Developing a Deductive Relational Database for
Uniform Handling of Complex Queries

YosiHisA UDAGAWA and SETSUO OHSUGA*

This paper discusses design and implementation of a database system based upon the predicate logic. Logic was
chosen as the design principle since it provides a useful way to derive the facts derivable by using general axioms
together with facts stored explicitly in a data base. Since first order logic is not broad enough to express some of
the practical queries, we define a formal language for uniform handling of complex queries, called the multi-layer
logic for relational databases. Roughly speaking, this logic is obtained by introducing a method of structuring
types, i.e., set, into the first order many-sorted logic. As the result, this formal language has enough descriptive
power to express practical queries which contain functions whose arguments are grouped by some other variables

and/or which involve nested aggregation functions.

In this paper, we define the muiti-layer logic for relational databases and discuss how to describe a query against
relational databases with a formula in this logic. A query including virtual relations could not be reduced directly
into retrieval procedures. To evaluate such a query, it is necessary to transform a query into one that contains no
virtual relations. Query transformation algorithm is discussed. Implementation of SBDS-F3 is also given.

1. Introduction

This paper discusses design and implementation of a
deductive relational database system for uniform han-
dling of complex queries. The system is termed SBDS-F3
(Structure Based Deduction System-Fortran version 3).
According to C. L. Chang [2], our research belongs to
evaluational approach.

Query languages based on predicate logic have several
advantages, e.g.

(1) to permit a user to request the data by its values;

(2) to provide a useful way to derive the facts deriv-

able by using general axioms together with the
facts stored explicitly in a database;

(3) to allow a database system to optimize execution

of queries.

However, it is pointed out that this class of languages
suffer from lack of expressive power. Query features for
relational databases are generally categorized as follows:

(1) mapping: data values of a specified attribute

associated with a known data value of other
attribute;

(2) selection: entire record values associated with a

specified key value;

(3) projection: data values of a specified attribute,

domain and/or relation;

(4) restriction: data values that satisfy given con-

ditions;

(5) unmiversal quantification: data values that cor-

responding to all the values of a specified at-
tribute or domain;

*Institute of interdisciplinary research faculty of engineering,
Tokyo University 4-6-1 Komaba, Meguro-ku, Tokyo 153, Japan.

Journal of Information Processing, Vol. 6, No. 3, 1983

(6) arithmetic function: e.g. +, —, *, +;

(7) aggregation function:e.g. average, minimum,

maximum;

(8) group by: grouping of data values with a common

domain value;

(9) composition: composition of (1) to (8).

In first order predicate logic, whether one-sorted or
many-sorted, domains of variables are fixed during the
interpretation of formulas. This means that only
domain-element relations can be described in this logic.
Thus, queries classified into (7), (8) and (9) are difficult
to describe by languages based upon first order predicate
logic. So far, various approaches have been proposed
for extending the expressive power of query languages
based on predicate logic. For example, E. F. Codd [1]
uses built-in functions to manipulate functional opera-
tions. C. L. Chang [2] proposes to introduce numerical
quantifiers, special symbols with the ad hoc meanings
and procedural elements. S. Kunihuji [3] proposes the
second-order m-sorted logic (m>0), and formulates
the systax and the semantics of his logic by model
theoretic approach. But, as far as the authors are aware,
they do not provide systematic solution for the problem.

In this paper, we define the multi-layer logic for
relational databases, an extended many-sorted logic,
and discuss implementation of a relational database
system based on this logic. Roughly speaking, this logic
is obtained by introducing a method of structuring types,
i.e. set, into the first order manysorted logic. As the
result, it has enough descriptive power to express
practical queries which contain functions whose argu-
ments are grouped by some other variables and/or which
involve nested aggregation functions. This extension
has some analogy to the introduction of methods of
combining types in a general-purpose programming

128

language.

In Section 2, we define the multi-layer logic for rela-
tional databases and provide some examples. Section 3
discusses how to describe a query against relational
databases with a formula in the multi-layer logic.
Section 4 concerns with virtual relations and a query
transformation (deduction) algorithm for a query in-
volving them. In Section 5, we discuss the implementa-
tion of a database system SBDS-F3.

2. Definition of the Multi-Layer Logic for Relational
Databases

2.1 Syntax

Definition 1. The alphabet of the multi-layer logic
for relational databases is composed of the following:
(1) variable symbols: x,y,..., X, Y,...;
(2) function symbols:f, g,...;

’

(3) predicate symbols: P, Q, ... ;

(4) logical connectives and quantifiers: ~, &, V, -,

=,3,V,;

(5) punctuations: /, [,], ', (,), comma;

(6) truth symbols: T, F,

(7) domain symbols: L, S, ... ;

(8) a set operator symbol: *.

In the multi-layer logic, as is the case of the many-
sorted logic, it is assumed that there is a non-empty set
1, whose elements are called base sorts. For each base
sort i, there is a non-empty set D,.

Definition 2. A set of sorts J(I) having a base sort
set I is defined by a finite number of applications of the
following two rules.

(1) Ifiel, thenielJ().

(2) IfieJ(), then 2'—{0} € J(I).

Definition 3. The sort of powerset *S of a domain
S of a sort j € J(I) excluding the empty-set is 2/ — {¢}.

Example 1. If S={A,B}, then *S={{A}, (B},
{A, B}} and **S={{{A}}, {{B}}, {{A, B}}, {{A}, {B}},
{{A}, {A, B}}, {{B}, {A,B}}, {{A}, {B},{A,B}}}. If
S is a domain of a sort j, then *S and **S are domains
of sorts 2/ — {¢} and 2*'~ ¥ —{¢}.

Definition 4. Base elements of a domain are elements
whose internal structures are ignored except for the
purpose of identifying them.

