Minimizing Page Fetches for Permuting
Information in Two-Level Storage

Part 2. Design of the Algorithm for Arbitrary Permutations

Takao Tsuba* and KEN-ICHI NAKAGAWA*

In light of the generalization of Floyd’s model studied in Part 1 of this paper, an algorithm for arbitrary permu-
tations of records between pages of slow memory is constructed. Bounds of page fetches required are estimated;
for the extreme case of ‘pure’ transposition, the algorithm can do with the same number of page fetches as that
considered the best possible. Some important applications are discussed.

1. Statement of the Problem

The theoretical framework of this paper has been
studied in Part 1, where, using Floyd’s idealized model,
one finds how to compute the lower bound of the number
of page fetches required for a given permutation of
records between pages in slow memory.

Consider p’ pages, each filled with p records and
designate the objective permutation by a p’ x p' matrix
(X(i, j)), hereafter called an X-matrix. All the records
are assumed to have, or bounded by, the same length.
The element X(i,) is either a zero or a positive integer
and indicates that those records, X(i, /) in number, of the
current i™* page should have been moved to the j'* page
when the final distribution of records is established.
The exchange of records between pages of slow memory
is a stepwise process, because the number of pages that
can reside in main memory at a time is limited to w.
The stepwise inter-page data transfer corresponds to
the stepwise transformation of the X-matrix.

Given an arbitrary initial distribution of records
(X(1, J)) (= Xinicia1), We try to have the final distribution
of records Xijna), Namely,

p
p 0

XGin= = Xtinar- o

0

p

The purpose of this paper is to construct an algorithm
which disposes the above problem of external permuta-
tions with as small a number of page fetches as possible.
The algorithm devised can in fact do with the least
possible page fetches for the limiting case of full trans-
position; hence it is best possible. For other cases, we
can give the close bounds of page fetches actually
required.

Remember that at each step of transformation there

*Department of Information Science, Kyoto University,
Kyoto, Japan.

is the constraint that
»

¥ xan= § xai)=r. @

i=1

We first consider the case where p’=p, and later the
results are extended to cover the case where p’ #p.

In the case of transposition, all the records are shuffled
in a regular and foreseeable way as the algorithm dictates.
In the ‘arbitrary’ permutations, however, which will
be discussed in this paper, the information of the
changing X-matrix need be retained in memory—in a
page-transfer management table.

In the Floyd model studied in Part 1, successive w
‘operations’ to yield a set of new w pages in slow memory
finally destroy the original w pages they copy. In actual
algorithms, however, one may have some of the original
copies remain resident for the next new w-page forma-
tion. This means that the number of page fetches can
be less than the number of operations. Distinct from
Part 1, the main concern of Part 2 is the number of page
fetches actually required, and it is evaluated by actually
constructing the relevant algorithm.

2. The Algorithm for Arbitrary Permutations: p Pages,
Each with p Records

As already stated, we first consider p pages, each with
p records. The X-matrix is then a p x p square matrix.
Depending on the relationships between parameters
p and w, there are the following cases.
A. pis some power of w.
B. pis not a power of w.

Let k, /, w, and x denote some positive integers. Case
B is further divided into the next three cases:
B-1. p=k-w'and k=w},
where 2<w,<w and k=2.
Note that case B-1 assumes w=3; if w=2, then the case
reduces to case B-2 shown next.
B-2. p=k-w'and k#wj.
Namely, & and w are mutually prime and k>w. This
latter condition holds because, if either k=w or k<w,
this case is included in case A or case B-1 (where k =w,),
respectively.

Minimizing Page Fetches for Permuting Information in Two-Level Storage 79

B-3. p#k-w'.
Namely, p and w are mutually prime.

We first construct the algorithm for case A, and all the
other cases will be covered by modifying this algorithm
for case A.

Case A—p is Some Power of w.

Processing is done over log, p passes. One pass con-
sists of a preprocessing plus block-diagonalization of the
X-matrix. The algorithm is used recursively; parameter
s is first initialized as

s« p.
By updating the value of s as

s« s/w
at the end of each pass, the recursion finishes on ar-
riving at s =w. The number of passes is thus log, p.

