Generation of Permutations by Using a Stack or a Queue

IcHIRO SEMBA*

We consider the problems of generating permutations on {1, 2, - - -, n}, by using a stack or a queue. Efficient
generating algorithms are presented. The average time per permutation is shown to be bounded by a constant.

Several combinatorial properties are proved.

1. Intreduction

We consider the problems of generating permutations
on {1,2,---,n}, by using a stack or a queue. These
problems are closely related together and interesting
examples of the use of computers in combinatorial
mathematics.

A stack is a list for which insertions and deletions are
always made at one end, called the top. We consider two
elementary operations, S and X. S stands for “insert the
next element of a permutation 12---n into the stack”
and X stands for “delete the element from the top and
move it to the output”. Operation X is meaningless when
the stack is empty.

A stack realizable permutation on {1,2,---,n} is
defined to be a permutation which is constructed from
a permutation 12---n, using a stack. A stack sortable
permutation on {1, 2,- - -, n} is defined to be a permuta-
tion from which a permutation 12---n is constructed,
using a stack. In Rotem[1], a class of stack realizable
permutations on {1, 2,---, n} is denoted by SR, and a
class of stack sortable permutations on {l, 2,---, n} is
denoted by SS,,.

For example, a stack realizable permutation 2431 is
constructed from a permutation 1234 by performing the
sequence of operations, SSXSSXXX and a permutation
1234 is constructed from a stack sortable permutation
2143 by performing the sequence of operations,
SSXXSSXX.

A queue is a list for which all insertions are done at
one end, called the rear, and all deletions are done at
the other end, called the front. We consider three ele-
mentary operations, Q, X and Y. Q stands for “insert
the next element of a permutation 12---n into the
queue”, and X stands for “delete the element from the
front and move it to the output”, and Y stands for “move
the next element of a permutation 12- - - n to the output.”
Operation X is meaningless when the queue is empty.

A queue realizable permutation on {l,2,---,n} is
defined to be a permutation which is constructed from a
permutation 12---n, using a queue. A queue sortable
permutation on {1, 2, - -, n} is defined to be a permuta-

*Department of Pure and Applied Sciences College of General
Education, University of Tokyo, Komaba, Meguro-ku, Tokyo 153,
Japan.

Journal of Information Processing, Vol. 5, No. 3, 1982

tion from which a permutation 12---n is constructed,
using a queue. We denote by QR, a class of queue
realizable permutations on {1, 2,---,n} and by QS, a
class of queue sortable permutations on {1, 2,- - -, n}.

For example, a queue realizable permutation 2413 is
constructed from a permutation 1234 by performing the
sequence of operations, QYQYXX and a permutation
1234 is constructed from a queue sortable permutation
2413 by performing the sequence of operations,
QQYXYX.

Many generating algorithmsf2] for all permutations
on {1, 2,- - -, n} have been published. Trojanowski[3] has
proposed the direct insertion order on the set of all per-
mutations on {1,2,---,n}. This order is simple and
natural. He has applied this order to generating all
stack realizable permutations on {1,2,---,n} and
established an efficient generating algorithm. He has
shown the average time per stack realizable permuta-
tion is bounded by a constant.

Our generating algorithm for all stack realizable
permutations on {1,2,---,n} is also based on the
direct insertion order, however, different from
Trojanowski’s generating algorithm. Our idea can be
applied to generating all queue realizable permutations
on {l,2,---,n}. The average time per stack(queue)
realizable permutation is proved to be bounded by a
constant.

We propose another direct insertion order and
establish a generating algorithm for all stack(queue)
sortable permutations on {1,2,---,n}. The average
time per stack(queue) sortable permutation is proved
to be bounded by a constant.

Since these generating algorithms are efficient, they can
be employed for systematic generation of combinatorial
objects which are one-to-one correspondence with stack
(queue) realizable permutations or stack(queue) sortable
permutations.

2. Generation of All Permutations on {1, 2,-- -, n} in
Direct Insertion Order

The purpose of this section is to establish a generat-
ing algorithm for all permutations on {1,2,"--,n} in
direct insertion order proposed by Trojanowski. The
average time per permutation is shown to be bounded by
a constant. This algorithm forms the foundation of a

Generation of permutations by using a stack or a queue

generating algorithm for all stack(queue) realizable
permutations.

Let n>2. For each permutation on {1, 2,---,n—1},
n permutations on {1, 2,- - -, n} are generated by inserting
the new element » into all possible positions from right
to left. Thus, we may obtain all permutations on {1,
2, -+, n}, as level n in a tree(permutation tree) in Fig.
2.1. The root 1 is defined to be level 1.

The direct insertion order on the set of all permuta-
tions on {1, 2,- - -, n} is defined by moving from left to
right along level n of this permutation tree. Thus, given
a permutation a,a,---a, on {l,2,---,n}, where
asa, - -a,#n---21, we can define its immediate suc-
cessor b, b, - b, as follows.

(1) If a;=n(1<i<n), then we exchange a;_, and a;.
Thus, wehave b, =qa; (1 <j<i-1,i<j<n),b;_;=
a;and b;=a;_,.

(2) If a,=n, then let a permutation ¢;¢;"**c,-; On
{1, 2, - -, n—1} be the immediate successor of a
permutation a,a;° - -a, on {1,2,-- -, n—1}. Then,
bj=c;{1<j<n—1)and b,=n.

