PALET: A Flexible Office Form Management System

KUNITOSHI TSURUOKA*, KAZUO WATABE®,
and YOSHIYUKI NISHIHARA™*

Outstanding features of an office form management system, called PALET, are described. The system
designs, processes and manages forms or tables for distributed personal or sectional office applications. PALET
users are able to create and change the form structure dynamically on the screen. This creation or change causes
the automatic generation or update of the logical and physical data structure. The dynamic form structure
change (in non-first-normal-form) is possible without database reconstruction. Other features, such as non-
first-normal-form queries, derived form management, and remote query/mail functions, are useful for perform-
ing office applications easily and speedily. For unintegrated miscellaneous office applications (not based on in-
tegrated databases), PALET enables office workers to flexibly handle various changeable office forms with little

knowledge of programming, and of preparation or maintenance of databases.

1. Introduction

Office workers use various business forms in their dai-
ly work. Some of these forms may be handled by a total
application system, such as a corporate sales manage-
ment system. However, there are a lot of forms that are
only the concern of a specific person or in a specific
department. For these miscellaneous forms, it may not
be practical to define databases and to write application
programs for each form. The reasons are: there are
many different types of forms, there is only a smalil
quantity of each type, the data processing is simple, the
life of a form is short, and the format is likely to change
from time to time.

Some form management systems [1,3,4,5,8,9,10]
allow form query and form procedure execution.
However, since they aim at integrated database applica-
tion systems, they need relatively difficult database
definition as pre-processing (except[5]). Moreover, they
can not flexibly manage the data structure change (if
reconstruction is needed, for example). Such database
preparation and maintenance is a heavy burden to office
workers.

PALET does not aim at the ‘‘integrated’’ system
built on carefully designed databases. The PALET ob-
jective is to give office workers a very flexible and ready-
to-use interface to design and handle unintegrated
miscellaneous forms. A PALET user handles forms on
the screen, and the on-screen format is directly con-
nected with the form logical data structure as well as
with its physical (file) structure. PALET automatically
generates these logical and physical data structure from
the screen format. One of the outstanding PALET
features is its flexibility for change. Users can change

*C&C Systems Research Laboratories, NEC Corporation, 4-1-1,
Miyazaki, Miyamae-ku, Kawasaki, 213, Japan

Journal of Information Processing, Vol. 8, No. 4, 1985

the form logical structure, through the screen format,
dynamically during program execution. This is possible
even after form data have been stored, without
database reconstruction (see 3.4). Additionally,
PALET has some important features, such as non-first-
normal-form queries, derived form management, and
remote query/mail functions.

2. Form

This section gives basic concepts and terms for
PALET. A form is a structured object, which consists
of tables. A form, unlike a text document, has a given
data structure and is considered as a unit for data pro-
cessing purposes. Fig. 1 shows an example.

A form consists of several frames. There is one
special frame, called a title, in each form. A normal
frame is a two-dimensional table, which can contain
items and group items. An item or a group item has a
name and value (s), and the value(s) may be repeating.
A frame itself is considered to be a group item, and has
a name, Frames (* is a number). An item is called a
derived item, if its value is derived from other items. An
item name or item value is expressed in a field on the
screen. A field may be rectangular (having multiple
lines).

A form has a type (which may correspond to a rela-
tion) and several instances (which may correspond to
tuples). A form type can be seen as a non-first-normal-
form relation[6] (multi-level nesting is not allowed,
however). An item that identifies the instance is called a
primary key. PALET manages a form on three levels--
external, logical, and physical. There is an external
form, a logical form, and a physical form, as shown in
Fig. 2. An external form is the representation on the
screen or on paper. A logical form is structured data in
a memory, which can be processed by application pro-
grams. A physical form is the internal representation in

PALET: A Flexible Office Form Management System

r---Title
Equipment Order
Order# 100189 Person David ----Frame
11/15/84 Ordered Kent
Equipment Name Price| Installation| Total{T-—- Item Name
Cogt
Personal Computer{ 3500 150 3850
LAN (B4670) 700 100 80071 ----Item Value
Total 4200 250 4450
LRemarks I should be installed by ----Frame
for Order | 12/28/84
Fig. 1 A Form
Order Form
Order# Item Cost Information External
1003 Name Quantity Price Form
Printer 2 3000
Sheet 10 10
Ribbon S 2
01 OrderForm Logical
02 Framel, Form
03 Order# char(4), (structure)
02 Frame2 (4)
03 ltemNsme char(8),
03 CostInformation,
04 Quantity num(4),
04 Price num(S)
————————-—1 Physical
(Fesoras) Form

Fig. 2 Form Hierarchy

the secondary storage.