In the first pass we first initialize as

S p.
Preprocessing. s (=p for the first pass) columns of the
X-matrix is divided into w parts. The first through the
s/w'™ columns are called block # 1, the (s/w + 1)*' through
the 2s/w™ columns are called block#2, - - -, the
[(w—Ds/w+1T" through the s™ columns block # s/w.
See Fig. 1. When processing block # 1, the rest of the
blocks that are to the right of block#1, i.e., blocks#2,

#3, -, and #w, are collectively called block#1'.
Similarly, when processing block #2, those blocks that
are to the right of block#2, i.e., blocks#3, #4, ---,
#w, are called block #2'.

The elements in the i*® row of block#/ (j=1,2, - - -, w)
are defined to make a partial row, their sum given by

X(i,(j—1)§+1)+x<i,(j~1)§v+z)
+ --+X(i,(j—1)%+%)
Es(ivj) (1=1a2;";P;]=l,2,‘,w)- (3)

columns
12... 520 .. 2= (O LS
. -
2
block block block
##1 H*2 Hw
rows [! ! |
| | | | |
| ! | ! |
s-1
S

Fig. 1 Division of the X-matrix into w parts for preprocessing.

We call this a partial sum. Considering all the partial
rows belonging to a block, we therefore have

¥ SG.)=psiw. @

The purpose of the present preprocessing is to redistri-
bute the elements of X,;.a., hence to shuffie records
between pages correspondingly, in such a way that
8G,j)=p|w ®

for all i and j. Our algorithm is such that (5) is first
realized in block# 1, and then in block#2, - - -; in the
end all the blocks meet the equi-distribution condition
of (5).

Consider first the processing of block#1 (i.e., j=1
in (5)). Two out of s pages are fetched in turn. If page i’
such that

S@', D=p/w—a (¢>0)

exists, then there is always a complementary page i”
such that

Si", D=p/w+p (8>0)

(i'#i"). Fetching these two complementary pages, let
page i’ be such that

S@',)=p/w.

Namely, a records of page i” in block #1 is moved to
page i’, so that there results

S@",)=p/w+f—a.

Note that column numbers of the X-matrix designate
the destination page numbers in the final distribution.
This means that the inter-page record movement cor-
responds to the increase or decrease in integers of X(i, j)
of the relevant two pages, but this data movement or
algebraic adjustment between elements X(i’,j) and
X@",j) (j=1,2, -+, s/w) must be in the same column
Jj- Since there is the constraint of (2), the record transfer
from page i” to page i’ in block# 1 is simultaneously
accompanied by the transfer of the same number of
records in the inverse direction in block#1’, namely,
from page i’ to page i” in block#1’. We thus have
S(i', 1)=p/w, and then page i’ is pushed to slow memory.
If eventually S(i”, 1)=p/w, then page i” is also pushed
to slow memory. If not, another page having a com-
plementary S-value to that of page i” is fetched and
the two new pages are processed in the similar way,
and at least one of them attains S=p/w. The entire
preprocessing of block# 1 finishes by fetching p pages
at most.

In this stepwise way, referring to, and then updating,
the information of the X-matrix, inter-page exchange of
records on main memory proceeds.

When the processing of block#(w~1) is over,
block#w (or, equivalently, block# (w—1)’) automati-
cally satisfies (5) because of condition (2).

To have relation (5) in all of the blocks, and all of the
p pages, (w—1)p page fetches are thus required at most.

80

In those cases, such as full transposition [1], [2], where

every record satisfies (5) from the outset, the whole of
preprocessing can be deleted.
Block diagonalization. The preprocessing now having
been completed, we then fetch the first, the second, - - -,
and the w'™ pages, and exchange records between these
pages in main memory, in such a way that

S, DSA, D+ S, D+ --- +S(w, 1),

S2,2)<S2, D+S2,2)+ - +Sw, 2), ©)

S(w, wy=S(w, D+Sw, 2)+ - - - +S(w, w).