The first permutation is defined to be 12- - -n,

Our fundamental idea is to traverse the permutation
tree in inorder. A generating algorithm is described in a
PASCAL-like notation and shown in Fig. 2.2. A per-
mutation a,a,- - -a, on {1, 2,- - -, n} is represented by an

/ \Z
AN

1234 1243 1423 4123 1324 4231 3214 3241 3421 4321

-

Fig. 2.1 A permutation tree.

1. begin

2. all}:=1;

3. forj:=2 to n do begin a[jl:=/; xj]:=j end;
4. 1:

5. output (a);

6. ii=n;

7. repeat

8. i:=i—1; a[i+1]:=ali]; ali]:=n;
9. output (a);
10. until i=1;

11, k:=n;
12. repeat
13. for j:=i+1to k do alj—1]:=alj];
14, alk):=k; x[k):=

15. k:=k—1;

16. if k=1 then goto 2;

17 i:=x{k]

18. until i>1;

19. i:=i—1; ali+1]:=alil; alil:=k; xlk]:=i;
20. goto 1;

21. 2:

22. end.

Fig. 2.2 The generating algorithm for all permutations on
{1,2,---,n}.

163

integer array afl:--n]. We denote by x; (1<i<n) the
position in which the element i is located at level i of the
permutation tree. Since x, is always equal to 1, we use
an integer array x[2- -n] to represent x; (2<i<n). The
procedure output(a) prints out the permutation a,a," - -
a,. For n=4, the result of this algorithm is shown in
Fig. 2.3.

Now we show the average time per permutation is
bounded by a constant. We denote by f(n) the number of
times the instruction in the for loop(line 13) may be
executed and by g(n) the number of times other instruc-~
tions in the repeat-until loop(line 12-18) may be
executed, in order to generate all permutations on {1,
2,- - -, n}. Since other instructions are executed at most
once per permutation on {1, 2,---, n}, we have only to
show that two functions f(n)/n! and g(n)/n! are bounded
by a constant.

Property 2.1 Letn>2.
1) fiy=n!-1
2) g)=r—D!'+@-2)!1+---+2!1+1!
Proof. Let t,¢,---t,_, be a node of the permutation
tree at level i—1. The instruction in the for loop is
executed, when an immediate successor of f,7, - ¢,
is constructed. The number of execution times is equal
to the number of children of a node ¢, - -¢;_, minus
one. Since the number of nodes of level i is i!, total num-
ber of execution times between level i and level i—1 is
i!—(i—1)!. By the definition of f(i), we have the following
recurrence relation.
SO=fi—-D+il-G-1!
f2)=1

In a similar way, we have the following recurrence

(2<i<n)

a,a,a3a, X1X2X3X4
1: 1234 1234
2: 1243 1233
3: 1423 1232
4: 4123 1231
5: 1324 1224
6: 1342 1223
7: 1432 1222
8: 4132 1221
9: 3124 1214
10: 3142 1213
11: 3412 1212
12: 4312 1211
13: 2134 1134
14: 2143 1133
15: 2413 1132
16: 4213 1131
17: 2314 1124
18: 2341 1123
19: 2431 1122
20: 4231 1121
21: 3214 1114
22: 3241 1113
23: 3421 1112
24: 4321 1111

Fig. 2.3 The result of a generating algorithm for all permutations
on {1, 2, 3, 4}.

164

relation, with respect to the quantity g(n).
gi)=gi—1)+@i—-1)! (2<i<n)
g(2)=1
Solving these recurrence relations, we have the above
results.

Theorem 2.1 Let n>2.
The average time per permutation on {1, 2,- -, n} is
bounded by a constant.

Proof. By Property 2.1, it is proved.

Note that we do not consider the time needed to print
out the permutations.

3. Generation of All Stack Realizable Permutations on
{1’ 29' Ty ll}

In this section, we will establish a generating algorithm
for all stack realizable permutations on {1, 2,---, n}
and show the average time per stack realizable per-
mutation is bounded by a constant.

We give a basic property of stack realizable permuta-
tions on {1, 2, - -, n}.

Property 3.1 Let n>3.

A permutation on {1, 2, ---,n} a,a, --a, is a stack
realizable permutation, if and onl0 if there are no
subsequences a.a;a, such that a;<a,<a; (i<j<k).

The proof is omitted, since a similar property and its
proof is found in Knuth[4, Sec. 2.2.1, Ex5]. Considering
this property well, we notice that it suggests the method
of generating all stack realizable permutations on
{L,2,---,n}.

Property 3.2 Letn>2.

(1) If a permutation aya,'-a,_, on {1,2," -, n—
1} is not a stack realizable permutation, then no stack
realizable permutations on {1,2, ---, n} can be con-
structed by inserting the new element n into possible
positions.

(2) If a permutation a,a,° - -a,_, on {1, 2,---,n—1}
is a stack realizable permutation, then stack realizable
permutations on {1, 2, ---,n} can be constructed by
inserting the new element » at the right of ,_, and at the
left of a,_, and a; (1 <i<n-—2), where a;>a;,, (i<j<
n—2).

Proof. (1) Obvious. (2) By Property 3.1, the new ele-
ment n has to be inserted so that subsequences na,a,
(a,<a,<n, u<v) may not be constructed. Thus, the new
element n can be inserted at the right (left) of a,_,.
Suppose that the new element n can be inserted at the
left of a; (1 <i<n—2), then two elements g, and a,(a, <
a,, i<u<v) must not exist, that is, a;>a;,, for all j,
i<j<n-—-2.