Definition 5. Level of a base element is defined as 0,
and level of a set of base elements as 1. If level of a set
S is i, then level of a set *S is i +1.

Example 2. {{—3,4}, {0,8,2}} is a set of level 2,
and base elements are —3, 4, 0, 8, 2.

Definition 6. A term is defined recursively as follows:

Y. UpaGgawa and S. OHSUGA

(1) a constant of a sort je J(I) is a term of a sort j;

(2) a variable defined over a domain of a sort j € J(I)
is a term of a sort j;

(3) ife,...,t, denote terms of sorts j, € J(I), ...,
Jn € J(I) and fis a n-place function symbol from
sortsj, . . ., j,toasortj, € J(I), thenf(z, ..., 2,)
is a term of a sort j,, where n> 1.

Definition 7. If x,, x,,...,x, (n>=0) are variables
defined over S, *S,...,* ...*S, respectively,
then (Quxu/*s ... *1SNQue 1Xn—1/%) - - - (QoXo/x,) is a
prefix in the multi-layer logic, where O, (0<i<n) is
either V or 3. When n=0, a prefix is (Q(x,/S), which is
a prefix in the many-sorted logic.

Definition 8. A formula in the multi-layer logic is
defined recursively as follows:

(1) if ¢,...,t, are terms of sorts j, € J(I),...,
Ja € J(I) and P denotes a n-place predicate symbol,
then P(z,, ..., 1, is a (atomic) formula, where
nz0.

(2) if A and B are formulas, then so are (~A), (A&B),
(A v B), (A—B), (A=B);

@3) if P(x,,...,x,) is a formula containing x,, . .
x, as free variables and x,, ..
over domains S, .

., X, are defined
.., S, of sorts j, e J(), ...,

Jn€J(X), respectively, then (Q;x./S,)...
Q11 /S)P(xy, ..., x,) is a formula, where
n>0and iy, ..., i,e{l,...,n}

(4) formulas are generated only by a finite number
of applications of (1), (2) and (3).

Example 3. The formulas given below are formulas
in the multilayer logic for relational databases.
GX/*N)(Vx/ XYP(X, a/*M)&Q(x));

(Vm/M)EJ/*N)(Vj| NUEK/K)QB/L, ())&

P(m, j, K))—»R(m, j)),

where a/*M and b/I denote that the constants a and b
are elements of the sets *M and 1.

2.2 Semantics

Definition 9. A structure ¢ consists of:

(1) a non-empty set I of base sorts;

(2) domains S; of sorts j e J(I);

(3) distinguished elements of domains S; of sorts
jelD;

(4) a set of n-place functions from a Cartesian
product X;., S,, to a domain S,, where j; € J(I)
and fe J(I);

(5) a set of n-place predicates over a Cartesian
product X}, S;,, where j; € J(I).

Definition 10. An assignment ¢ from a formula G to
the structure ¢ is a mapping that satisfies the following
conditions:
(1) to each free variable in a formula G, we assign
an element of a domain S; of a sort j e J(I);
(2) to each domain symbol in a formula G, we as-

Developing a Deductive Relational Database for Uniform Handling of Complex Queries 129

sign a domain S; of a sort j e J(I);

(3) to each constant in a formula G, we assign some
particular element of a domain S; of a sort
JjelD;

(4) to each n-place function symbol f in a formula
G, we assign a n-place function from a Cartesian
product X?'_, S;, to a doamin S,, where j; € J(T)
and fe J(I) (if n=0, then we assign some par-
ticular element of S.);

(5) to each n-place predicate symbol P in a formula
G, we assign a n-place predicate defined over a
Cartesian product X}, S;, (if n=0, then we
assign either T or F.).

Definition 11. An assignment ¢ is similar mod x,, . . .,
x, to ¢’ if the assignments is same except for the elements
assigned to x,, ..., x,.

Definition 12. An interpretation of a formula G is an
ordered pair (o, ¢), where ¢ is a structure for a given
formula G and ¢ is an assignment from G to a.

Definition 13. The valuation of a formula G over the
interpretation (o, ¢), i.e. val(G, o,), is recursively
defined as follows.

(1) If Gisa propositional letter, then val(G, o, ¢)=T
iff 9(G)=T.

(2) If G is a n-place atom P(z,, ..., 1), then val
(()}), o, 9)=Tiff (¢(1)), @(t)) e 0(P(ty, . . .,
).

(3) Let A and B be formulas. If G is of form ~A,
(A&B), (AvB), (A—»B) and (A=B), then
val(G, o, ¢)=T iff the truth tables (same as
classical logic) for ¢(A) and ¢(B) yield T.

@) If G is of form (3x/S)H(x), then val(G, o, ¢)=T
iff there exists an assignment ¢’ which is similar
mod x to ¢ and val(H, o, ¢’')=T. That is,
(3x/S)H(x)=T iff there is at least one element
e €S such that H(e)=T.

(5) If Gis of form (Vx/S)H(x), then val(G, o, ¢)=T
iff for all assignments ¢’ which are similar mod x
to ¢ and val(H, g, ¢')=T. That is, (Vx/S)H(x)=T
iff for all elements e € S, H(e)=T.

(6) If val(G, o,)#T, then val(G, o, ¢)=F.

Definition 14. (Definition of predicate constants)
EQ(X, Y): This predicate is defined over two sets, say
X and Y, of level m (m=>0). It is assumed that base
elements of both sets are ordered.

For m=0, EQ(X, Y)=Tiff X=Y.

For m>0, EQ(X, Y)=T iff for pairs of {x, y), which are
level m—1 sets of (X, Y), EQ(x, y)=T.

In the same manner NE(X, Y), GT(X, Y), etc. are
defined.

Definition 15. LET(X, C): LET(X, C) is semantically
equivalent to (3X/*D) EQ(X, C), where D is a set of
level m (m=0) and its sort includes the sort of C.