The new w pages thus shuffled are then pushed to slow
memory. The corresponding transformation of the
X-matrix is additions of elements in the same columns,
not between distinct columns. This process results in

51,)=58@2,2)="---=S(w, w)=p; ™
We then fetch the next w pages, i.e., the (w+1)*,
(w+2)", - -, 2w pages, and in the same way as in the

above first w pages, we have
b

Sw+1, w+1)=--.-=S2w, 2w)=p,
S(i)j)=0 (i¢j; i!j=w+l’ MY ZW).
Repeating these w-page fetches and the respective
processing in main memory, we finally arrive at
p ((i—1mod w)+1=j;
SG,)={ i=L2--.,5j=12--,w), (8)
0 (otherwise)

at which the X-matrix has zero partial sums except those
at the shaded portions (see Fig. 2(1)). The X-matrix has
now a periodic structure with periods of w rows and
s/w columns. Namely, it is an assembly of w x s/w minor
matrices each of which having a non-zero partial row.
The above processing can be done by fetching (plus
pushing) disjoint w-page sets, so that the block diagonali-
zation can be done by p page-fetches.

Renaming pages (no page-fetch required), we have the
X-matrix block-diagonalized as shown in (2) of Fig. 2;
namely, the page numbers are redefined as

G-V +icG=Dw+] (=12, 55=1,2, -+, W).

®
We have thus completed the processing of the first
pass. As a result, the X-matrix has w? (s/w x s/w)-matrices
along its diagonal, all the other off-diagonal elements
being zero.
Now, moving on to the second pass, and assigning

5+« sfw,

we perform operations, similar to the first pass, on each
of the s/wx s/w matrices obtained in the immediately
preceding pass. The second pass that preprocesses and
block-diagonalizes all of the w? minor matrices of the
X-matrix requires at most (w—1)p plus exactly p page

T. Tsupa and K. NAKAGAWA

s/w columns

= —
7 - ——
w ,offs LLLL
N o 7z
/[
s
- /L
s
24 b
: [|
[: '
—— s
s
s
N 9SS,
(1
s/w columns
k— —
T 77 T
s/w rows ////////
L V7777 .
yr94
g4
7
/(A
| | | | |
| 1 1 | |
] | | | |
T T T T
s,
.
— s
(2)

Fig. 2 Block diagonalization of the X-matrix (s=p for the first
pass): (1) before renaming pages, (2) after renaming pages.

fetches.

The above procedures are carried out recursively on
further passes until s=w, when the X-matrix is a com-
plete diagonal matrix:

X(i,j)=pd;; (8;;=1 for i=j, otherwise zero).

The number of passes is log,, p. The final pass includes
the process of reordering records in each page, if this
intra-page permutation is necessary. We therefore have:
Theorem. Consider p pages each with p records in slow
memory. The total number of page fetches, F(4),
required of an arbitrary permutation, is given by

plog, p<F(4)<wplog, p,

where the bounds are exact in the sense that the equalities
actually hold. O

Minimizing Page Fetches for Permuting Information in Two-Level Storage

53 1]3 an
3i5 4] |4
12]2[1] 1]2 111
1{11]2]2[1 2]] [vj2h
121121 1] [12] 12
2] [1hf2] |2 3] 1] 12 |2
1 1[2]1]1]2 1]2]] [1]1]2
2 1[r]1]2 Tl 2]t
(1) (2)
1374 1]3]4
3] [2]3 4] 1113
1[3]1]3 1]3[1]3
3[2[1]2 2]2]2]2
7)1 3[1]4
1]2]3]2 2]2]2]2
3{2]3 1{3/1]3
2|3[3 2[2[1]3
(3) (4)
8|3 8
3|5 8
53 8
3|5 8
513 8
3|5 8
6|2 8
216 8
(5) (6)

Fig. 3 Stepwise changes of the X-matrix for the Case A where w=
2 and p=38. (1) and (6) are Xjujuam and Xy, respectively.
(2) and (3) are the results of the first pass. The second pass
yields (4) and (5), while the third and final pass gives (6),
the solution. Blank squares indicate zero elements.