1. SEmBA

12 21

N\ _

123 132 213 231 321

1234 1243 13241}%2 2134 2143 2314 2341 2431 3214 3241 3421 4321

Fig. 3.1 A stack realizable permutation tree.

By Property 3.2, we can obtain all stack realizable
permutations on {1, 2, -, n}, as level n in a tree(stack
realizable permutation tree) in Fig. 3.1. The root 1 is
defined to be level 1. The new element » is assumed to
be inserted from right to left.

To generate successively all stack realizable permuta-
tions on {1, 2,- - -, n}, we consider to move from left to
right along level n of the stack realizable permutation
tree. Thus, given a stack realizable permutation
a,a, -+a, of {1,2,---,n}, where a,a, " -a,#n 21,
we can define its immediate successor bb,: ‘b, as
follows.

(1) If a,=n, then we exchange a,_, and a,.

(2 If ay=n and a;,_,>a;,,; (1<i<n), then we
exchange a;_, and a;.

(3) If a;=n and a;_,<a;,; (1<i<n), then let a

permutation ¢,c, - -¢,-, on {l,2,--,n—1} be the
immediate successor of a stack realizable permutation
@, @ \8isy 4G, on {1,2, -, n—1}. Then, b;=c¢,;

(1<j<n—1)and b,=n.

The first stack realizable permutation on {1, 2, - -, n}
is defined to be 12 - n. The element a, is set to zero to
detect that the index i is equal to 1.

Our fundamental idea is to traverse the stack realizable
permutation tree in inorder. Thus, a generating algorithm
for all stack realizable permutation on {1,2, -, n} is
established by making the following partial revisions for
the generating algorithm for all permutations on {1,
2,--+, n}.

(1) line 24[l]:=1; — a[0]:=0; a[l}:=1;

(2) line 10 until i=1; — until afi— 1]<ali+1];

(3) line 18 until i>1; - until (i=k) or (afi—1]>
afi+1]);

The element a,, is represented by a[0]. Thus, we use an
integer array a[0- - n). The result of a generating algorithm
for all stack realizable permutations on {1, 2, 3, 4} is
shown in Fig. 3.2.

Now we show the average time per stack realizable
permutation is bounded by a constant. Two functions
f(n) and g(n) are defined for stack realizable permuta-
tion on {1,2,---,n} as they are for permutations on
{1,2,- -, n}. Let C,=(?")/(n+1) be Catalan number.

Property 3.3 Letn>2.
1 fim=C,—1

Generation of permutations by using a stack or a queue

Qa,a,a:a, X1X2X3X4
1: 1234 1234
2: 1243 1233
3: 1324 1224
4: 1342 1223
5: 1432 1222
6: 2134 1134
7: 2143 1133
8: 2314 1124
9: 2341 1123
10: 2431 1122
11: 3214 1114
12: 3241 1113
13: 3421 1112
14: 4321 1111

Fig. 3.2 The result of a generating algorithm for all stack realiza-
ble permutations on {1, 2, 3, 4}.

2 gM=Cpy+Cy2+ - +C,
Proof. We note that the number of nodes of level i
in the stack realizable permutation tree is C; [4, Sec.
2.2.1, Ex4]. In a similar way as Property 2.1, we obtain
the following recurence relations.

fO=fi-D)+C;—C,_, (2<i<n)
f@)=1

9@)=g(i-D+C,., (2<i<n)
9(2)=1

Solving these recurrence relations, we obtain the
above results.

Property 3.4 Let n>5.
1/342/3n—4)<(Cy+---+C,_))/C,<1/3+2/(3n—5)

Proof. The proof proceeds by induction on 7.

Basis. n=5,6. By direct computation, the above in-

equalities are obtained.

Inductive step. n>6. We can evaluate (C,+---
+C,_,)/C, as follows.

Ci+---+Coy n+1 C‘+"'+C"‘2+1
C, T 4n-2 C,_,

n+1 /4 2
>a;:5(§+§r7)
_ (n+1)6n—11)
T3Qn—1)3n-17)
1 2
>3t 3m—a
Gt 4Gy _n+l (Cl+---+C,_2+l)
C, 4n-—-2 Co

n+1 (4 2
<ET2<§+3»:——§>
_(n+l)(6n—l3)

T 3(2n—1)(3n—8)

1 2

<3t3,55

Thus, we have proved the above inequalities.

165

Theorem 3.1 Let n>2.
The average time per stack realizable permutation on
{1, 2,-- -, n} is bounded by a constant.

Proof. For a similar reason as the average time per
permutation on {1, 2, -, n}, it is proved by Property
3.3 and 3.4.

4. Generation of All Queue Realizable Permutations
on{l,2,- -, n}

In this section, we will establish a generating algorithm
for all queue realizable permutations on {1, 2, -, n}
and show the average time per queue realizable permuta-
tion is bounded by a constant.

We derive a basic property of queue realizable per-
mutations on {1, 2,- - -, n}.

Property 4.1 Let n>3.

A permutation on {1,2,---,n} a,a, --a, is a queue
realizable permutation, if and only if there are no sub-
sequences a,a,a, such that a,>a;>a, (i<j<k).