Example 4. The interpretation of the formula (3X/*N)
Vx/X) (P(X, a/*M) & Q(x)) over the ¢ and ¢ below is as
follows.
a=({m, D},
{{_ l’ 1, 21'3}mv {_2’ - l’ Os l’ 29 3}n}$
{{— l’ 1’ 3}m}9
¢,
{AsAt.s<t, As.s>0}).
o=(¢,
{M=>{-1,1,2,3} ,N={-2, —1,0, 1,2, 3},},
{8—’{—‘ 19 l’ 3}m}7
¢’
{P-oisit.sct, Q- As.s>0}).
val(GX/*N)(Vx/ X)(P(X, a/*M) & Q(x)), o, @)
= val(@Xx/*{-2, —1,0, 1,2, 3},(Vx/X)AX. X<
{-1,1, 3}, & ix.x>0), 0, ¢)
= val(Yx/{-2},({-2},c{-1, 1, 3}, &x>0)
vVx/{—1},({—-1}.s{-1,1, 3}, &x>0)
vV¥x/{ 0},({ Ol.c{-1,1,3},&x>0)
vVx/{ 1}, 1l.c{-1,1,3},&x>0)

VY/{1, 3},({1, 3l S{~1, 1, 3} & x>0)

vx/{-2, —1,0,1,2,3},({-2 -1,0,1,2, 3},
Q{—l, 1’ 3}m&x>0), a, (P)
=T.
Because the formulas Vx/{1},({1},€{-1,1,3}, &
x>0), Vx/{1, 3},({1, 3},={—1, 1, 3}, & x>0), etc. are
true.
The multi-layer logic for relational databases is a kind
of higher order logic. But only one-place prediactes are
allowed to be variables. The relationship between this
logic and the conventional higher order logic can be
best illustrated by Fig. 1.

3. Describing Queries in the Multi-Layer Logic for
Relational Databases

The application of the multi-layer logic to a relational
database query language will be introduced by a series
of example queries. The examples of this section are
drawn from a database which describes lands. The
database contains the following relations:

T
A+
IR

Order of logic

ALY,

AN
0 1 2

Fig. 1 The relationship between the multi-layer logic and the con-
ventional logic. + + +, \\\, /// indicate the multi-layer
logic, 1-st order logic, 2-nd order logic, respectively.

4,

+
N\ +
AN+

m-place predicate

130

LYP(LAND, YEAR, PRIC);

LU (LAND, USAG);

LDA(LAND, DIST, AREA).
The relation LYP has a row which gives the price for
each land’s identifier and the year acquired. The relation
LU gives the usage of each land. The relation LDA gives,
for each land, its area and the distance from the center
of a city in which it is located. In the following formula-
tion, a variable marked by the “*” symbol tells the
system to output the value of it. Numerals following the
“#” symbol indicate a number. Characters quoted by
the symbol *”* denote character constants.

A query against more than onme relation with Boolean
Conditions
Query 1. List the lands of usage a and their areas
which are less than 35 kilometer from the center of a
city and whose prices are less than 600,000 YEN/m?
in the year 1981.
Q1. (3/*/LAND)(3a"/AREA)(3p/PRIC)(3d/DIST)

[LYP(, #1981/YEAR, p) & LU(/, ‘a’JUSAG)

& LDA(, d, a)

& LT(p, #60/PRIC) & LT(d, #35/DIST)].
The predicate LT(p, # 60/PRIC) restricts values of the
column PRIC in the relation LYP to less than 60, i.e.,
the price of lands are less than 600,000 YEN/m?2
Similarly, the predicate LT(d, # 35/DIST) restricts values
of the column DIST in the relation LDA to less than
35, i.e., the distances of lands from the center of a city
are less than 35 kilometer. These predicates play the role
of Codd’s “‘restriction” operator.

A query against more than one relation with a universal
quantification

Query 2. List the lands which are acquired in all the
years, their usage and distance from the center of a city.
Q2. (3/*/LAND)Ju"/USAG)(3d" /DIST)(Vy/YEAR)

(3p/PRIC)(3a/AREA)

[LYP(, y, p) & LU(I, u) & LDA(, 4, a)].
Hercafter, we use an abbreviation in which variables
that are not referred to in the query description are
replaced by “@” symbol. For example, Q2 is abbreviated
like Q2.

Q2. (3I"/LAND)@u"/USAG)@d*/DIST)(Vy/YEAR)

[LYP(, y, @) & LU(/, u) & LDA(, d, @)].

A query with built-in arithmetic and aggregation functions
Query 3. List, for each land of usage a and acquired
in the year 1981, its identifier, its price and the difference
of the price with the average price computed on all
lands acquired in the year 1981.
Q3. (3Q/*PRIC)(3/*/LAND)(3p” /PRIC)(3d" /REAL)
(Va/Q)
[LYP({, #1981/YEAR, p) & LU(/, ‘a’/USAG)
& LYP(@, #1981/YEAR, ¢q)
& LET(d, sub(p, avg(Q)))].
Apart from the predicate constant LET(d, sub(p, avg(Q)),
this query is decomposed into the following two for-

Y. UpDAGAWA and S. OHSUGA

mulas. One is (3/*/LAND)(3p*/PRIC) [LYP(/, #1981/
YEAR, p) & LU(/, ‘a’/USAG)]. The result of this formula
is a set of values of pairs {/, p) which satisfy the stipula-
tion, that is, a set of lands of usage a and acquired in
the year 1981. The other is (3Q/*PRIC)(Vq/Q) [LYP(@,
#1981/YEAR, ¢)]. This formula defines a set Q of
prices to which corresponds a set of lands acquired in
the year 1981. The result of Q3 yields the lands of usage
a and corresponding prices together with the difference
of the corresponding price with the average price
computed on Q.