The case of ‘pure’ transposition can be handled with
page fetches, given by the lower-bound value of the above
theorem, hence the algorithm is in this case best pos-
sible. It has therefore been demonstrated that there is
yet another best possible algorithm of transposition,
that differs from that of [1] and [2]. In the present method,
however, the stepwise transformation of the X-matrix
must be retained and referred to in main memory at
each step of subsequent record manipulations until
(X(@, j))=X{ina1- An example of the stepwise transforma-
tion of the X-matrix is shown in Fig. 3 for the case that
w=2, p=23=8, Since Case A is of primary importance
among others, the algorithm for this case is shown in
the Appendix in executable Pascal statements.

Case B-1—p=k-w', k=w} Q<w,<w, k=2).

Divide the X-matrix into w, blocks each of which
comprises p/w, contiguous columns. Taking w, for w,
apply the Case A algorithm, which then yields w, minor
square matrices of size p/wy x p/w,. Further recursive
use of the Case A algorithm to each minor matrix results
in w§ (=k) (w' x w')-matrices, to each of which the Case

81

A algorithm is again applied to complete the permuta-
tion. The number of page fetches in this case does not
exceed

xwop+wp log,, (p/k)=p(xwe+wD).
Case B-2—p=k-w', k#wj.

The first step is to divide the X-matrix into w blocks
each of which is made up of p/w contiguous columns,
and then apply the Case A algorithm. In this case,
however, let the algorithm terminate at s=k. As the
second step, apply the algorithm of Case B-3 below to
each of the resulting w' minor matrices of size k x k.
The first step requires at most wp log,, w' (=wpl) page
fetches. In the second step, page fetches required are
as follows. Let k' be such that it is the least positive
integer satisfying k”"=k'w and k”">k. The number of
page fetches required in the second step does not exceed
w'k'w(k'[log,, k'1+1). The resultant page fetches through
this case do not exceed

wpl+k'w'* {(k'[log,, k') +1).

Case B-3—p#k-w'.

Let k' be such that it is the least positive integer
satisfying ¢g=k'w and ¢>p. To the X-matrix we add
(9—p) rows from below and (¢—p) columns from the
right in such a way that

Appending these dummy elements to the X-matrix, we
correspondingly provide (q—p) extra pages all with
blank records in slow memory in addition to the origi-
nally given p pages of records. To this enlarged X-matrix
there is the constraint that

2 xa)= 3 X6)=a.

instead of (2) previously shown. This means that,
whenever a Case B-3 is anticipated to occur, every page
should not be fully packed with records, but must have
sufficient capacity to allow for the presently discussed
extension. The algorithm is then as follows. First, divide
the new X-matrix into k' blocks where each block
consists of g/k’ contiguous columns. Applying the Case
A algorithm, we have k' minor matrices of size wx w.
As the second step, the Case A algorithm is used once
for each of these minor matrices. The first step requires
at most k'q[log,, k'] page fetches. The second step needs
q page fetches. Case B-3 therefore requires not more
than q(k'[log, k']+1) page fetches. See Fig. 4, where an
example of Case B-3 is shown.

3. The Algorithm for Arbitrary Permutations: p’ Pages,
Each with p Records

This section considers the most general case of p’
pages in slow memory, each page having p records (p' #
p). By slight modification of the algorithms described in
Section 2, this general case can be covered.

The X-matrix is now a matrix of size p’xp’; it is
subject to the condition given by Eq. (2).