Proof. (Only if) Suppose that a queue realizable per-
mutation a,a, " *a, contains a subsequence a,a;a, such
that a,>a;>a, (i<j<k). Since a,>a; (i<j), we see a;is
inserted into the queue. Since a,>a, (i <k), we see a, is
inserted into the queue. On the other hand, since a;>a,
(j<k), a, is inserted into the queue before a; and moved
to the output before a;. This means that a subsequence
a,qa; such that a;>a;>a, (i<j<k) is obtained. This
contradicts the assumption. Thus, a queue realizable
permutation a,a, - -a, contains no subsequences a,a;a,
such that a,>a;>a, (i<j<k).

(If) The desired permutation a,a, - - - a, can be obtained
by performing the following algorithm.

Let the input permutation be 12+ - -n. For j=1,2, ---, n
move zero or more elements (as many as necessary)
from the input permutation to the rear of the queue,
until g; first appears in the input permutation or in the
front of the queue, then output a;,.

This algorithm can fail only if we reach a j for which
the input permutation becomes empty and a, is not
at the front of the queue. Then, it is covered by some
element g, (j<k). Since the elements of the queue is
always monotone increasing, we have a;> a, (j<k). This
element a; exists there only if there is an element a,>a;
(i<j). Namely, we have obtained a subsequence a,a;a,
such that @,>a;>a, (i<j<k). Thus, if there are no
subsequences a;a;a, such that q;>a;>a, (i<j<k), a
permutation a,a, - - - a, is a queue realizable permutation.

This property also suggests the method of generating
all queue realizable permutations on {1, 2," - -, n}.

Property 4.2 Let n>2.
(1) If a permutation a;a,*--a,_, on {1,2,"--,n—
1} is a queue realizable permutation, then no queue

166

realizable permutations on {1, 2, ---,n} can be con-
structed by inserting the new element n into possible
positions.

(2) If a permutation a,a,*'a,_, on {1,2,--+,n—
1} is a queue realizable permutation, then queue realiza-
ble permutations on {1,2, ---, n} can be constructed
by inserting the new element n at the right of a,_, and
at the left of a,_, and @; (1<i<n—2), where a;<a;,,
(i<j<n-2).

Proof. In a similar way as Property 3.2, it is proved by
Property 4.1.

By Property 4.2, we can obtain all queue realizable
permutations on {1, 2,- - -, n}, as level n in a tree(queue
realizable permutation tree) in Fig. 4.1. The root 1 is
defined to be level 1. The new element » is assumed to
be inserted from right to left.

To generate successively all queue realizable permuta-
tions on {1, 2,---,n}, we consider to move from left
to right along level n of the queue realizable permutation
tree. Thus, given a queue realizable permutation a,a, - - -
a, on {1,2,---,n}, where a,a,--a,#23---nl, we can
define its immediate successor b.b,- - b, as follows.

(1) If a,=n, then we exchange a,_, and a,.

(2) If a;=n and a;_,<a;,, (1<i<n), then we
exchange a;_, and a;.

() If aj=n and a,_,>a;,, (1<i<n), then let a
permutation c¢,c; - -¢,—; on {l,2,---,n—1} be the
immediate successor of a queue permutation a;---
@184, "a,0on {1,2, -+, n—1}. Then, b;=c; (1<j<
n—1) and b,=n.

The first queue realizable permutation on {I, 2,-- -,
n} is defined to be 12- - -n. The element a, is set to n+1
to detect that the index i is equal to 1.

Our fundamental idea is to traverse the queue realiz-
able permutation tree in inorder. Thus, a generating
algorithm for all queue realizable permutation on
{1,2,---,n} is established by making the following
partial revisions for the generating algorithm for all
permutations on {1, 2,- - -, n}.

(1) line 2aq[l]:=1; - a[0}:=n+1;q[l]:=1;

(2) line 10 until i=1; — until afli—1]>d[i+1];

(3) line 18 until i>1; — until (i=k) or (afi—1}<

ali+1]);

The element a,, is represented by a[0]. Thus, we use an

1234 1243 1423 4123 1324 1342 3124 3142 3412 2134 2143 2413 2314 2341

Fig. 4.1 A queue realizable permutation tree.

1. SEMBA

a,Q,asas X1 X2X3X4
1: 1234 1234
2: 1243 1233
3: 1423 1232
4: 4123 1231
5: 1324 1224
6: 1342 1223
7: 3124 1214
8: 3142 1213
9: 3412 1212
10: 2134 1134
11: 2143 1133
12: 2413 1132
13: 2314 1124
14: 2341 1123

Fig. 4.2 The result of a generating algorithm for all queue realiza-
ble permutations on {1, 2, 3, 4}.

integer array a[0- - n]. The result of a generating algorithm
for all queue realizable permutations on {1, 2, 3, 4} is
shown in Fig. 4.2

Now we show that the average time per queue
realizable permutation is bounded by a constant. Two
functions f(n) and g(n) are defined for queue realizable
permutations on {1, 2,- - -, n} as they are for permuta-
tions on {1, 2,-- -, n}.

Property 4.3 Let n>2.

I fim=C,-1
(2) g(n)=cn—l+cn—2+ cte +Cl

Proof. We note that the number of nodes of level i in
the queue realizable permutation tree is C; [5]. We can
prove in the same way as Property 3.3.

Theorem 4.1 Let n>2.
The average time per queue realizable permutation on
{1, 2,- - -, n} is bounded by a constant.

Proof. For the same reason as the average time per
permutation on {1, 2,-- -, n}, it is proved by Property
4.3 and 3.4.

