Perturbation Theorems for Matrix Eigenvalues
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1. Intorduction

The matrix eigenvalue problem arises in a wide
variety of areas in the physical and social sciences as
well as in engineering, most typically, for example, in
the stability analysis of physical systems that are modeled
by linear systems of equations, differential equations,
and so on.

Perturbation theorems on matrix eigenvalues are
concerned with localization of eigenvalues, ie., to
produce regions in the complex plane in which eigen-
values of a given matrix lie. The theorems place bounds
on the variation of the eigenvalues in terms of the
variation of matrix elements. The information given by
the theorems is useful in estimating true eigenvalues
from computed or approximate eigenvalues, in analysing
the stability of eigenvalues, and so on.

In this paper we are concerned with a unified deriva-
tion of a class of common perturbation theorems for
matrix eigenvalues. To this end we prove first a basic
inequality (see (2.1) below) which appears to be un-
reported in the literature. Some of the inequalities
presented in this paper are well-known while others such
as (2.1) and (3.9) appear to be less well-known despite
their usefulness.

2. Preliminaries

The vector and matrix norms considered in this paper
are only the usual g-norm (or /-norm), 1 <g<oo (see
below for definition). Some of the facts that follow may
be generalized to a wider class of norms. However we
will not discuss such generalization in this paper. Instead,
we refer the interested reader to [2, Chapter 2).

We begin by reviewing basic facts on matrix norms.
For each n=1, 2, - - -, let E” denote a real or complex
vector space of column vectors of dimension n, x=
(x4, -+, x,)7. The g-norm on E” is defined as follows:
x=(xy, -, x,)T € E"=>

Ixlg= {2417+ - - - + |3, |7}/, 1 <g < o0,
{uxnm=max x4, g=co. 1

Let B be any nxp real or complex matrix. Let ||B|, .
denote the norm of B as a linear transformation from
E? to E", where E" is given the g-norm and E? is given the
q'-norm, i.e.,

IBlg,q-=max {|Byll/ll¥l;: y#0, y e E?}. (1.2)
(Bll,,o» Will be denoted by simply |BJ|, if g=¢'. From
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the definition of the matrix norm | - |, .., we have

IBylly<IIBllg,q - I¥lg, v e E” (1.3)
Example 1[4, p. 179]. Let B be any n x p matrix. Then

n
IBll,= max Y, |b;;, matrix column-sum norm;
1<j<p

=1
n
IBllo= max Y |b;l, matrix row-sum norm;
1<gign j=1

B, = max Ibijl'

1<ign

1<j<p
Example 2 [3, p. 21]. Let o(B)>" - >0%B) be the
eigenvalues of BB, a nonnegative-definite Hermitian
p x p matrix, where B is nxp (p <n) and B" denotes the
conjugate transpose of B. The p numbers a,(B), - - -,
0,(B)=0 are called the singular values of B. It may be
proved that

01(3)=mfz)( (IBYll2/lIyll2)=IB"B|z’*= Bl ,, and
¥y

o,(B)= mi% (IByll o/l ¥l ;)(@lways)= || (B¥B) ||~ /2
(provided (B"B)~?) exists).

Example 3 [3, p. 52). By diag {4,, ‘- -, d,} we denote
the diagonal matrix with diagonal elements d;, - - -, d,.
Then

diag {dy, - - -, dp}lg,g-=max |dil, 1 <q'<g<oc0. (1.4

In particular, [I]], . =1, 1<¢'<g<o0. Inequality (1.4)
is generally false if ¢’ >¢. For example, ||I|; ,, =n, where
I is the n-th order identity matrix (cf. Example I).

3. Fundamental Inequality

Let A, X and B be nxn, nxp and pxp matrices,
respectively, where p<n. Let f be an eigenvalue of B
but not of A. Then for 1<gq, ¢’ < oo,

mig UXyl/171g) < 1A =B~ (AX-XB)ll,, o (2.1)
y#

For proof, let Bv=fv, v#0. Since § is not an eigenvalue
of A, (A—BI)~! exists and we compute

IXvllg=I(A—BD ™ (A~ BDXvl,
=[(A—-BD~'(AX-XB)vll,
<|(A=BD)"HAX =XB)lg,q - V]l

by (1.3). From this (2.1) follows.

4. Applications

We now give several applications of (2.1).

(1) Gerschgorin’s Theorem [4, p. 302]: Let B=
(b)) be any n x n matrix and let § be an eigenvalue such
that B+#b,, i=1, - -, n. Let A=diag{b,, ‘-, by}
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and let X=1. We apply (2.1) with A, X and B as indicated
and g=¢’ =o00. We obtain by Examples 1 and 3,

1 <max (g lb.-fl/lbwﬂl),
EAVF
hence

bii— Bl < Y byl for some i. G.1)
J%i
This inequality holds even when B equals some diagonal
element of B. Thus, every eigenvalue of B is contained
in at least one of the Gerschgorin disks for B:

G,={/1: [A=byi< Y |b‘.,1} i=1,---,n.
j=i

(2) Diagonalizable case: Let U™ 'AU=diag{d,, - -,
d,}=D for some nonsingular matrix U. The d;’s are
the eigenvalues of A. Let X be any n x p matrix (p<n)
whose columns are linearly independent. Let B be any
p x p matrix. Let B be an eigenvalue of B but not of A.
Application of (2.1) to this case gives

1< Ull,- [(D=BD " g U~ JAX—XBl g ¢

/r;;l;l UXylg/lxlg)
where the minimum on the right-hand side is positive
since X has linearly independent columns, and where
II(D~ﬂI)"‘IIq=m?X Id’.-—ﬁl_’={mi‘n d;—BI} "

(by Example 3).