A form schema is a form description which defines a
form type. Since a form description consists of three
parts, corresponding to each level (as in Fig. 2), a form
schema has three components--an external form
schema, a logical form schema, and a physical form
schema.

A set of form types is contained in a document base.
Several document bases are contained in an office. An
office is a site where a number of form applications are
carried out. An office contains a number of users. A
user makes use of several document bases, each
corresponding to several applications. PALET manages
a set of form types existing in several distributed offices.
Actually, PALET does not use any database. This is
because current databases have little flexibility for
meeting a requirement for data structure change, and
are not well suited for unintegrated miscellaneous

forms. Although PALET can also handle text
documents, attention is mainly focused on forms
hereafter.

3. Data Definition

3.1 External Form Definition

An office worker can design an external form type on
the screen interactively. Normal designing steps are as
shown in Fig. 3. First, the user creates several frames on
the screen, as in (a). Next, he divides them to make
tables, and expands or reduces rows/columns to desired

281

(a) Equipment Order
|
(b) Equipment Order

==]

LT |

Fig. 3 External Form Design

size, resulting in (b). Finally, he inputs item names into
appropriate fields. Important operations are listed
below.

(1) Frame--create, divide, delete, move, copy

(2) Row/Column--add, delete, expand, reduce, ex-
change

(3) Table Head/Side--expand, divide, merge

This operation creates a group item, as shown in Fig.
2.

(4) All Frames--delete, copy (except title)

(5) Item Name--add, delete, modify, copy

An important feature is that each operation can be
executed even if the form type already has some form in-
stances (see 3.4). Dynamic form schema change is possi-
ble during program execution. The external form design
generates an external form schema. The external form
schema contains such information as item names, posi-
tions and rectangle sizes of item names/values, line in-
formation, repeating directions for repeating items, and
numeric editing information.

3.2 Logical Form Definition

An important PALET point is that the logical form
definition is automatically derived through the external
form definition process. That is, the basic part of a
logical form schema is generated from an external form
schema automatically. (Complete logical form descrip-
tions can not be obtained from the screen format. As
described later, information such as item generation
rules, some data types, and relationship definitions has
to be given by users.) Users do not have to define the
database data description before the form processing.
This design scheme is the reverse of that for normal in-
tegrated database systems. A PALET user designs an ex-
ternal form on the screen, and that description is used
by the system to generate a part of the document base
definition. PALET can generate a fairly complex logical
form in non-first-normal-form, such as the one in Fig.
4. More importantly, the logical form structure can be
flexibly changed (see 3.4).

Figure 4 explains the logical form schema generation.
When a user draws an external form schema, the system

282

External Form Schema

Equipment Order
B Rl
(Date [~] Ordered

[Section |]

Installation| Total
Cast,

Equipment Name Price

Totel

Remarks 1 l
for Order

Logical Form Type

@ 03 PersonOrdered char(20),

K. TSURUOKA, K. WATABE and Y. NISHIHARA

Logical Form Schema

01 EquipmentOrder,
02 Framel,
03 Order# char(8),
03 Date char(8),
02 Frame2,

03 Section char(8),

02 Frame3,

03 Group3G(3),
04 EquipmentName char(20),
04 Price num(4),
04 InstallationCost num(4),
04 Total num(8),

03 TotalPrice num(6),

03 TotallnstallationCost num(6),
03 TotalTotal num(6),

02 Frame4,

03 RemarksforOrder char(30);

Order#|Date(Person |Section|Equipment|Price|Installa-|Total|[Total|Total Instal-|Total]Remarks
Ordered Name Priceliation Cost _[Totallfor Order
10015911/ (David 0IS-G 3500 150] 3650} 4200 250| 4450(should be
15/ |Kent 4670 700 100 installed
8 by 12/29/84
100166117 |John DB-G Printer 11200 501 12501 650 T50(6650(to be |
20/ fwall [500 20 520 received
84 WP 480 80] 4880 12715784

Fig. 4 Logical Form Schema Generation

recognizes its data structure and generates a correspond-
ing logical form schema. The generated logical form
schema is a data structure description with a form name
at the top level. Each frame is mapped to a group item
at the second level. An item is recognized when an item
name is put into a field, and the item length is decided
from the size of a (rectangular) field under (or to the
right of) the name. The repeating number for a
repeating (group) item is determined from the number
of lines (or columns) under (or to the right of) the item
name within the frame.