82

3| N 2 3 1)1 2l In
2(1(1) 11 2(1(1])1 LAREL
1 3 11 3
11112 2 1{1{1)2 211
1{2]1)2] |1 112012 i
{2 T2
2] 11421 2 1{2]1]1
(1) 1111 1]
(2)
2) |1pjrg2) 3j11{2]2
rynnggn 2{212(2
2] 2] (11 112]3]2
1121 2]1 2|3[1]|2
112112 |11 2{3[1]2
[RANREA] 2{11 3] (32
1(2] |1 2(1]1 2|2|2]2
| BANRNRNRNRRENE 1i312]2
(3) (4)
3[(12]|2 8
2(2]2]2 8
212|2|2 8
113(2)2 8
113|122 8
4] 122 8
212]2|2 8
1{3[2]2 8
(5) (6)

Fig. 4 An example of Case B-3 (w=2, p=T7). (1) is Xjarai. At
(2) an extra page is appended in order to have p=w?. The
extended X-matrix thereafter changes following the Case
A algorithm as illustrated in (3) through (6).

/\
olo
A0l0
Z
)1;2, 0l0
0lo]o]0]|plO
JojoJoJo]o]olp

Fig. 5. Extra blank pages appended to the X-matrix (shaded,
partly shown) with no increase in p.

We assume that p’>p and p’ is divisible by y, where
ye {W, Wo, k’ k’}

If the given p’ is not divisible by y, then we provide
extra blank pages in slow memory so that resulting p’
is divisible by y. This modification is not accompanied
by any increase of p, the number of records per page,
since the extension in the X-matrix is such as that shown
in Fig. 5 (p'—p=2).

We discriminate between two cases:
Case C-1—p is divisible by y.

Preprocessing starts with partitioning the X-matrix

T. Tsupa and K. NAKAGAWA

3 I 2l L o
1] 2] 1]y 1] 2] it
] it thpl
2| (2] 1 2] (2]
11]1]2 thf 12
I s
(1) (2)
41 411
41 14
23 411
1]4 14
14 2[3
32 3[2
(3) (4)
5
5
5
5
5
5
(5)

Fig. 6 An example of Case C-2 (p=S5, p'=6, y=w=3).

into y blocks. At the completion of the preprocessing,
each partial sum (as defined in Section 2) has become
ply. Thereafter the algorithms in the preceding section
are applied. The number of page fetches required is
that given by the relevant formulas of Section 2 where
p is replaced by p'.

Typically p may be some power of w;the number
of page fetches required, F(C), is then given by

p'log, p'SF(C)<wp' log,, p'.
Case C-2—p is not divisible by any y.

The X-matrix of size p’ x p’ is divided into y blocks,
each having p’/y contiguous columns. Let the sum of the
elements on each y rows of each block be p by exchanging
records between two pages in main memory. It suffices
for this part of the whole algorithm that, within each
set of y rows (i.e., partial sums) of each block, integer
[p/¥]l is assigned to (p/y—|p/yl)y partial sums, while
integer | p/y| is assigned to the rest of them. See (1) and
(2) of Fig. 6. What should be done next is straight-
forward; see Section 2. See Fig. 6 for the stepwise
changes of the X-matrix. Even in this case, the number
of page fetches required is that given by the relevant
formulas of Section 2 where p is replaced by p’.

4. Applications

There are two important applications of the results
obtained in this paper. These will be discussed in this
section.

4.1 Application to Key Sorting
In some cases records are long whereas their keys

Minimizing Page Fetches for Permuting Information in Two-Level Storage

are short. Key sorting is then applicable; the keys are
first sorted, most probably in main memory, and thus
we specify where each record is to be moved. This is,
in our terminology, none other than the specification
of the X-matrix. The subsequent external rearrangement
of long records fits well into the algorithmic scheme we
have been considering in this paper.

Considering p pages each with p records, it is known
[3] that in a demand-paging environment the above
rearrangement of records requires, on the average, as
many page fetches as

2PV

~0(p?).

On the other hand, the Case A algorithm of Section 2
can dispose the problem with page fetches F(A4) bounded
as

P

plog, p< F(A)<wp log,, p.

Although we have here assumed that p=w', w being the
main memory size in page, this indicates that our
algorithm is efficient for a large mass of data.

