeary+1 <
¢, and 1su<k(@)<k(a)+1<m(next(a)+1<n. By
Property 3.1 and 3.5, we have ¢+ 1 = Bmmext(ay) = (ays

Cy= bu =4y Cm(next(a))+1=— bm(nexl(n)) +1 and bm(next(‘l)) +1=



Generation of Stack Sequences in Lexicographical Order

a;, where k(a)<i<n, i#I/(a). Namely, the sequence a=
a,a,: - -a, contains a pattern a,ay,a; such that gy, <
a;<a, and 1<u<k(a)<i<n, i#Il(a). This contradicts
the assumption the sequence a=aa," - 'a, is a stack
sequence. Thus a pattern ¢,c,c,, does not satisfy Case 3.

Since the subsequence Cyg)" * *Cmnexi(ay iS Monotone
decreasing and the subsequence Cpuexs(ay+1"'"Cn IS
monotone increasing and Cy(g) < Cminext(a+1» it fOllOWs
that a pattern c,c,c, does not satisfy Case 4.

Thus we have shown a pattern c,c,c,, does not satisfy
any of the four cases. This contradicts the fact that a
pattern c,c,c,, has to satisfy one of the four cases. There-
fore the sequence c=c,c," * ¢, is a stack sequence. This
completes the proof.

We denote by d=d,d," - -d, the sequence which suc-
ceeds next(a) and precedes the sequence c=c¢;¢;" " *C,.

Property 3.7 The sequence d=d,d,:*d, is not a
stack sequence.

Proof. We note there are two elements d; and 4,
such that d,<d;<d,,, and k(a)<i<j<n. This means
there is a pattern dy,d;d;. Thus the sequence dd,"* *d,
is not a stack sequence. This completes the proof.

By Property 3.3, 3.4, 3.6 and 3.7, we can easily obtain
the following property.

Property 3.8

1 =
NEXT(@)= {nex (a) if m(next(a))=k(a)+1
c if m(next(a))>k(a)+1

For example, let a=5,5,555-5¢5453. We have obtained
next(a)=s5,5,5¢5354555,. The sequence a is a stack se-
quence, because there are no patterns. The sequence
next(a) is not a stack sequence, because there is a pattern
565354. Since the index m(next(a))=6, the subsequence
535,55 is reversed. Thus we obtain NEXT(a)=
§3515655545357.

Now we show three properties which are useful for
shortening the running time.

Property 3.9 m(next(a))=n+1+k(a)—(a)

Proof. By Property 3.1 we have

{b,|k(@)+ 1 <i<m(next(a))} ={aya}i{ail(@+1<i<n}.

Thus we obtain the above formula. This completes the
proof.
Property 3.10

n—1 if m(next(a))<n
k(@)—1 if m(next(a))=n

Proof. Suppose that NEXT(a)=next(a). 1If
m(next(a))<n, then we have k(next(a))=n—1 because
Bruextan < * * * <b,. Let m(next(@))=n. If by <bya)-1s
then by Property 3.1 we have by — 1 = k) - 1> br(a)=a)
and @y, <ay,. Namely, the sequence a=a.a," 4,
contains a pattern gy 1dyqdiay SUCh that gy, <
Qay <Gyq)-1 and k(@)—1<k(a)<l(a). This contradicts
the assumption that the sequence a=a,a, " -a, is a
stack sequence. Thus we have by~ 1 <by(). Since by >

-+ >b,, we have k(next(a))=k(a)—1.

k(NEXT(a))= {
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When NEXT(a)=c, the proof is similar and therefore
is omitted. This completes the proof.
Property 311 If l(@)=k(a)+1,

;" yay-19%(a) + 1%%(a)Fk(a)+2 " " On-
Proof. If k(a)=n—1, then by Property 3.1 we have
next(a)=a, - a,_,a,a,_,. Since m(next(a))=n, we have
m(next(a))=k(a)+ 1. Thus by Property 3.8, it follows
that NEXT(a)=next(@)=a,"* *a,_,a,a,_,. If 1<k(a)<
n—1, then by Property 3.1 two elements a,,, and ay .+,
are exchanged and the subsequence a, )@y gy+ 2 * * @a is Te-
versed and next(@)=a, " * *Gyay— 1k@)+ 190" " " Bi(ay + 29k(a)
is obtained. Since m(next(a))=n, we have m(next(a))>
k(a)+ 1. Thus by Property 3.8, the subsequence a,- - -
Oyay+20kay 15 Teversed and NEXT(@)=a,"*“Gya) -1
-a, is obtained. This completes the

then NEXT(a)=

Qya)+ 1%k (a)0k(a)+2"
proof.

Namely, if /(@)=k(a)+1, then we have only to ex-
change two elements a,,) and g+ ;-

By Property 3.8, 3.9, 3.10 and 3.11, we can construct
an efficient algorithm generating all stack sequences in
lexicographical order. It is shown in Fig. 3.1 in a
PASCAL-like notation. It uses a procedure reverse
(a;,* -+, a;) which reverses the subsequence a;* - -a; and
a procedure output (a;," -, a,) which prints out the
sequence a,a,- - -a, We write a;<>a; to mean that we
exchange a; and a;.