A query with a nested aggregation function and a Boolean
condition
Query 4. What is the average number of lands per
usage, which are acquired in the year 1981 and whose
areas are not less than 100 square meter.
Q4. (ALL/**LAND)(Ag"/REAL)(Vu/USAG)(3L/LL)

(V1/L)(3a/AREA)

[LU, ») & LYP(l, #1981/YEAR, @)

& LDA(l, @, a) & GE(a, #100/AREA)
& LET(g, avg(ucount(LL)))].

In the query 4, it is required to calculate “an average
number of lands.” For this purpose, we have to in-
troduce a variable LL whose value is a powerset of
lands. This fact is explicitly represented by a prefix
(ALL/**LAND). By means of a variable LL, the un-
derliying specification is easily expressed by a nested
aggregation function, i.e., avg(ucount(LL)). For ex-
ample, if a value of a variable LL is a powerset {{Al,
A2, A3},, {A3, B2},, {D2}.}, where { }, indicates a
set corresponding to a value x. Then, ucount(LL)
yields a set {3,2,1}. Consequently, the function
avg(ucount(LL)) yields 2. For more examples, 8, 9, 11]
can be referred.

4. Virtual Relation and Query Transformation Algorithm

In the multi-layer logic for relational databases, vir-
tual relations are defined through formulas which have
the following form:

Vxi/X1) ... (pr/Xp)[(apo/Xer - Gx/X)

R # ... #Rp)-»T(x;, ..., x)]
where # is either & or v, each of R,,..., R, is a for-
mula containing predicate constants, base and virtual
relations connected by either & or v. T(x;,...,x),
where iy, ...,i,e{l,...p{, is an atomic formula con-
taining variables x;,, . . . , x;, and denotes a virtual rela-
tion to be defined.

A query including virtual relations could not be
reduced directly into the retrieval procedures or a
sequence of operations in (an extended) relational
algebra. To evaluate such a query, it is necessary to
transform a query into one that contains no virtual
relations.

The method for transforming a query is based on
the idea of replacing virtual relations (if any) in the
query by those defining formulas. The substitutions

Developing a Deductive Relational Database for Uniform Handling of Complex Queries 131

are done repeatedly until a given query contains no
virtual relation. Now, an overview of the query trans-
formation algorithm is given. Generally, a query con-
taining virtual relations is given as:

a e Quxy /X)) QX)L Ty e

xl'q) .. ']’

where T(x;,...,x;) is a g-place virtual relation,
iy, ..., e{l,...,p}, Qs are quantifiers of either
¥ or 3, and ... indicates that the query may contain
other variables, constants and/or functions.

The query transformation algorithm consists of the
following steps.

Step 1. If the query (1) contains predicate constants
which can be evaluated at this point, then evaluate
them. Otherwise, simply go to next step.

Step 2. Find a virtual relation in a query. If there is,
g0 to mext step, otherwise go to “reduction procedure”
which is discussed in Section 3.

Step3. Let a formula defining a virtual relation
T(ip - - -5 Y1) be given as:
@ YD - O YEVper] V)
.- @yl Y)
[(Ry#... #R)->T(yy - - - J’t,)]-
Rename the variable names so that the query (1) and
the formula (2) share no variables in common.

Step 4. If a formula (Vy,/Y,) ... (¥y,/Y},)
Tips - -+ > Vi)—= (@1 %1/ Xy) - - (2x,/ X))
T(Xip5 - - 5 X3)
is a valid formula, then substitute T(x;,, ..., X;) by
YD) -+ (D Y@/ Yprr) - - - Gral VR # .
#R,]. As the result, the query (1) is transformed to the
formula (3). The validity of the formula
©@n/YD) - (Qpyel YTy - - - s Vig)
(01 x:1/Xy) . (@ X)T x5 - - 5 X1)
is testable by the “implication conditions” shown in
Table 1.
3 (@272 . Q27 1Zy) - - @ps1/Ype1)
Gy YL RU# L #RL L,
where Q7, z;, Z; (1<j<p), Ry, ..., R, are respec-
tively obtained from Q;, x; X, y;, Y5 Ryyots, R,
by substitution rules shown in Table 1.
If a formula (Q}y,/Y) - - - @1V, Y T W5 - - -+ ¥i)
IR AN EYN) 81 CASNES)

Table 1. Implication conditions and substitution rules in the
multi-layer logic. D, denotes the domain of ‘constant’.

(Qkye/ Yx) (Quxr/ Xx) (QFf 2/ Zx) Condition
(vyx/ Yx) (Yxx/ Xx) (Yzu/ Xi) Y2 Xe
v/ Yy) (@xx/Xx) (3ze/ [(XxNYi)) YihXe+d
@n/Ye) (Axx/ Yr) (z/Ye) Yy E Xx
constant (Yxx/Xx) é D.SXx
constant (@xx/ Xx) ¢ D.cXx
Yo/ Yx) constant ¢ D.c Y
@yr/ Ys) constant é D.S Yz

is not a valid formula, then try for other formulas
defining T(y;,, . - - » Vi)

If a original query is true over an interpretation
(0, @) then a transformed query is also true over (o, ¢).
For details [11, 12] can be referred.

An example is given here. Suppose a virtual relation
Largeland 81 (/, p, u) is defined which gives price and
usage for each land acquired in the year 1981 and whose
area is not less than 100 square meter. This relation is
defined by the following formula:
(V//LAND)(Vp/PRIC)(Vu/USAG)[(3a/AREA)(34/DIST)
[LU(, w&LYP(, #1981/YEAR, p)&LDA(, 4, a)

&~ LT(a, # 100/AREA)]— Large-land81(/, p, u)).
Using this relation, we can describe the query 4 in Section
3 by the formula Q4’, which is semantically equivalent
to the formula Q4.
Q4'. (3LL/**LAND)(3g"/REAL)(Vu4/USAG)
@AL/LL)(VI/LY3p/PRIC)
[Large-land81(/, p, W)&LET(g, avg(ucount(LL)))].

