Text Matching by Dynamic Programming

SEUI ISHIKAWA*, TAKAFUMI MATSUDA**, KOUICHI SHINOHARA***,
HipeTOSHI FUTAMURA**** KATSUYA MATSUNAGA**** and HirosHI MORI**

One of the major areas of historical research is to analyze the concordance between similar texts. We have
developed a system which analyzes concordance between texts automatically. The system examines the correspond-
ence between each pair of texts by employing dynamic programming, and then unites all the results by merging to
produce an output form where the texts are juxtaposed and the words common in the texts are put in order. It
also provides a numerical expression for the degree of concordance between texts. The system was applied to

three Latin texts and gave satisfactory results.

Introduction

One of the major areas of historical research is the
analysis of concordance between similar texts, where
these texts are individual interpretations of a common
original document. The purpose of concordance analysis
is typically to aid the reconstruction of original docu-
ments, when these are lost, or to aid the giving of
historical interpretations to any differences between texts.

This kind of text processing was formerly performed
manually which required great effort and much time,
but the progress of computer technology in recent years
has made possible the automation of this work. Genicot
[1] was an early worker in the field of computerised
concordance analysis. In his paper he has analyzed the
concordance between fourteen different texts, although
he never refers to the algorithm.

We have developed a system for the computer analysis
of concordance between texts. In the first step, it analyzes
concordance between two texts chosen from n (n=
2,3, 4,...)texts using dynamic programming. Although
dynamic programming is already used in text matching
[2), we employ it hierarchically to find correspondence
between texts. Each pair out of n texts are processed,
and the results are then merged in the second step to
obtain n arranged texts. The system also provides a
numerical measure between 0 and 1 for the degree of
concordance between the n texts.

Matching Two Texts by DP

A text is composed of text elements such as para-
graphs, sentences, words, or letters. We analyze con-

*Department of Computer Science, Faculty of Engineering,
Kyushu Institute of Technology, Tobata-ku, Sensui-cho 1-1,
Kitakyushu 804, Japan.

**Department of Occidental History, Faculty of Literature,
Kyushu University.

*#**Hitachi Co. Ltd.

s*s*Department of Psychology, Faculty of Literature, Kyushu
University.

Journal of Information Processing, Vol. 7, No. 1, 1984

cordance between texts by examining concordance
between text elements hierarchichally; thus, we examine
concordance between the paragraphs of one text and
the paragraphs of the other to analyze concordance
between the texts; we examine concordance between
the sentences of one paragraph and the sentences of
the other to analyze concordance between the para-
graphs; and so on.

In the following are given the definitions of concor-
dance between each text element. Let us denote the
letters of a word w, by /,; (i=1,2, ..., m(w,)) and the

letters of a word w, by [;; (j=1,2,...,n(w)), ie.,
Wit baleae - - - - Lems
wpeldppe ... I

Here we denote m(w,) by m and n(w,) by n for simplicity.
We assume that m >n without loss of generality. The
degree of concordance c}; between letters /; and /; is

defined by
C.!j={l =1
0 e ll¢1j'

For the purpose of analyzing the concordance be-
tween w, and w,, let us consider a m x n matrix M™ as
in Fig. 1 whose (i,/) element is c},,; (abbreviated as
¢ij). If w, and w, are the same word, all diagonal elements
of M" are equal to 1 (Fig. 1(a)), but if they are different,
0’s and 1’s are scattered on M™ (Fig. 1(b)). The problem
of analyzing concordance between two words can there-
fore be transformed into that of finding a path on M™
which passes through as many ‘1’ elements as possible
(Fig. 1(c)). It is a maximum path search problem on the
matrix M™. Since correspondence of each letter between
two words should be neither overlapped nor reversed,
a path is placed with its direction restricted as indicated
in Fig. 1(d). This means that a path goes from the
upper-left to the lower-right on the matrix. If a path on
M" is denoted by j=j(i), the degree of concordance
¢y between w, and w, is defined by

cijtim. o

cy=max { ¥
J=iH =30



36 S. ISHIKAWA, T. MATSUDA, K. SHINOHARA, H. FUTAMURA, K. MATSUNAGA and H. MoRI

alphabet element

all 1 a
1 1 1 1
P 1 p
h 1 h
all 1 a
b 1 b
e 1 e|l 1 1
t 1 t 1
(a) (b)
1 1 (i,])
~N
1 1 1
1 1
AN
1
\1
\
1 1
\
L (m, j+1)
(c) (d)

Fig. 1 A matrix expressing the concordance between letters (a)
the case where two words coincide with each other (b) the
case of two different words (c) the maximum path and (d)
the restriction placed on the direction of a path.