5. Generation of All Permutations on {1, 2,---, n} in
Another Direct Insertion Order

The purpose of this section is to propose another
direct insertion order on the set of all permutations on
{1,2,---,n} and establish a generating algorithm for
all permutations on {1, 2, - -, n}. The average time per
permutation is shown to be bounded by a constant. This
algorithm forms the foundation of generating algorithm
for all stack (queue) sortable permutations.

Let 1 <m<n—1. For each permutation on {m+1,-- -,
n}, n—m+1 permutations on {m,m+1,---,n} are
generated by inserting the new element m into all possible
positions from left to right. Thus, we may obtain all
permutations on {m,- - -, n}, as level n—m+1 in a tree
(permutation tree) in Fig. 5.1. The root n is defined to
be level 1. Our direct insertion order on the set of all

Generation of permutations by using a stack or a queue
4\
34 / /43\
234/324\342 243 423 i32

1234 2134 2314 2341 1324 4231 1432 4132 4312 4321

Fig. 5.1 A permutation tree.

permutations a,," * *@, on {m," - -, n} is defined by moving
from left to right along level n—m+1 of this permuta-
tion tree. Thus, given a permutation a,, - *a, on {m," - -,
n}, where a,--‘a,#n(n—1)---m, we can define its
immediate successor b,,- - - b, as follows.

(1) If a;=m (m<i<n), then we exchange a; and
a;,,. Thus, we have b;=a; (m<j<i, i+1<j<n), b;=
a;4q,and by, =a;

(2) If a,=m, then let a permutation ¢, ‘¢, on
{m+1, ---, n} be the immediate successor of a per-
mutation a,,---a,_, on {m+1,---,n}. Then b;=c;
(m<j<n)and b,,=m.

The first permutation is defined to be m- - -n.

Our fundamental idea is to traverse the permutation
tree in inorder. A generating algorithm is described in
PASCAL-like notation and shown in Fig. 5.2. A per-
mutation a,a,- - -a, on {1, 2,- - -, n} is represented by an
integer array a[l - -n].

We denote by y; (1 <i<n) the position in which the
element i is located at level n—i+1 in the permutation
tree. Since y, is always equal to n, we use an integer array
y[1--n—1] to represent y; (1<i<n—1). For n=4, the
result of this algorithm is shown in Fig. 5.3.

Now we show the average time per permutation is
bounded by a constant. We denote by f(n) the number of
times the instruction in the for loop(line 13) may be

1. begin
2. alll:=1;
3. for j:=2 to n do begin alj]:=/; yljl:=j end;
4. 1:
S. output (a);
6. i:=1;
7. repeat
8. ir=i+1; afi—1):=ali); ali):=1;
9. output (a)
10. until i=n;
11. k:=1,
12. repeat
13. for j:=i—1 downto k do a[j+1]:=adlj];
14, alk)l:=k; ylk]:=k;
15. k:=k+1;
16. if k=n then goto 2;
17. i =yfk]

18. until i<n;
19. i:=i+1; a[i—1]:=alil; ali]:=k; yk]:=i;

20. goto 1;
21. 2:
22. end.

Fig. 5.2 The generating algorithm for all permutations on {1,
2’ EEEN ’I}.

167

a,a;axa, X1X2X3X4a
1: 1234 1234
2: 2134 2234
3: 2314 3234
4: 2341 4234
5: 1324 1334
6: 3124 2334
7: 3214 3334
8: 3241 4334
9: 1342 1434
10: 3142 2434
11: 3412 3434
12; 3421 4434
13: 1243 1244
14: 2143 2244
15: 2413 3244
16: 2431 4244
17: 1423 1344
18: 4123 2344
19: 4213 3344
20: 4231 4344
21: 1432 1444
22: 4132 2444
23: 4312 3444
24: 4321 4444

Fig. 5.3 The result of a generating algorithm for all permutations
on {1,2, 3, 4}.

executed and by g(n) the number of times other instruc-
tions in the repeat-until loop(line 12-18) may be
executed, in order to generate all permutations on
{1,2,--+, n}.

Property 5.1 Let n>2.
1 flim=n!—-1
2 g)=n—-1D)'+@n-2)!1+---+21+1!

Proof. In a similar way as Property 2.1, it is proved.

Theorem 5.1 Let n>2.
The average time per permutation on {l,2,---,n} is
bounded by a constant.

Proof. By Property 5.1, it is proved.

Note that we do not consider the time needed to print
out the permutations.

6. Generation of All Stack Sortable Permutation on
{1’ 2’ Sy, n}

In this section, we will establish a generating algorithm
for all stack sortable permutations on {1, 2, - -, n} and
show the average time per stack sortable permutation is
bounded by a constant.

We give a basic property of stack sortable per-
mutations on {1, 2,---, n}.

Property 6.1 Letn>3.
A permutation on {l,2,---,n} a,a,---a, is a stack
sortable permutation, if and onmly if there are no

168

subsequences a,a;a, such that g, <a;<a; (i<j<k).
The proof is omitted, since a similar property and its
proof is found in Rotem[1, Theorem 2].

Property 6.2 letl1<m<n-1.

(1) If a permutation a,,,, - -a, on {m+1,---, n} is
not a stack sortable permutation, then no stack sortable
permutations on {m, m+1, -+, n} can be constructed
by inserting the new element m into a possible positions.

(2) If a permutation a,,,,--a, on {m+1,---,n} is
a stack sortable permutation, then a stack sortable
permutations on {m, m+1, ---, n} can be constructed
by inserting the new element m at the left of a4, and
at the right of a,., and a; (m+2<i<n), where a;_, >
a; (m+2<j<i).