The virtual relation Large-land81 has to be developed

according to its definition.

Step 1. Although the query Q4’ contains the predicate
constant LET (g, avg(ucount(LL)), it can not be evaluated
because the value of the variable LL is not determined at
this point. So simply go to Step 2.

Step 2. Since the query Q4' contains the virtual rela-
tion Large-land8l, it needs to be transformed. Go to
Step 3.

Step 3. Rename variables /, p, u, a, d in the defining

formula to I, p’, v, @', d’, and obtain

(v/'/LAND)(Vp'/[PRIC)(Vu'[USAG)[(3a’/AREA)
@d’'/DISDLU(,)&LYP(I', #1981/YEAR, p’)
&LDA(', d’, a)&~LT(a', #100/AREA)]
—Large-land81(/’, p’, w)}.

Step 4. The formula

(VI'/LAND)(Vp'/[PRIC)(V«' [USAG)

Large-land81(”, p’, u')—~(Yu/USAG)(V!/L)(3p/PRIC)
Large-land81(/, p, u)

is valid because each corresponding pair of variables

satisfy the implication conditions. That is, Dom(/) 2

Dom(/), Dom(p’) A Dom(p)={PRIC}#0, Dom(x')2

Dom(u). Replacing Large-land81(/, p, u) in the query by

LU, u)&LYP(/', #1981/YEAR, p")
&LDA(!, d',)&~ LT(a', #100/AREA),

we get the transformed query as follows:

TQ4. (ALL/**LAND)(3g"/REAL)(Vu/USAG)
(AL/LL)(V!/L)(3a/AREA)3p/PRIC)(3d/DIST)
[LU(, w)&LYP(, #1981/YEAR, p)&LDA(, d, a)

&~LT(a, #100/AREA)&LET(g, avg(ucount(LL)))].

The final transformed query does not contain any
virtual relations, thus it can be reduced into retrieval
procedures. Section 5 concerns the reduction algorithm
from a formula into a sequence of operations in (an
extended) relational algebra.

132

5. Implementation of a Deductive Database System
SBDS-F3

5.1 Orverview of SBDS-F3

This section provides an overview of the database
system with deductive mechanism SBDS-F3. It is based
on the multi-layer logic for relational databases, and
developed by modifying SBDS-F2 [7] that is based on
the many-sorted logic. SBDS-F3 is implemented on top
of the MRDOS operating system for Data General
Corporation ECLIPSE S/130 computer system and
programmed in FORTRAN IV (partially in assembler
for efficiencies).

Our system is based on evaluational approach [2] in
which a query is processed in two steps. First, a given
query is transformed into one which involves no virtual
relations. Implementation of this query transformation
is discussed in Section 5.2. Second, a transformed query
is reduced into a sequence of database access procedures.
Since a formula in the multi-layer logic may contain
variables whose values are sets, the Codd’s relational
algebra has to be extended. The reduction algorithm
and an extended relational algebra are discussed in
Section 5.3.

Fig. 2 illustrates the system structure in some
details. SBDS-F3 can accept commands from two
sources: console key board and data file specified. The
commands fall into five categories. For each category,
one to four commands are provided. They are sum-

Attribute
definition

Y. Ubpagawa and S. OHSUGA

marized as follows.

(1) SR-, SD-, SI-, SS-command: commands for
defining four kinds of domains, i.e. root domains,
domains defined by disjunct, intersect and powerset
relation. For details, [4, 5, 11] can be referred.

SR (separator){defined node name)
(separator){data type).

SD (separator){defined node name)
{separator){parent node name)
{separator){division code).

SI (separator){defined node name)
(separator){parent node name 1)
(separator){parent node name 2.

SS (separator){defined node name)
(separator){parent node name).
KD-command: a command for defining a virtual

relation.

KD (separator){formula for virtual relation).

QU, QV, QW-command: commands for defining

a query.

QU (separator){formula for query).

QV (separator){formula for query).

QW (separator)(formula for query).

For a query defined by QU-command, only answers for

the given query are printed out. For a query defined by

QV-command, retrieval operations reduced and answers

for the given query are listed. If a query is defined by

QW-command, three types of information are given,

i.e. retrieval operations, contents of a intermediate

relation for each of the operations and answers for the

given query [7, 11].

@

3

Virtual
relation
definition

—_

Knowledge
base

Command
analysis

Report
generation

M deduction and

evaluation

—a{Reduction H Excution]
AN

Function

functions and

&

definition

)

Database

predicate
constants

3 Database

definition

Y

Fig. 2 SBDS-F3 system structure. — indicates a flow of processes and =) indicates a flow of data, definitions of a virtual relation.

Developing a Deductive Relational Database for Uniform Handling of Complex Queries 133

(4) FD-command:a command for defining a user
definable function.
FD (separator){argument identifier list)
{separator)
(defined function)/{domain specification}

(55 RD-command: a command for defining a base

relation.