4.2 Application to Multidimensional FFT

At this moment, or even for several years to come,
it seems difficult to solve veritable 3-dimensional scientific
problems, such as those of fluid dynamics, despite the
progressive increase of speed of operations in com-
puters. The main bottleneck is caused by the limited size
of main memory, which cannot meet the requirement
of 3-dimensional problems. For example, for a mesh
of 300 x 300 x 300 there should be 27M word memory,
but actually an order of magnitude larger memory is
required because there are several distinct physical
quantities to be held in memory for each of the mesh
points. If discretization errors are to be suppressed
sufficiently low to have, say, an accuracy of more than
3 decimals, then a mesh as fine as 1000 x 1000 x 1000
will be needed. Bulky memory causes slow access. It
seems therefore inevitable that the overall efficiency of
computation hinges on the presence of memory levels,
fast and slow.

Consider, for example, two-dimensional FFT (Fast
Fourier Transform) in a paging environment. Data
become exponentially more numerous with the increase
of the number of dimensions, hence data transfers be-
tween fast and slow memories are mandatory. Take w
and p for the main memory size in pages and the number
of data per page. One-dimensional FFT for data of p
pages requires p log, p page fetches (p>w). Suppose

83

page 1
page 2

page P

X

Fig. 7 Two-dimensional data aligned in x-direction over p
pages of slow memory.

that there are two-dimensional data, as shown in Fig. 7,
where they are aligned along the x-axis over p pages.
If we carry out one-dimensional FFT twice, first sweeping
along the x-axis over the p-page data, and then along the
y-axis, the page fetches that will be incurred are:

p fetches along the x-axis,

p? fetches along the y-axis
or p+p? fetches in total. If, on the contrary, we sweep
along the x-axis and then perform a ‘transposition’ of
data to align them along the y-axis, the page fetches
required for the two-dimensional FFT are:

p fetches along the x-axis,

p log,, p fetches for transposition,

p fetches along the y-axis
or p(2+log, p) fetches in total. The second scheme is
by far the better, even though the process of transposi-
tion adds to CPU cost. There is a more sophisticated
algorithm that handles the two-dimensional FFT per
se with a smaller number of operations, such as mul-
tiplications [4]. This algorithm, however, yields as much
paging cost as the above repetition of one-dimensional
FFT; hence the improvement on the CPU cost is
swamped by the cost of data transfers between the fast
and ths slow memories.

References

1. Floyd, R. W., Permuting information in idealized two-level
storage in Complexity of Computer Computations (R. Miller and
J. Thatcher, editors), pp. 105-109, Plenum Press, New York (1972).
2. Tsuda, T. and Sato, T., Transposition of Large Tabular Data
Structures with Applications to Physical Database Organization.
Part 1. Transposition of Tabular Data Structures, Acta Inf., Vol.
19, pp. 13-33 (1983).

3. Brawn, B. S., Gustavson, F. G. arid Mankin, F. S., Sorting in
Paging Environment, Comm. ACM, Vol. 13, No. 8, pp. 483-494
(1970).

4. Nussbaumer, H. J., Fast Fourier Transform and Convolution
Algorithms, Chap. 7, Springer-Verlag, Berlin (1981).

84 T. Tsupa and K. NAKAGAWA

APPENDIX

PROGRAM PERMUTATIONCINPUT,OQUTPUT);
CONST Q=100 (* MAXIMUM INDEX OF X,X2 MATRIX =)
TYPE MATRIX=ARRAY (.1..Q,1..Q@.)> OF INTEGER;
VECTOR=ARRAY (.1..Q.) OF INTEGER:;

VAR P: INTEGER:; (* NO. OF PAGES. RECORDS/PAGE =*)
W: INTEGER; (x MAIN MEMORY SIZE =)
PW: INTEGER; (* NO. OF RECORDS / PARTIAL ROW =*>

FETCH: INTEGER; (x NO. OF PAGE-FETCHES =*)
I,J,K: INTEGER:

X IMATRIX:; (* PAGE-TRANSFER MANAGEMENT TABLE =)

X2:MATRIX; (* WORK SPACE TO MANIPUTLATE X-MATRIX =*)