Obviously, 0<c};<1, and in the case of Fig. 1(a), j=i
and ¢ =1.

The maximum path search problem expressed by (1)
can be solved by dynamic programming. Let us define a
function f;; in the form

fmn=cllnm
fij=c;j+max {fi+1,j+l’f1+l,j+2, N 1.fl+1,m
<sSmj+1} (22)
where i=0, 1, 2,...,m and j=O, 1, 2,...,n For
conveniency, i=0 and j=0 are included. Then ¢} is
given by
cii=Jfoo/m

=[coo+max {f11, /12, - - -

fl+2,j+l’fi+3,j+1s .

,.flmfZI!fSI) e )fml}]/m’

(2b)

where ch, =0. Therefore all that has to be done to solve
(1) is to apply (2) to the elements of matrix M™. Table 1
shows some examples of c}.

By employing the value of ¢} obtained from the above
procedure, we define the degree of concordance between
two sentences. Suppose a sentence s, contains words

wy (=1,2,...,m(s)), and a sentence s, contains
words w; (j=1,2, ..., n(s)), ie.,

Spt WeiWige . Wims

St W Wi ... Wi

Here, for simplicity, m(s,) and n(s,) are denoted by m
and n, respectively. An mxn matrix M° is a matrix
whose (i, /) element is ¢y ;; (=c}}) (See Fig. 2). The

Table 1
tween two words.

Numerical examples of the degree of concordance be-

words &

search 1.00

search

concord 0.78

concorded

succeed 0.71

success

experiment 0.60

implement

fantasy 0.57

Faraday

>
© 3
©2 O J
D XX (o4
@ & P <0 oL )

He 1.00
went 0.25 0.25 0.25 0.20
to 0.50 1.00 0.17 0.40
school 0.17 0.17 0.17 1.00 0.17
today 0.20 0.40 0.17 1.00

Fig. 2 An example of a matrix M* whose elements represent the
degree of concordance between two words.

Table 2 Numerical examples of the degree of concordance be-
tween two sentences.

sentences ch
He went to school today. 0.71
He will go to school today.
There are airports in all the main cities. 0.66
Some airports are in the main cities.
Sed compone prius mentis utae cognitionem, et
intelliges veritatem. 0.92

sed conpone prius mentis tuae cognitionem, et
intellege ueritatem.

following expression gives the definition of the degree
of concordance between two sentences.
h=max { ¥

cii}m. 3)
i=ih i=im
Clearly, 0=c;,<1. The DP formulation for solving (3)
is given in the form
fngC:m
fij=ci‘,v]+max {.fi+l.j+lafl+1,j+2, .

fi+2,j+ 1’fi+3,j+ 1>« -

.. ,f;+1,n’
. 1fm,}+1}7
,mand j=0,1,2,..

(42)

where i=0, 1,2, ... ., n. The value

c;; is then given by

cu=Joolm
=[cgo+max {fiy, fi2, -

coJifors fars o5 fmdlim,

(4b)
where ¢, =0. Some examples of ¢}, are given in Table 2.