RD (separator)((relation name)

{attribute list))

5.2 [mplementation of query transformation algorithm
of SBDS-F3

The general flow-chart of query transformation

START
!

r;;sh query into B—stackJ

algorithm for SBDS-F3 is shown in Fig. 3. This al-
gorithm is based on the refutation procedure and depth
first search strategy for time and storage efficiency. To
find out all the data which satisfy a given query or
negation of the query, a stack to retain information for
backtracking (called B-stack hereafter) is provided.
First the given query is pushed into the B-stack, and
negate the query. Next, atoms evaluable at this point
are evaluated. Atoms corresponding to virtual relations
are selected. If there are, formulas defining them are
secked from the knowledge base (a set of formulas
defining virtual relations). In case, the seeking is not
successful, “Aborted . . .” is printed out and processing

Find out value of predicate
constants and functions evaluable

evaluated no
normally ?

| yes

exist virtual ho
relation
lyes

[Seek formulas defining]

the virtual relation

yes

<;Empty formula ?
no

Evaluate the formula
by using databse

Print Print value of the
"Aborted !..." specified variables

no
Are any ?
yes
no |
Plural ?
yes

Select one formula and
push others into B-stack

Unify and replace virtual
relation by selected
formula

yes
Any answres have
been printed ?

Is B-stack yes
empty ?

no

Print "I
don't know"

lPop B-stack Abnormal end

Negative '\ ne

mode ?

no

Print "negative
mode"

Fig. 3 The general flow-chart of the query transformation algorithm for SBDS-F3.

134

of the query is aborted, because there is no information
corresponding to the selected virtual relation. If the
seeked formulas are plural, only one of them is selected
and others are pushed into the B-stack. The selected
virtual relation is unified with and replaced by the
seeked formula. Details of this process are discussed in
Section 4 of this paper.

If there are no atoms corresponding to virtual rela-
tions, then it is tested whether the query is an empty
formula or not. If the query is empty, then values of the
specified variables are printed out. Otherwise it is evalu-
ated by using a relational database, which is discussed
in Section 5.3. By the process mentioned above, an
answer for the given query is found.

The later process serves to find all the answers that
satisfy the query. If the B-stack is not empty, pop the
B-stack and test whether the B-stack is empty (negative
mode) or not. If it is not empty and any answers have
been printed out, then the given query is evaluated
affirmatively i.e. normal end. Otherwise, ‘negative

Y. Upagawa and S. OHSUGA

mode” is printed out and try to evaluate the query
negatively.

5.3. Reducing a formula into relational database access
procedures

The flowchart of the reduction algorithm is shown in
Fig. 4. The algorithm which reduces a formula in
the first order logic into a sequence of the operations
in the relational algebra is discussed by E. F. Codd [1],
R. Reiter [6] and C. L. Chang [2]. But their algorithm is
not applicable to a formula in the multi-layer logic
because it may contain variables whose values are sets.
The reduction algorithm for the first order predicate
logic is extended to manipulate the formula in the
multi-layer logic by containing the “determine a set”
operation explicitly.

Overview of the algorithm is as follows. First, an
atom corresponding to a base relation is translated into
the “load” operation, an operation to access a base
relation. If the atom contain any constants and/or predi-

no

>

(Is there a base relation ?)

yes

]

Is there a variable
ncluded by more than
two relations ?

CAELER =

Generate "load" operation

for the relation
Does it contain ne
constants ?
yes
Generate " restriction”
operations for each
constant

Negated ?

yes

no

Generate "difference"
operation

Generate "natural join"
operation if they are
connected by &, generate
"or" if connected by V

S

es

All the atoms and vari-
bles are evaluated ?

no

Evaluate predicate

constants
) 1

no

The domain is a colu
of the base relation

T T
yes

Generate "division" operation
for ¥ quantifier,
"projection" for 3 quantifier

1

Retrieve the right-most
variable in the prefix
/ Is the value of the
N\ variable a set ?

yes [
Generate "group by"
operation

Fig. 4 The flowchart of the reduction algorithm of SBDS-F3.

D"r—waPJ ive Relati ! D h

cate constants evaluable, they are translated into the
“restriction” operation. This process is repeated until
all the atoms corresponding to base relations are
translated. Next, all the variables included by more
than two relations are translated into the ‘‘natural
join” operation if the relations are connected by &,
the “or” operation if the relations are connected by v
(Note that “intersection” operation is a special case of
the ““natural join> operation.).

The rest is translation of quantifiers, which consists of
the following processes. First retrieve the right-most
variable in the prefix. If its value is a set, then it is
translated into the ‘“‘determine a set” operation. Other-
wise, if the domain of the variable is a column of a base
relation, then the V quantifier is translated into the
““‘division” operation, the 3 quantifier is into the “‘projec-
tion” operation. When a “LET” atom is evaluated, the
“evaluate function” operation is generated. For more
complete description, [8, 11] can be referred.

The notations of the operations generated from a
formula are summarized below.

*LOAD (relation name)[{work file name)
{column identifier list)].
*OR [{work file name)]

[{work file name)

{column identifier list)»],

[{work file name)

{column identifier list)].
[{work file name}]

[{work file name)

{column identifier list)},

[{work file name)

{column identifier list)].
[{work file name}]

[{work file name)

{column identifier list)],

[(work file name)

{column identifier list)].
[{work file name)

{column identifier list))]

${column identifier).
[{work file name)]

[{work file name)

{column identifier list)]
{{column identifier list))

{{column identifier list))

[{work file name)

{column identifier list)].
{work file name): {column identifier)>
{predicate constant){constant)/
{domain specification).
[{work file name){column identifier list)]
/{column identifier).
*DETM [(set name)]={variable)
={(work file name):
{column identifier) FOR EACH
{work file name):
{column identifier list)}.

*AND

*DIFF

*PROJ

*JOIN

*REST

*DIV

for Uniform Handling of Complex Queries 135

*DETM [(set name)])=(variable)
={[{set name)]}.
*EVAL (variable){ ={function name}.