TID: VECTOR: (x TIDC.I.)> MEANS THE INITIAL POSITION =*)
(* OF I-TH ELEMENT OF SORTED ARRAY *)

e ok o ook ok ok o o ok o ok ok ok o oK ook K ok K ok kK K K ok kKK R KK R K R R KRk K R K KRR Rk kKR R R Rk kK)
(x THIS PROGRAM MANIPULATES X-MATRIX (I.E.,MANAGEMENT TABLE> IN =)
(x ORDER TO CARRY OUT PERMUTING PxP TABULAR DATACI.E..,P PAGES, *)
(* EACH WITH P RECORDS), WHERE P IS SOME POWER OF W(MEMORY SIZE).x*)
o o o o ook R oK K o o o ok oKk oK ok o ok oK ok S o 3Kk ok ok ok K oK ok K K oK oK kKK R K o K K R K K R K)

PROCEDURE QSORTC(VAR A:VECTOR; S,T:INTEGER):
(* THIS PROCEDURE CARRIES OUT SORTING OF ARRAY AC.I.), *)
(x WHERE S<=I<=T. *)
PROCEDURE SORT(S,T: INTEGER):;
VAR I,J,Y1,Y2: INTEGER:
BEGIN
1:=5; J:=T; Y1:=AC.(S+T> DIV 2.);
REPEAT
WHILE AC.I.><Y1 DO I:=I+1;
WHILE Y1<AC.J.> DO J:=J-1;
IF I<=J THEN
BEGIN

Y2:=AC. 105 AC.I.):=AC.J.D: AC.J.D:=Y2;
Y2:=TIDC.I.)>; TIDC.I.):=TIDC.J.D>; TIDC.J.):=Y2;
I:=I+1; J:i=J-1
END
UNTIL I>J;5

IF S<J THEN SORT(S,J):
IF I<T THEN SORT(I,T>:
END; (x END OF SORT %)

BEGIN FOR I:=1 TO T DO TIDC.I.)>:=I;
SORT(S,T);
END; (x END OF QSORT =*)

PROCEDURE DOUBLE(S:INTEGER; B:INTEGER);
(x S: SIZE OF SUB MATRIX; B: BASE POSITION =*)

VAR R: INTEGER; (x SIZE OF SUB MATRIX AT NEXT STAGE %)
DIF: INTEGER; (x DIFFERENCE OF NO. OF RECORDS BETWEEN *)
(* TWO PAGES IN MAIN MEMORY *)

BASE,LBASE,CBASE: INTEGER; (x BASE POSITION %)
I,J,KsM,Y1,Y2: INTEGER:
BOX:VECTOR; (x PARTIAL SUM =%

(*» THIS PROCEDURE MANIPULATES X<(.I,J.), WHERE B+1<=(I,J)<=B+§ *)

PROCEDURE DIST(DIF:INTEGER);
VAR DIF2: INTEGER; (* TEMPORARY VARIABLE OF DIF =)
IT,LT: INTEGER:; (* PAGE NO. IN MAIN MEMORY *)
BJ,J: INTEGER:
(* THIS PROCEDURE MOVE RECORDS IN ORDER TO ADJUST PARTIAL SUM %)

Minimizing Page Fetches for Permuting Information in Two-Level Storage

BEGIN DIF2:=DIF;
LT:=TIDC.M.>+B3 IT:=TIDC.I.)+B;
FOR J:=1 TO R DO
IF DIF2>0 THEN
BEGIN BJ:=BASE+J;
IF XC.LT,BJ.)>=DIF2
THEN BEGIN X(.LT,BJ.):=XC.LT,BJ.)~DIF2;
XC.IT,BJ.):=X(C.IT,BJ.)+DIF2;
DIF2:=0
END
ELSE BEGIN X(.IT,BJ.):=XC.IT,BJ.)+XC(.LT,BJ.);
DIF2:=DIF2-XC(.LT,B8J.);
XC.LT,BJ.):=0
END
END;
DIF2:=DIF; (x COMPLEMENTARY MOVING =)
FOR J:=R+1 TO P-BASE DO
IF DIF2>0 THEN
BEGIN BJ:=BASE+J;
IF XC.IT,BJ.>>=DIF2
THEN BEGIN XC.IT,BJ.):=XC(.IT,BJ.>)~-DIF2;
XC.LT»BJ.):=XC(.LT,BJ.)+DIF2;
DIF2:=0
END
ELSE BEGIN X(.LT,BJ.)>:=XC(.LT,BJ.)+XC.IT,BJ.);
DIF2:=DIF2~XC.IT,BJ.D);
XC.IT,BJ.)>:=0
END
END
END: (+ END OF DIST =*)