The same argument as above is applicable to the
concordance between two paragraphs and the con-



Text Matching by Dynamic Programming

cordance between two texts. In the former case, if we
denote m(p,) by m and n(p,) by n, the degree of con-
cordance cf, in reference to two paragraphs

Pr: Sk1Skze - - - Skms
P SuSize - - Stns
is defined by

ch=max { ¥ cj}/m. o)

J=iy J=J@)
Here k; (i=1,2,...,m) and /; (j=1,2,...,n) are
abbreviated as i and j, respectively. The DP formulation
for solving (5) is given by

Sun= Conms

Sy=citmax {fioq i fivn,jve oo Sirrm
/TP TRTS [ TEW TORNINN Aoy N
chi=/oolm
=[cho+max {fi1, fi2: - - - s Sim S215 Fa15 - - - s S}/,

(6)

where i=0,1,2,...,m, j=0,1,2,...,n, and cj,=0.
On the other hand, if we denote m(z,) by m and n(t,)
by n, the degree of concordance cj, between two texts

WliPkiPi2e - - - Pims

tipubiz- .- - Pins
is defined by
dy=max { ¥ ch}m. 1)

J=it) i=iw
Here k; (i=1,2,...,m) and /; (j=1,2,...,n) are
abbreviated as i and j, respectively. The DP formulation
for solving (7) is given in the form

f mn = crl:m’

fii=chAmax {fioq it fivr,jrz s Sirim
Sirzjrvfivsgers - s Smierh
ci=Joo/m
=[Cgo+max {fll’flb e 9f1mf21’f31’ LR ’fml}]/ms
®

where i=0,1,2,...,m, j=0, 1, 2,...,n, and c§,=0.
From (5) and (7), it is clear that 0<cf;, ¢, < 1.

The analysis of concordance between two given texts
is therefore performed by employing the equations (1)
through (8) hierarchically. We call the method DP
matching.

Juxtaposing Texts by Merging

In order to distinguish the difference between texts,
it is useful to juxtapose all the texts and to put the cor-
responding words in order. For that purpose, we unite
all the results that are obtained by DP matching.
We call the procedure merging. As the result of having
applied DP matching to two texts or text elements, a
table is obtained which shows correspondence between
text elements. We call it @ match table. If we confine

37

the argument to the case of sentences, a match table
obtained by applying DP matching to two sentences
shows which word of the first sentence coincides with
which word of the second. If n texts or text elements are
processed by DP matching, ,C, match tables are
produced. What should be merged are the contents of
these match tables.

Here we explain the process of merging by an example.
Let us suppose n=13, and let the texts or the text elements
be denoted by u,, u,, and u;. We also denote the text
elements composing them by v,; (i=1,2,...,5), vy;
(=1,2,...,95), and vy, (k=1,2,...,8), respectively,
ie.,

Uy: 0110120130140
Up iUy 0z2U33024025
U3 V31032033034035V36V37038-

After having applied DP matching to each pair of
uy, Uy, and u,, we obtain the following match tables;

u:2 5 w2 35 w1l 2 35

u:3 5 wu3:2 4 6, uy:1 4 5 6. Q)
Here only the second subscript j of a text element v;; is
shown for simplicity. The match table, say the first one
of (9), indicates that v,, of u, corresponds with v,5 of

u,, while v, s of u; corresponds with v, s of u,. The process
of merging produces a match table

u:0 2 5
u:2 3 5
u:2 4 6 10

from the first and the second match table of (9). The
third match table of (9) and (10) are then merged to yield

:1 0 2 35
u:0 2 3 05
u:l 2 4 5 6. (1)

For performing these procedures, we only have to com-
pare the order of the numbers (except ‘0’) in each row
between a given and a new match table, and add the
content of the former to the latter by putting a number
to an appropriate column or inserting a column in a pro-
per position, so that no contradiction may occur be-
tween the match tables with respect to correspondence
among text elements. The numbers are always required
to be in ascending order. The remaining numbers not
appearing in (11) are inserted in the second step to yield

u:1 0002340500
,:0 1 2 03004500
u;:1 02345006 78 (12

or, if we express (12) by v;;,

Uy gy . V12V13014 - Uss
Uyt . Uaq¥33 . Uz3. U24V25
U3: V3 . U3aU33034035 . . U36U37038



38 S. IsHIKAWA, T. MATSUDA, K. SHINOHARA, H. FUTAMURA, K. MATSUNAGA and H. Mort

which gives us the final result.
Algorithms of the System

The text processing system proposed in this paper is
composed of four parts as shown in Fig. 3. In the first
step, each text is typed in from a keyboard and forms a
data file. Sentences of each file are then arranged by a
program so that each sentence starts from the head of
a line in the file. A line contains 80 characters at most.
In the second step, concordance of texts is examined by
DP matching according to the previously stated pro-

[ making data files]

r

l DP matching I
[
merging I

l output of resultﬂ

End

Fig. 3 A flow chart of the text processing system.

cedure. The results obtained in the second step are
merged in the third step according to the method
explained formerly by an example. In the last step, n
texts are juxtaposed and corresponding words are put
in order in a n-line buffer which contains » lines by
referring to the result obtained from merging. The
content of the n-line buffer is then printed out. Therefore
each of n matched texts is printed out every 80 charac-
ters at most.