*LOAD means to load the base relation indicated.
*OR, *AND and *DIFF denote OR, AND and subtract
operations, respectively. *PROJ, *JOIN, *REST and
*DIV stand for projection, join, restriction and division
operations, respectively. *DETM indicates the ‘‘deter-
mine a set” operation, which determines the value of a
variable of level m (m > 1) and stores it in a set indicated.
*EVAL indicates the ‘“evaluate function™ operation
and means that the function indicated is evaluated and
its value is retained in the variable. Strictly speaking,
the value of the variable is equal to the value of the
function as stated by Definition 15 of this paper. *EVAL
also checks consistency of the sorts of the variables and
functions, such as the function avg maps a set of integer
or real into real.

Fig. 5 gives some results of SBDS-F3. In this figure,
the Ist to 6th lines define the attribute names of rela-
tions. For example, the st line indicates that “LAND”
is an attribute name and its sort is a string of alphabets
and/or digits. The 2nd line denotes that “YEAR” is an
attribute name and its sort is integer. The lines labeled
7], 8], 9] define the relations LYP, LU, LDA, respectively.
The lines labeled 10] and 11] define virtual relations.
For example, the line 10] defines the relation LANDS]I,
which gives the lands acquired in the year 1981. The lines
12] to 15) stand for the query QI, Q2, Q3 and Q4,
respectively. For each query, the corresponding ex-
pressions in an extended relational algebra are given
preceded by the symbol*.

6. Conclusion

In this paper, we define a formal language called the
multi-layer logic for relational databases, an extended
many-sorted logic, for uniform handling of complex
queries. In the multi-layer logic, queries are expressed
non-procedurally which contain operations whose
arguments are grouped by some other variables and/or
which involve nested aggregation functions. For some
properties of the multi-layer logic, [11, 12] can be
referred. In some cases, a query contains virtual rela-
tions. Query transformation algorithm for such a query
is discussed. We also discuss implementation of a rela-
tional database system based on this logic and give
some examples.

Since a formula in the multi-layer logic is too com-
plicated for non-mathematically trained users to use,
a user interface language GOING (a Graphics Oriented
INteractive data lanGuage) is designed and implemented.
For GOING, [9, 10, 11] can be referred.

Acknowledgements

1 wish acknowledge all the members of Meetings of
Information Systems for their encouragements and

C ###8 Start of database definintion ¥
C === Definition of the attribute names ===
13 SR sLAND.C
21 SR JYEAR, I
33 sPRIC.I
43 SR 3USAG.C
53 SR :0IST. I
631 SR AREA, 1
C =s= The LYP relation has a rou for each
C === land's identifier and vun sivine its pric.
7?1 RO i CLYP, LAND, YEAR. PRIC)
1) A1, #1977, #350
2> Al, #1979, 355
3 AL, #1981, #38
4) A2, #1973, #80
S A2, #1981, #86
6) A3, #1973, #1035
7) A3, #1981, #112
8) B1, #1979, #63
£ ci1, #1977, #22
18) C1. #1979, #25
11) c2, #1977, #23
12) c2, #1979, 226
13> c2. #1981, #27
14) D1, #1981, #40
15> D2, #1981, #36
16) D3. #1979, #8
17> D3, #1981, 20
18) x
C === The LU relation sives the usase of each land.
81 RO i ¢ LU, LAND, USAG)
1> Al a
2 A2. a
3 R3. @
4) A3, b
3 B1. b
[B81. c
7> C1. [
8 c2. a
9 c2. <
18> D1. d
11> b2, b
12> b2, d
13 D3, d
14 z
C === _.The LDA relation eives, for each land,
C === jts area and the distance from the center
€ === of a citv in uhich it is located.
831 RO ; (LDA, LAND, DIST, RAREA)
1) Aal, #4808, #3008
2> R2, £25, #120
3 A3, #7, #1108
4> 81, #27, #60
5 C1, #10, #58
6) c2, #34, #96
7> DI, #28, £55
-2 ne, £36, #14¢
3 03, $28, #80
18) K4
C ##% Definition of virtual relations ##¢
=== The LANDS! lands are lands inauvired
C === in the vear 1981.
162 KD i ¢ A 17LAND, A p/PRIC, n u/USﬁG,
A 8/AREA, A d/DIST
L =C CLYP, 1, #1981/YEAR, r) & SLU, Louwd '
<LDA, 1, d, 2))’
V CLANDSL, 1, P, u, a, d>]
C === The Larse land81 (LA.LA8L) lands are
C === lands ineuired in the vear 1981 and vhose
C === ares is not less than 188 sauare aeter.
113 KD i ¢ A 1/LAND. A m»/PRIC. A u/USAG,*
A a/ARER. A d/DIST) *
L =¢ CLU, 1. u) & CLYP, 1, #1981/YEAR, ») *
& CLDA, 1, d» a2 & ~CLT, a, #10@/ARER) D'
U CLA_LASL, 1, P, u) T
C ##¢ End of database definition #43
¢ ==x Querv 1 in Section 3 ===
121 ev 7 ¢ E lassLAND. E ar~/RRER,'
E prsPRIC, E disDIST)
L CLAND81, la, Pr, asUSAG, ar, di) '
&CLT, mr, #68/PRIC) & (LT, di, #35/DIST) 3 7
2OAD LYP L W I, 1, - 2. 3
IREST W 1: 2 = #1981/YEAR
¥REST W 1: 3 .LT. #68/PRIC
$ORD LU L K2, 1,
FREST W 2: 2 = asUSAG
*OAD LDA C W 3, 1. 2,
FREST W 3: 2 .LT. #35/DIST
$JOIN C W13 LHLE 1, 2, 33
< 1> 1> [., 1, 21
XJOIN L W13 LHI, , . 3, 43
< 1> 1> CHW3 1. 2, 33
#PROJ L W1, 1, 2. 3. 4, S5, 618 5
PROJ L W1, 1, 2, 3, 4, 638% 3
PROJ L W1, 1. 2, 4V 618 &
¥PROJ L W 1,V 1, 2, 4,V 6 1

== ANSWER == (la ar)
c2 9o

Y. Upagawa and S. OHSUGA

=x= Querv 2 in Section 3 ==x
i € E 1+/LAND, E uasUSAG, E d~sDIST'
A wYEAR D'
L (LYP, 1,v.€) & (LU; Lu)
& CLDA, 1. g;g >17?