In order to gain a better understanding of our algo-
rithm, we shall briefly describe it. Let a sequence a=
a,a,- - -a, be a stack sequence. Since the next sequence
next(a) is not always the next stack sequence NEXT(a),
we have to examine whether or not next(a) is a stack
sequence. By Property 3.3 and 3.4, this problem is
solved. If next(a) is not a stack sequence, we have to
construct NEXT(a). By Property 3.5, 3.6 and 3.7, this
problem is solved. The sequence 5,5, * -5, is obviously a

1. begin
2. for i:=1to ndo a;:=sy;
3. output (@;,¢*, a,);
4, k:=n—1;
S. while k>0 do begin
6. {a=a,a;+«+a, is not lexically last sequence }
7. {determine /(a)}
8. I:=n; while a,>a; do I:=[—1;
9. {exchange ax, and ayq }
10. ay>ay;
11. if I=k+1 then
12. {we have only to exchange ax.) and ayq}
13. {determine k(NEXT(a))}
14. k:=k—1
15. else begin
16. reverse (ag+1,%°°, dn);
17. {determine m(next(a))}
18. m:=n+1+k—1I;
19. if m>k+1 then reverse (Gx+1,°**, @m);
20. {determine K(NEXT(a))}
21. k:=n—1
22. end;
23, output (@;,* ¢, a,)
24. end
25. end.

Fig. 3.1 Generating algorithm.
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stack sequence. Thus our algorithm can generate all
stack sequences in lexicographical order.

4. Analysis of Generating Algorithm

In this section, we show the average time per stack
sequence is bounded by a constant. We give some
preliminary properties.

We denote by f(n, i) the number of stack sequences
a,a,- - -a, such that a;=s,. It is obvious that f(1, 1)=1.
We obtain the following recurrence relations.

Property 4.1 Forn>2,

i
fln, )= gllf(n—l,j) (1<i<n—1)

n—1
fonm=3, fn=1,))

Proof. If we remove the element a;=s, from the
stack sequence a,---a; - -a, then the remaining se-
quence is a stack sequence. Let a;=s,_,. The index j
satisfies 1 <j<i or j=i+1, because the element s,_, is
moved from a stack before the element s, or immediately
after the element s,. When 1<j<i, the number of re-
maining sequences is f(n—1,7). When j=i+1, the
number of remaining sequences is f(n— 1, i). Therefore,
we obtain f(n,)=3}_, f(n—1,/) (1<i<n—1). We can
prove that f(n, ©)=3"1_1 f(n—1, ) in a similar way. This
completes the proof.

We define a binomial coefficient (§) is zero, if either
g>p or g<0.

Property 42 Forn>1and 1<i<n,

fn, i)=("7_2;ri>—(n7_2;i>

Proof. Since the solution of the above recurrence
relation is uniquely determined, it is sufficient to show
our formula satisfies the recurrence relation. It is easily
shown. This completes the proof.

Property 4.3 The index k(a)=i—1, if and only if
a,=s,.

Proof. (If) When the element s, is moved from the
stack, the contents of the stack is monotone increasing.
Thus we have a;,,> - >a,. Since the element a;=s,
is the largest, we have a,_, <a;=s,. Therefore, we have
k(@)=i—1.

(Only if) By the definition of the index k(a), it follows
that a;#s, (j=i—1,i+1<j<n). If a;=5, (1<j<i-1),
then there is a pattern q;a;_ 4, such that a;_, <a;<a;=
s, and j<i—1<i. This contradicts the assumption that
the sequence a=a,a, " - a, is a stack sequence. Therefore
we have a;=s,.

Let g(n, h) be the number of stack sequences a=
a,a,- - -a, such that k(a)=h. By Property 4.2 and 4.3,
we have the following property.

Property 44 Forn>1and O<h<n-1,

o, hy= (n-—’l'+h> _ (n;l-i—h)
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If we implement the generating algorithm in a straight-
forward manner, then the running time per stack se-
quence is bounded by a constant times n—hA. In the
worst case this is O(n), but on the average it is on the
order of T(n), where

n—1
I (=gl 1)
= —1—<Tn——
n+i\n )
Property 4.5 Forn>1,

3n
T(n)=n—+—2<3

Proof. Since

'S (=g, )
()= E () C)
- ) oo () a2 ) ()

_ 3n (Zn)
T+ D+2)\n )

we have the above formula. This completes the proof.

Theorem 2 The average time per stack sequence is
bounded by a constant.

Proof. By Property 4.5, it is easily proved.

Note that we do not count the time needed to print
out the stack sequence.

5. Concluding Remarks

We have shown a different approach to stack sequence
generation.

We shall examine our algorithm and Trojanowski’s
algorithm. Both average time per stack sequence are
bounded by a constant. His algorithm must save initial
elements s,, 5,," - *, 5,. On the other hand, our algorithm
does not have to save them. Thus it follows that our
algorithm works with less memory units.
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