Since the main part of the system is the DP matching
step, we state its algorithm precisely. Fig. 4 shows
a flow chart of the DP matching process. We suppose
that the information concerning correspondence of
paragraphs among texts is already given. This restriction
is placed to reduce the number of calls to the DP routine.
In fact, the algorithm in its general form has a four
level nesting structure, and if we suppose that each text
has n paragraphs, each paragraph has n sentences, and
each sentence has n words, then the number of calls to
the DP routine is O(n°).

Another simplification is that, in calculating the
degree of concordance between two words, the algo-
rithm examines concordance between two letters one
by one from the head of each word instead of applying
DP matching to them. In the procedure, we take the
minimum discrepancy between two words into ac-
count. If the nth (n=1, 2, . ..) letter of a word (say w,)
does not coincide with the nth letter of the other word
(w;), then the n+ 1th letter of w; and the n+ 1th letter

1 CONCS
CONCP e
_.-93  __--
( Start ) choose one sentence - - LY Pkt

- from each paragraph

produce concordance

input two paragraphs
from data files

7

produce concordance

matrix COP

Y —

search for the max-

imum path on COP

I

[ calculate CP

matrix COS

2N

search for the max-

imum path on COS
~
~o I N

< ~
=~ calculate CS ]

‘lz.

CONCW

| choose one word

output CP and

from each sentence -

examine correspondence

juxtaposed paragraphs

store match tables

into a file

between the two words

by comparing letters

successively

- |

\\\\‘ r calculate CW 1

\Ls

Fig. 4 A flow chart of DP matching.



Text Matching by Dynamic Programming

of w; are compared with each other. If they do not
coincide, then the nth letter of w,(w;) is compared with
the n+ 1th letter of w (w,). If they coincide with each
other, then the next letter of w; and that of w; are
compared. If they do not coincide or there is no letter
left to be compared, the procedure comes to an end and
the value of ¢}} is calculated by

N, S
= max {1(w), 1w}
instead of (1). Here n, is the number of coincided letters
and /(w) is the length of a word w. This rather simple
way of calculating c}} suffices for practical use.

In the following are listed the names of the program,
subroutines, matrices, and variables in the flow chart
of Fig. 4.

CONCP: a program analyzing concordance between
two paragraphs,
CONCS: a subroutine analyzing concordance between
two sentences,
CONCW: a subroutine analyzing concordance between
two words,
COP: a matrix whose elements are cjj,
COS: a matrix whose elements are c}j,
COW : a matrix whose elements are c! s
CP: a variable representing the degree of con-
cordance between two paragraphs,
CS: a variable representing the degree of con-
cordance between two sentences,

Commoti

Dionysii.
dyonisii festa.

39

CW:a variable representing the degree of con-
cordance between two words.

Execution and Results

The text processing system was applied to three Latin
texts, text 1, 2, and 3, each of which contained about
two thousand words. Fig. 5 shows part of the result.
The processing time took about an hour for DP
matching and 10 minutes for merging including making
an output form. The values of the degree of concordance
between each pair out of the three texts are

¢t,=082, c¢,,=0.86, c;,=0.87.

The average value is therefore 0.85 which we define as
the degree of concordance among the three texts.