BEGIN R:=S DIV W;
IF R<>1 THEN
BEGIN (x PRE-PROCESSING =)
FOR K:=0 70 W-2 DO
BEGIN BASE:=KxR+B;
FOR I:=1 TO S DO
BEGIN BOX(.I.):=0;
FOR J:=1 TO R DO
BOXC.I.)>:=BOXC(.I.>+X(.I+B,BASE+J.);
END;
M:=S; I:=1;
QSORT(BOX,1,S);
WHILE BOXC(.M.>>PW DO
BEGIN DIF:=BOXC(.M.)>-PW;
IF PW-BOXC.I.)>=DIF
THEN BEGIN DIST(DIF);
BOX(.M.)>:=PW; BOX(.I.):=BOX(.I.)>+DIF;
END
ELSE BEGIN DIST(PW-BOX(.I.))>:
BOX(.M.)>:=BOXC(.M.>-PW+BOXC(.I.)>;
BOXC.I.):=PW:
I:=I+1; FETCH:=FETCH+1
END;
M:=M-1;
FETCH:=FETCH+1
END
END
END;
FOR K:=0 TO R-1 DO (* PASS %)

86 T. Tsuba and K. NAKAGAWA

BEGIN LBASE:=K*W+B;
FOR M:=1 TO W-1 DO
FOR J:=1+B TO S+B DO
BEGIN X(.LBASE+W,J.>:=X(.LBASE+W,J.)+X(.LBASE+M,J.);
XC.LBASE+M,J.):=
END;
FOR M:=1 TO W-1 DO
BEGIN CBASE:=(M-1)%R+B;
FOR J:=1 T0 R DO
BEGIN X(.LBASE+M,CBASE+J.):=X(.LBASE+W,CBASE+J.);
XC.LBASE+W,CBASE+J.):=0

END
END;
FETCH:=FETCH+W
END;
IF R<>1 THEN (* RENAME PAGE_NO.=*)

BEGIN FOR I:=1 TO S DO
BEGIN Y1:=(I-1> DIV R;
Y2:=(I-Y1*R=1)*W+Y1+1;
FOR J:=1 TO P DO
X2C¢.I+B,J.>:=XC.Y2+B>»J.)
END;
FOR I:=1+B TO0 S+B DO
FOR J:=1 TO P DO
XC.I,J4.):=X2C.1,J.)3
FOR K:=0 TO W-1 DO (x GO TO NEXT STAGE *)
BEGIN BASE:=K*R+B;
WRITELN;
LBASE:=0; CBASE:=0;
DOUBLE(R,BASE)D
END
END
ELSE FOR I:=1+B TO W+B DO (x FINAL PASS %>
BEGIN WRITELN;
FOR J:=1+B T0 W+B DO
WRITEC(XC.I,J.2);
END;
END; (x END OF DOUBLE =*)>

BEGIN
READC(W,P);
FOR 1:=1 T0 @ DO
FOR J:=1 TO @ DO
BEGIN XC.I,J.>:=0; X2C.I,J.>:=0 END;
FOR I:=1 TO P DO
FOR J:=1 T0 P DO
READ(X(.I,J.));
WRITE('X-MATRIXCINITIAL)>:");
FOR I:=1 70 P DO
BEGIN WRITELN;
FOR J:=1 70 P DO
WRITE(XC.I,J.)) END;
WRITELN:
PW:=P DIV W;
FETCH:=03
WRITEC'X-MATRIXCFINALY:");
DOUBLE(P,0);
WRITELNC® FETCH=",FETCH)
END.

(Received April 1, 1982)