Hence

m.in |d;— Bl <cond,(U)- |[AX —XB|, o

fmin (IXyll/1¥14)s 3.2
y#0

where cond,(U)=||U], U™}, the g-condition number
of U. Inequality (3.2) asserts that given any eigenvalue
B of B, there is an eigenvalue of A whose distance from
B does not exceed the number given by the right-hand
side of (3.2).

(3) Special case: g=g’'=2. We obtain from (3.2)

min |d;— ] <cond,(U)- [AX —XB| .- [(X"X)~"]3"%,
i
3.3)

where we used Example 2 and the fact that X has linearly
independent columns so that (X*X) ™! exists.

(4) Special case: g=g¢’=2and A is normal (A"A =
AAM), In this case a unitary matrix U (U"=U"") exists
such that U™ 'AU=diag{d,, -, d,}. Since [|U[,=1
and U™, =[|U M|, =1 (by Example 2), (3.3) reduces
to

min |d;— B| <|AX—XB|,I(X"X)"'3%. (3.4)

(5) Special case: g=q’, n=p and X=1. We obtain
from (3.2)

min |d;— B| <cond(U)-|A—Bl,. 3.5
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This inequality is due to Bauer and Fike [1].

(6) Special case [3, p. 53]: p=I, X=x#0and B=
(B), where § is a given number. Inequality (3.2) reduces
to

min |d;— | <cond (U)-|Ax—Bx||,/IIxl,.  (3.6)

Take the case g=2. For a given A and an approximate
eigenvector x#0, the natural choice for § is a well-
known Rayleigh quotient xMAx/xYx which minimizes
||Ax— Bx|, as a function of . This can be easily seen
from the relation

IAx —Bx|| = | Ax|i — [x"Axi? +|2|?

where x'x=1 and f=x"Ax+z.

(7) Special case: A=), where A is nxn and B
is pxp. Let U 'AU=diag{d,, :--,d,} for some U.
We apply (3.2) with X =(I,,, 0)". We find

iax-xvi,=|(Z §)(o)-()»

Substitution into (3.2) gives
min |d,~ B <cond,(U)- | Fl, .- 3.7

.= IFllgq-

(8) Special case: A=(a;;) is an nxn matrix, B=
(ay) is a 1 x 1 matrix (p=1) and X =e¢, =the k-th column
of the identity matrix of order n. We still assume
U~ 'AU=diag{d,, - -, d,} for some U. Then (3.2) gives

n 1/q9
min |d,-—ak,(|§condq(U)-{ Y |a.-k|“} Jk=1, .., n.
i i=1
i#k

Taking the transpose we find

n 1/q
min |d;—ay| Scondq(U)-{ |a,(j|"} S k=1, -, n
‘ yFt
(3.8)

(9) Special case: A =(a;;) is normal [2, Problem 6,
p. 86]. Let U™ 'AU =diag{d,, - - -, d,} with U unitary.
Then cond,(U)=1 as noted earlier. We take ¢g=2 in
(3.8)' and obtain

n 1/2
min Id,-—ak,,|S{Z |akj|2} ,k=l, cee,n. (3.9)
i i=1
j*k

Thus each disk

n 172
Dk={l{: |l—a,,,,|§{2 |akj|2} },k:l’ cee,n
Jj=1

jk

contains at least one eigenvalue of A whether D, overlaps
with others or not. The disks D, are smaller than the
usual Gerschgorin disks for A (see (1) of this section).
A stronger version of the Gerschgorin’s theorem [4,
p. 303]) states that if p Gerschgorin disks for A are
disjoint from others, then the union of the p Gerschgorin
disks contain exactly p eigenvalues of A counting
multiple eigenvalues according to their multiplicities.

Example 4. Take a real symmetric (hence, normal)
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matrix
1 1072 1074
A={10"%2 107* 10~¢
10°* 107 1078

Then

G,={A:|A—1|<1.01x 1072},
G,={A: |A—10"% <1.0001 x 102},
Gy={1:|]A—10"8/<1.01 x 1074}

The disk G, contains G, but is disjoint from G,. Hence
the Gerschgorin’s theorem asserts that there are two
eigenvalues of A in G,. On the other hand, (3.9) asserts
that there is at least one eigenvalue of A in the disk
D;={2: 141078 <(1+10"%)!/2x 1074},

which is properly contained in Gj.
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5. Conclusion

We have provided a unified approach for deriving a
class of perturbation theorems for matrix eigenvalues.
In particular, inequality (3.9) gives a useful complement
to the well-known Gerschgorin’s theorem in that the
former requires no knowledge on the connectivity of
Gerschgorin disks.
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