Discussion

The obtained results are satisfactory. This kind of text
processing, however, needs human modification in some
case. Suppose a sentence s, in text ¢, is almost the same
as a sentence s, in text ¢,. In this case, the two sentences
successfully correspond with each other. Suppose then
a sentence just after s,,, say s,,, is linked with s,, by,
e.g., a comma, and they form a single sentence s,,s,,.
In this case, even if s,; is almost the same as s,,, 5,
and s,,5,, do not correspond with each other, provided
that s,, is not a short sentence compared with s,,.

igitur insania cives, tripudiabant in festis
commot{i) igitur insania,

tripudiabant in

Commota igitur insania, tripudiabant

Quinto autem mense Laodicius
quinto autem mense, ladicius

in dyonisii festa quinto autem mense,

Appoliniae civitatis venit in
ciuitatis uenit in amfibuli,
ciuitatis uenit in amfibuli,

proconsul
proconsul apolloniae
proconsul apolloniae

Amphipolim, et sacrificavit

et sacrificauit dyonisio.

lau)dicius

Dionysio. Et alia
(et) alia
Et alia

die nuntiatum est ei de forti milite Christi Mucio, quia multos
die nuntiatum est ei de forte milite Christi mucio quia multos
die nuntiatum est ¢i de forte milite Christi mucio quia multos

revocasset

reuocasset

de solennitate
reuocat de sollemnitate,
de solemnitate

Deorum, docens nouas
docens nouas
{de deorum) docens nouas

seductiones, quibus reverti suaderet ad crucifixum et mortuum

seductiones reuerti
seductiones, reuerti

ad crucifixum et mortuum
ad crucifixum et mortuum

hominem: et ista credentes multi, reversi sunt a deorum cultura.

hominem.
hominem.

Et ista credentes, multi reuersi sunt a cultura.
Et ista credentes, multi reuersi sunt a cultura.

1
2
3
1
2
3
1
2
3
1
2
3
1
2
3 et sacrificauit dyonisio.
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3

Fig. 5 Part of the result.



40 S. IsHIKAWA, T. MATSUDA, K. SHINOHARA, H. FUTAMURA, K. MATSUNAGA and H. MORI

Although separation of s,,s,, into s,, and s,, might
overcome the difficulty, it is impossible to judge auto-
matically if it should be separated. Therefore the result
obtained by the text processing needs to be modified by
a human if necessary.

In the former section, we showed the values of ¢j;
(i,j=1, 2, 3), the degree of concordance between two
texts. They were calculated by

e
U™ Tnax {s(1,), sCt Hi -

instead of (7). Here n, is the number of coincided sen-
tences between a text ¢; and a text #;, and s(¢) is the
number of sentences contained in a text ¢. If ¢}; is cal-
culated by (7), then ¢, =0.61, ¢53=0.68, and 5, =0.63.
In a practical sense, the values calculated by (13) show
the degree of concordance better than those calculated
by (7), since the former gives the percentage of coincided
sentences between two texts, while the latter does not.
An alternative way of finding correspondence between
texts is successive comparing which compares words
one by one from the head of each text. A defect of this
method is that, as it finds correspondence among text
elements successively, it does not necessarily find
optimal matching, while the DP matching method
assures that it finds optimal matching if the search
area is not limited by a window. In the DP matching
process employed in the system, the search area is
limited by a window. However, since the texts analyzed
have a high degree of concordance, we might expect that
an optimal pass exists within the search area. Therefore

we may reasonably assume that the analysis found the
optimal matching.

The present text processing system can deal with
three texts at most. We intend to improve the system so
that it can deal with more.

Conclusion

A system was presented for analyzing concordance
between texts by a computer. It makes use of DP
matching to examine concordance between each pair
of texts and unites all the results by merging. The
procedure for analyzing concordance between two texts
has a hierarchical structure. The system produces ar-
ranged text data where texts are juxtaposed and the
corresponding text elements are put in order. The
system also calculates the value of the degree of con-
cordance between two texts. Three Latin texts were
processed by the system and desirable results were
obtained. The system used deals with at most three texts.
We intend to improve the system so that it can deal with
more. The system was developed on the MELCOM-
COSMO 800III of the Computer Center of Kyushu
Institute of Technology.

References

1. Genicor, L. Etudes sur les principautés lotharingiennes,
Publications Universitaires de Louvain, Louvain, 1975, 217-271.
2. NaGao, M. Pattern Information Processing, Corona Publish-
ing Co., Tokyo, 1983 (in Japanese).

(Received July 4, 1983; revised Dec. 5, 1983)