Proof. (1) Obvious, (2) By Property 6.1, the new ele-
ment m has to be inserted so that subsequences a,a,m
(m<a,<a,, u<v) may not be constructed.

Thus, the new element m can be inserted at the
left(right) of a,, .. Suppose that the new element m can
be inserted at the right of a, (m+2<i<n), then two
element q, and g, (a,<a,, u<v<i) must not exist, that
is, a;_y>a, for all j, m+2<j<i.

By Property 6.2, we can obtain all stack sortable
permutations on {m,- -, n}, as level n—m+1 in a tree
(stack sortable permutation tree) in Fig. 6.1. The root n
is defined to be level 1. The new element m is assumed to
be inserted from left to right.

To generate successively all stack sortable permuta-
tions on {m,- - -, n}, we consider to move from left to
right along level n—~m+1 in the stack sortable permuta-
tion tree. Thus, given a stack sortable permutation q,,- - -
a, on {m,- -, n}, where a,,---a,#n(n—1)---m, we can
define its immediate successor b, - - b, as follows.

(1) If a,=m, then we exchange a,, and a,,, .

2 If a;j=m and a;,_,>a;,, (m<i<n), then we
exchange q; and q,, ,.

(3 If ¢j=m and a,_,<a;,, (m<i<n), then let a
permutation ¢, -'c, on {m+1, -+, n} be the im-
mediate successor of a stack sortable permutation
G Q1841 a, On {m+1, -+, n}. Then, b;=c,
(m+1<j<n)and b,=m.

The first stack sortable permutation on {m,: - -, n} is
defined to be m- - -n. The element a,, is set to n+1 to
detect that the index i is equal to n.

Our fundamental idea is to traverse the stack sortable

30/“\\\43
/\ //\

234 324 243 423 432

1234 2134 1324 3124 3214 1243 2143 1423 4123 4213 1432 4132 4312 4321
Fig. 6.1 A stack sortable permutation tree.

I. SEMBA

a,a;a3a. X1 X2X3Xs
1: 1234 1234
2: 2134 2234
3: 1324 1334
4: 3124 2334
5: 3214 3334
6: 1243 1244
7: 2143 2244
8: 1423 1344
9: 4123 2344
10: 4213 3344
11: 1432 1444
12: 4132 2444
13: 4312 3444
14: 4321 4444

Fig. 6.2 The result of a generating algorithm for all stack sortable
permutations on {1, 2, 3, 4}.

permutation tree in inorder. Thus, a generating algorithm
for all stack sortable permutation on {1,2,---,n} is
established by making the following partial revisions for
the generating algorithm for all permutations on {1,
2,--+,n}.

1) line 2aq[ll:=1; - qll:=1;an+1:=n+1;

(2) line 10 until i=n; — until afi—1]1<a[i+1];

() line 18 until i<n; — @ (i=k) or (ali—1]>
T ai+1);

The element a,, , is represented by a[n+1]. Thus, we
use an integer array a[1- -n+ 1]. The result of a generating
algorithm for all stack sortable permutations on {1, 2,
3, 4} is shown in Fig. 6.2.

Now we show the average time per stack sortable
permutation is bounded by a constant. Two functions
f(n) and g(n) are defined for stack sortable permutations
on {1,2,---,n} as they are for permutations on {1,
2, -, n}.

Property 6.3 Letn>2.
1) f=C,-1
2 9m=Cpoy+Cpzt " +Cy

Proof. We note that the number of nodes of level i in
the stack sortable permutation tree is C[1]. In a similar
way as Property 3.3, we obtain the above results.

Theorem 6.1 Let n>2.

The average time per stack sortable permutation on
{1, 2,-- -, n} is bounded by a constant.

Proof. For the same reason as the average time per
permutation on {1, 2, -, n}, it is proved by Property
6.3 and 3.4.

7. Generation of All Queue Sortable Permutations on
{19 2,0, "}

In this section, we will establish a generating algorithm
for all queue sortable permutations on {1, 2, -+, n} and
show the average time per queue sortable permutation

Generation of permutations by using a stack or a queue

is bounded by a constant.
We give basic properties of queue sortable per-
mutations on {1, 2, - -, n}.

Property 7.1 Let n>3.

A permutation on {1,2,---,n} a,a,*-a, is a queue
sortable permutation, if and only if there are no
subsequences a;a;a, such that a,>a;> a, (i<j<k).

Proof. In a similar way as Property 4.1, it is proved.

Property 7.2 Letn>1.
QR,=Q5,

Proof. By Property 4.1 and 7.1, it is proved.

Therefore, a generating algorithm for all queue realiz-
able permutations on {1, 2,- - -, n} can be employed for
the generation for all queue sortable permutations on
{1, 2, - -, n}. However, we will establish another generat-
ing algorithm based on the generating algorithm in Fig.
5.2

Property 7.3 Let l<m<n—1.

(1) If a permutation a,,,,"*-a, on {m+1,---,n} is
not a queue sortable permutation, then no queue
sortable permutations on {m, m+1,---, n} can be con-
structed by inserting the new element m into a possible
positions.

(2) If a permutation a,,,,""a, on {m+1,---,n} is
a queue sortable permutation, then queue sortable per-
mutations on {m, m+1, -+, n} can be constructed by
inserting the new element m at the left of a,,, and at
the right of a,,., and a; (m+2<i<n), where a;_, <
a; (m+2<j<i).