A frame itself may be a repeating group item, as
Frame 2 in Fig. 2, or it can include another repeating
group item, as Frame 3 in Fig. 4. As in Fig. 4, when a
key word, such as Total, Average, Maximum or
Minimum, is put into the table side (or table head, if
horizontally repeating), new non-repeating items are
generated (such as TotalPrice, TotallnstallationCost,
TotalTotal), and a new repeating group item (such as
Group 3G) is created. That is, some derived items (such
as ‘‘vertical’’ totals) are automatically defined.

A logical form schema defines a logical form type,
such as in Fig. 4. A logical form type can be considered
as a non-first-normal-form relation. More than two
levels of nesting are not allowed, however.

Users can give other logical form descriptions. These
are derived items and their generation rules, data types,
and relationship definitions. Derived item generation
rules are defined, such as A=B+C, D=SUM(E) = 10,
where A, B, C, D, E are item names. Functions, such as
SUM, AVR, MAX, MIN, DATE, TIME and USER,
can be used. The generation order for derived items is
automatically recognized by the system, so users can
define them in any sequence.

A relationship can be defined between two form types

through related items. An index is created automatical-
ly on each item. Using relationships, a user can retrieve
related forms without explicit join-like commands.

3.3 Physical Form Definition

A physical form schema is generated automatically
from its logical form schema. A physical form instance
is a set of variable length records. Each record consists
of a number of variable length items, as shown in Fig.
6. Each item can be repeated any number of times. A
physical form instance is a ‘‘flat’’ set of items, whereas
a logical form instance is a structured set. Actually, as
there is a mapping between logical and physical form
items, a physical item ID does not directly correspond
to a logical item ID (see Fig. 6).

Additionally, users may define indexes on any items.
Indexes can be created at any time, even after the form
instances have already been stored.

3.4 Structure Change

One of the outstanding PALET features is its flexibili-
ty. PALET allows external and logical form structure
change at any time, even after the form instances have
already been stored, without database reconstruction.
(The logical structure change allowed include adding/
deleting items, expanding/reducing item length, reorder-
ing of items, increasing/decreasing repeating number,
etc.) The structure change is performed through the ex-
ternal form schema modification on the screen, as
shown in Fig. 5. Users add/delete frames, or add/
delete/expand/reduce/exchange rows or columns in the
same manner as the external form schema definition.
The corresponding logical form schema is automatical-

PALET: A Flexible Office Form Management System

External Form Schema

0ld New
Fname Fname
T [T
‘La c =
IL c D B
eIl —)

Logical Form Schema
0old

01 Fname, 01 Fname,
02 Framel, 02 Framel,
03 A char(3), 03 A char(8),
02 Frame2(3), C::::> 02 Frame2 (4),
03 B char(4), 03 C char(8),
03 C char(4); 03 D char(4),
03 B char(4),
02 Frame3,

03 E char(6);

Fig. 5 Logical Form Schema Transformation

ly changed when a user changes the external form
schema (see Fig. 5). Therefore, it is necessary for the
user to consider only the external forms; he does not
have to handle logical (or physical) forms.

For the illustration in the upper left in Fig. 5, a user
expands the row for item A, adds a new column for
item D, expands the column for item C, exchanges col-
umns for items B and C, adds a row for the second
frame, and adds a new frame for item E, resulting in the
illustration in the upper right of Fig. 5. These external
level operations are interpreted to corresponding logical
level operations; item length for item A is expanded, a
new item D is added, item length for item C is ex-
panded, data structures for items B and C are changed,
the repeating number for group item Frame 2 is in-
creased, and a new E is added.

External form schema operations and corresponding
logical form schema operations (implicitly executed) are
listed below. (Here, for simplicity, only vertically
repeating items are assumed.)