W C[CWi, 1. 2, 3. 437 2
XPROJ L W 1. 1, 3,U 43% 4
tPROJ L[W 1, 1,V 3,0 43185 3
¥PROJ L W 1,U LU 3.V 438 1
== ANSWER == ¢ 1 u d)

A 2 48

c2] 34

c2 c 34

C === Oufrv 3 in Section 3
147 @ 3 ¢ E Q/3PRIC, E lA/LﬂND, E masPRIC, '
E d~/REAL. A 970) '
L CLYP, 1, #1981/YEAR, ») & (LU, 1, asUSAG) '
& CLYP, @, #1981/YEAR.,) '
& (LET, d, sublr,ave<@)) > 13 7
FLOAD LYP LWL, 1, 2, J
FREST MW 1: 2 = $1981/YEAR
XWOAD LU L W2, 1, 213
¥REST W 2: 2= a/USRG
¥OAD LYP E N3, .1, 23
EREST M 3: 1 = MSSI/YEAR

XJOIN L W1T LWL 1, 2, 33
< 1 1 LwW2 1. 21
¥PROJ C WL, 1. 2.¥ s 4 3
IPROJ LW L,U 1, 2,0 3, 438 1
¥ETN L S 1 I=Q= (N 2)
FEVUAL d <= sub
ww LR3I 1, 237 2
== ANSHER == (1 » d)
Al 58 8.371E 1
A2 8 8.317E 2
A3 112 0.577?E 2
cz2 27 -.2728 2
C === Query 4' in Section I ===
153 QU i ¢ E LL/7XXLAND, E 9~/REAL,'

A w/USAG, E LsLL, A IZL)"
L CLA_LASE, 1, & uw) '
& ¢ LET, 8, avelucount(Ll))) 3 ?

2LOAD LDA L W 3,
XREST MW 3: 3 .-LT. IIDB/AREA
XJOIN C W13 LWL, 1,
< 1 1> LCHWH2 1, 2, 3
ZJOIN L W 1 LH1 1 > 3, 43
< 1> 1> LWN3 1, 2
¥PROJ L W 1, 1., , 3, 4, 5, 63$% S
PROJ C WL, 1, 2, 3, 4, 618 4
PROJ L WL, 1, 2, 3, 6185 6
XOETM [S 1 I =L =(MWI1: 1 FOREACH W 1: 2
v LwWi, 1, 2, 337 1
WV L[K1, 31 2
¥OETM £ S 23 =LL=C(LSL1T?
JEVAL # (= ave
== ANSHER == (9)
@.200E

Fig. S Some results of SBDS-F3.

Developiug a Deductive Relational Database for Uniform Handling of Complex Queries 137

constructive comments.

I am grateful to Dr. N. Yonezaki, Enomoto Labo-
ratory of Tokyo Institute of Technology, for many
helpful discussions and providing me valuable decu-
ments.

I would like to express my appreciation to Dr.
K. Agusa, Ohno Laboratory of Kyoto University, for
providing the SAFE editor system. The SAFE system
is very useful and exclusively used for preparing this
paper.

References

1. Codd, E.F. Relational completeness of data base sublanguages,
Data Base Systems, Courant Computer Science Symposia Series,
6, (R. Rustin, Ed.), Prentice-Hall, (1971), 65-98.

2. Chang, C. L. DEDUCE 2, Futher Investigation on deduction
in relational data base, Logic and Data Bases (H. Gallaire etc., ed.),
Plenum Press, N.Y., (1978), 201-236.

3. Kunifuji, S. Second-order many-sorted Boolean logic for
knowledge representation language, IIAS of Fujitsu research report,
14 (Feb. 1981).

4. Ohsuga, S. and Yamauchi, H. A technique for retrieving
information using inference making, (in Japanese), Joho Shori.
18, 8, (1977), 789-798.

5. Ohsuga, S. Perspectives on new computer systems of the next

generation—a proposal for knowledge-based systems. Journal of
Information Processing, 3, 3 (1980).

6. Reiter, R. On closed world data bases, Logic and Data Bases
(H. Gallaire and J. Minker, Eds.), Plenum Press, New York,
(1978), 55-176.

7. Udagawa, Y. and Ohsuga, S. The first order predicate logic as
a goal-oriented programming language, WGSE Meeting of IPSJ,
(in Japanese) (1980), 13-2.

8. Udagawa, Y. and Ohsuga, S. The multi-layer logic as a rela-
tional database query language and its reduction algorithm to
relational procedures, (in Japanese) Joho-Shori, 23, (1982), 634642,
9. Udagawa, Y. and Ohsuga, S. Design and implementation of a
database system based on the multi-layer logic, Proc. of Advanced
Database Symposium of IPSJ, (Dec. 1981), 31-42.

10. Udagawa, Y. and Ohsuga, S. GOING—A Data Sublanguage
Using a Graphics Display, WG DB Meeting of IPSJ (Mar. 1982),
29-3,

11. Udagawa, Y. A Study on Design and Implementation of a
Database System Based on Predicate Logic, Doctorial Thesis,
Tokyo University (Feb. 1982).

12. Udagawa, Y. and Ohsuga, S. Construction of SBDS-F3: a
relational database with inference mechanism, RIMS, Univ. of
Kyoto, Kokyu-Roku, 461, (1982), 49-78.

13. Loveland, D. W. Automated theorem proving: a logical basis,
Fundamental Studies in Computer Science 6, North-Holland (1978).

(Received Mar. 29, 1982)