Proof. In a similar way as Property 6.2, it is proved.

By Property 7.3, we can obtain all queue sortable
permutations on {m,- - -, n}, as level n—m+1 in a tree
(queue sortable permutation tree) in Fig. 7.1. The root n
is defined to be level 1. The new element m is assumed to
be inserted from left to right.

To generate successively all queue sortable permuta-
tions on {m,- - -, n}, we consider to move from left to
right along level n—m+1 in the queue sortable permuta-
tion tree. Thus, given a queue sortable permutation
a,---a,on {m,---,n}, where a,,- - -a,#n(n—1)- - -m, we
can define its immediate successor b, - -b, as follows.

1234 2134 2314 2341 1324 3124 1342 3142 3412 1243 2143 2413 1423 4123

Fig. 7.1 A queue sortable permutation tree,

169

(1) If a,,=m, then we exchange a,, and q,,, ,.

2) If a,;=m and a,_,>a;,,, (m<i<n), then we
exchange q; and a; ;.

(3) If aj=m and a,_,<a;,, (m<i<n), then let a

permutation ¢, "¢, on {m+1, ---,n} be the im-
mediate successor of a queue sortable permutation
Gp" @ 18;4," '@, on {m+1, - -, n}. Then, b;=c;

(m+1<j<n)and b,=m.

The first queue sortable permutation on {m,- - -, n} is
defined to be m- - -n. The element a,,, is set to zero to
detect that the index i is equal to n.

Our fundamental idea is to traverse the queue sortable
permutation tree in inorder. Thus, a generating algorithm
for all queue sortable permutation on {l,2,---,n} is
established by making the following partial revisions for
the generating algorithm for all permutations on {1,
2, n}.

1) line 2a{l]:=1; - a{l}:=1; a[n+1}:=0;

(2) line 10 until i=n; — until a[i—1]>4d[i+1];

(3) line 18 until i<n; — until (i=k) or (afi—1]<
T di+1]);

The element a, ., , is represented by a[n+ 1]. Thus, we
use an integer array a[l- -n+ 1]. The result of a generating
algorithm for all queue sortable permutations on {1, 2,
3, 4} is shown in Fig. 7.2

Now we show the average time per queue sortable
permutation is bounded by a constant. Two functions
f(n) and g(n) are defined for queue sortable permutations

on {1,2,---,n} as they are for permutations on {l,
2’ ceey n}'
Property 7.4 Let n>2.

1O f(m=C,-1
@2 g)=C,1+Co_ 2+ - +C,;

Proof. We note that the number of nodes of level i in
the queue sortable permutation tree is C; by Property
7.2. In a similar way as Property 3.3, we obtain the above
results.

aya;asa, X1X2X3X4
1: 1234 1234
2: 2134 2234
3. 2314 3234
4: 2341 4234
5: 1324 1334
6: 3124 2334
7: 1342 1434
8: 3142 2434
9: 3412 3434
10: 1243 1244
11: 2143 2244
12: 2413 3244
13: 1423 1344
14: 4123 2344

Fig. 7.2 The result of a generating algorithm for all queue sortable
permutations on {1, 2, 3, 4},

170

Theorem 7.1 Let n>2.

The average time per queue sortable permutation on
{1, 2,- - -, n} is bounded by a constant.

Proof. For the same reason as the average time per
permutation on {1, 2,---, n}, it is proved by Property
7.4 and 3.4.

8. Combinatorial Properties

In this section, several interesting combinatorial
properties are proved. Four classes SR,, SS,, QR,, QS,
have the following relations. We note QR,=QS8,.

Property 8.1 Let n>1 and F, be Fibonacci number
such that F,,,=F,,,+F,, F,=1, F,=1.
(1) ISS,nSR,|=2""" (2) ISR, QR,|=2"""
(3) ISS,nQS,|=2""' (4 |SS,n SR, QR,|
=Fn+1

Proof.

(1) The proof is found in Rotem [1].

(2) The proof proceeds by induction on 2.
Basis. n=1. Obvious.
Inductive step. n>1. By Properties 3.2 and 4.2, it
follows that the elements of SR,NQR, can be constructed
by inserting the new element n into the elements of
SR,_;nQR,_;. Let a permutation a,a,"-‘a,_, on
{1, 2, -+, n—1} be the element of SR,_;nQR,_,. Only
two permutations a, - -a,_n and a,- - -a,_,na,_, can
be constructed as the element of SR,NQR,. Therefore,
we have

ISRn n QRn|=2|SRn—l [QRn—ll
=21,

(3) In a similar way as (2), it is proved.

(4) The proof proceeds by induction on n.
Basis. n=1. Obvious.
Inductive step. n>1. By Properties 3.2, 4.2 and 6.2, it
follows that the elements of SS,NSR,NQR, can be
constructed by inserting the new element n into the
elements of SS,_;NSR,_;NQR,_,. Let a permutation
aa, -a,_; on {1,2,---,n—1} be the element of
SS,_;nSR,_;NQR,_;. Only two permutations a,- -
a,_in and a,- - -a,_,n(n—1) can be constructed as the
element of SS,NSR,NQR,. Therefore, we have

|SSn a} SRn a} QRn!='SSn—1 n SRn—l [a} QRn—ll
+Issn—2 N SRn-Z N QRn—ZI
=Fu+1'

Property 8.2 Letn>1.

(1) A permutation a=a,a,---a, on {1,2, -, n} is
a stack sortable permutation, if and only if ™! is a
stdck realizable permutation.

(2) If a permutation a=a,a,---a, on {1,2, -, n}
is a queue realizable (sortable) permutation, then a™! is
a queue realizable (sortable) permutation.

Proof.

I. SEMBA

(1) This property is shown in Rotem [1].

(2) Leta '=bb,: - b, Suppose that there is a sub-
sequence b;>b;>b, (i<j<k). If b;=w, b;=v and
b,=u, then a,=i, a,=j and a,=k. This means that there
is a subsequence a,>a,>a,, (u<v<w). This contradicts
the assumption that a=a,a," - -q, is a queue realizable
(sortable) permutation. Thus, a~! is a queue realizable
(sortable) permutation.

Let a,a, - -a, be a permutation on {1, 2, --, n}. We
denote by aofa,a,- - -a,) the order in direct insertion
order proposed by Trojanowski and by f(a;a,---a,)
the order in direct insertion order proposed by us.
(12 - -n)(B(12- - -n)) is defined to be 1.

Property 8.3 Letn>2.
(1) «(aa,-1"-a)=n!-o(a,a, - -a,)+1
2 B@a,-, -a)=n!-Pla,a, " -a,)+1

Proof.
(1) The proof proceeds by induction on 7.
Basis. n=2. Obvious.
Inductive step. n>2. Let a,=n. (1<i<n). By the
definition of direct insertion order, it follows that

waya; - -a)=(a, - -a;_ 1841 @)= Dn+n—i+1
=aa; - Gi-184q - -an—i+1

(@@ - @) =((ay- - -a; 4 1a;_y---a))—Dn+i
=a(@, - -a41a;_ - -a)n—n+i.

Therefore, we have

@y, -a)=((n—1D!—ofa, - a;_,a;4---a)+1)
xn—n+i
=n!—(aa, - -a;-1@;4," - -a)n—i)
=n!—a(a,a,---a,)+1

(2) In a similar way as (1), it is proved.

In order to generate all permutations a,a,- - -a, on
{1,2,---,n}, we have only to generate permutations
aa, - -a, where 1<a(a,a,"--a,)<n!/2, because per-
mutations a,a,_, * - “a,, where n!/2<wa(a,a,_," - -a,)<n!,
are obtained from permutation a,a," - -a,. This property
will effect a saving of 50 per cent in the amount of time
needed to generate all permutations on {1, 2, - -, n}.

Property 84 Letn>2.

(1) The stack realizable permutations a,a,- - -a, are
generated in lexicographical order.

(2) The stack sortable permutations a,a,- - -a, are
generated in reverse lexicographical order.

Proof.

(1) The proof proceeds by induction on n.
Basis n=2. Obvious.
Inductive step. n>2. Letb.b,---b,_, be an immediate
successor of the stack realizable permutation aja,- - -
a, ;. We denote by p(a,a,°--a,_, bb, --b,_,) the

Generation of permutations by using a stack or a queue
leftmost index where the element of a,a,---a,_, is
smaller than the element of b,b,- - -b,_,.

plaay---a,_y,byby---b,)
= min {kla;=b(l <i<k),a,<b}
1<k<n—1
The children of a,a," - -a,_, (byb," - -b,_,) in the stack
realizable permutation tree are generated in lexico-
graphical order. Thus, it is sufficient to prove that
byb,- - - b, \n, which is lexically first among the children
of b,b,- - -b,-,, is the successor of a,- - -ana;,,* ' *a,_,
(a;<a;y1>a;,,>""->a,_,), which is lexically last
among the children of a,---a,a;,," ' -a,-,. In order to
prove the above fact, we show that p(aja, - -a,_y,
bb, - -b,_)<i.Letm=p(a,a, " a,_1,b:b, b,). If
m>1i, then we have a,,<b,, and {a,,," -, a,_,} ={b," ",
b,_,}. However, this contradicts the fact that a,>
Gy > >a,_ ;. Thus we obtain m <i.
(2) In a similar way as (1), it is proved.

Remark

In Knott[6], stack realizable permutations are called
stack permutations and stack sortable permutations are

171

called tree permutations. In Semba[7], another generat-
ing algorithm for all stack realizable permutations is
proposed and the average time per stack realizable
permutation is shown to be bounded by a constant.

Acknowledgement

The author would like to thank Prof. T. Shimizu and
Prof. A. Nozaki for their hearty encouragement. The
referee’s comments are also acknowledged.

References

1. RoteM, D. Stack sortable permutations, Discrete Mathematics,
33 (1981), 185-196.

2. SEDGEWICK, R. Permutation generation methods, Computing
Surveys, 9, 2 (1977), 137-164.

3. TrosaNowskl, A. E. Ranking and listing algorithms for k-ary
trees SIAM J. Computing, 7, 4 (1978), 492-509.

4. KnutH, D. E. The Art of Computer Programming, Funda-
mental Algorithms, 1, 2nd ed., Reading, Mass., Addison-Wesley
(1973).

5. SEMBA, I. On the numbers of permutations obtainable by a stack
or by a queue (in Japanese), Trans. IPSJ, 20, 6 (1979), 522-523.
6. Knotr, G. D. A numbering system for binary trees, Comm.
ACM, 20, 2 (1977), 113-115.

7. Semea, 1. Generation of stack sequences in lexicographical
order, this journal, 5, 1 (1982), 7-10.

(Received November 11, 1981 : revised March 12, 1982)