[External Operations] [Logical Operations)
Expand row/column —> expand item length
Reduce row/column —> reduce item length
Add/Delete row —> increase/decrease
repeating number
Add/Delete column —> add/delete item,
data structure change
Add/Delete frame —> add/delete item
Exchange columns —> data structure change
Add/Delete keyword —> increase/decrease
to table side repeating number,
add/delete item,
data structure change

The structure changes described above need database
reconstruction for normal database systems, since
database systems cannot change schemas dynamically
during program execution. In the case of PALET,
however, the logical data structure can be changed at
any time with its screen format change. This can be per-

283

0ld

External Fname [Afal]
Form
B (o}
bl cl
b2 c2
b3 3

old
Logical
Form

Physical
Form

Fig. 6 Form Instance Transformation

formed through flexible physical-logical-external form
mapping, and with variable length physical forms.
Fig. 6 explains this mechanism (the same sample as in
Fig. 5 is used).

In Fig. 6, an old form type is changed to a new one,
when a user changes its external form schema. When
the external form schema is changed, the structures for
logical form instances are also changed, as a result of
the logical form schema change. This is shown in the
middle charts in Fig. 6.

Here, physical form instances remain unchanged, if
no update occurs. When a user retrieves an old physical
form through a new form schema, the old form is
transformed into a new logical form (shown by the solid
line from lower left to middle right). By this mapping,
users can see old forms through a new form schema
without any reconstruction (new item values are set to
null, item lengths are adjusted). When the user, after
the retrieval, inputs new item values and updates the
form instance, the old physical form is changed into a
new one created from the new logical form (shown by
the solid line from middle right to lower right). Other
physical forms are left unchanged. That is, old and new
physical forms may exist in a document base at the
same time, with no need for reconstruction.

4. Data Processing

4.1 Data Handling

PALET has several functions for use in manipulating
form instances. These are form display, data entry,
table processing, query, etc. To display a form instance,
a mapping (physical-logical-external) is performed (see
Fig. 2).

Normal table processing functions can be performed
for each frame. These include: sort within a frame for
rows/columns, move/copy/exchange for an item,
move/copy/exchange/insert/delete for a row/column,
copy for a form instance, etc. Null values are given

284

Conditions

Person

Ordered
[Section |]
o8t

Egul&nt Order
[orgers] >1000
(Dete []

Equipment Name

Price| Installation| Total

>1000
<5000

Printer
WP

<40

Remarks
for Order

Totali

n —

K. TSURUOKA, K. WATABE and Y. NISHIHARA

Results
.
.
Equipment Order

Order® 00 Person John
[Date | 0a/12/84 Ordered wall

OIS-G
Equipment Name Price| Installation| Total
FDD 500 20 520
Printer 1200 50 1250
[00 80]
Total 8500 150

Remarks should be installed by
for Order | 05/27/8.

Fig. 7 Query for Forms

Conditions Results
Equipment Order Order# | EQuipment | Price
[Orders]] P Name
ordered 1001 | Printer 1200
1001 [WP 4800
Equipment Name Price] Installation| Total 1005 PC9800 2500
ST e 1173 | Printer 1500
Tota) /—_.—/
Remarks [j
LnroMsr 1950 | PC9800 2500
1850 | W. Disk 2100
...
Expensive Equipment
[Page [001 STORE
Order# | EQuipment | Price
T
1001 | Printer 1200
001 | W 4800
1005 [PC8800 2500

Fig. 8 Query for a Table

special consideration for their processing and calcula-
tion. For example, null rows are pushed downward
while sorting.

PALET query functions are fairly simple, compared
with those for relational database systems. However,
PALET can retrieve forms in non-first-normal-form[4,
6]. Users can easily specify conditions for repeating
group items on the screen. Fig. 7 shows an example
of the query for forms. In the example, the conditions
state:

“Find EquipmentOrder instances having

Order#> 1000 and
(EquipmentName, Price)2
(Printer, >1000) and

(EquipmentName, Price)2 (WP, <5000) and
InstallationCost 2 (< 40).”

As in the example above, conditions put in the same
row constitute a set. And these sets (each searched in-
dependently) determine the semantics of a query. In
Fig. 7, if ‘“ <40 was put in the same row as ‘*“WP*’, the
meaning would be (EquipmentName, Price, Installa-
tionCost)2 (WP, <5000, <40), and the first form in-
stance in Fig. 7 would not satisfy this condition.

PALET has another type of query, called query for a

table. This query makes it possible to retrieve form data
in an unnested[6] format (first normal form). Fig. 8
shows an example. A user specifies conditions in fields
as in the previous type of query. However in this type of
query, multiple rows cannot be used in a frame. Addi-
tionally, the user indicates the items to be displayed in
the result (projection; shown by hatching in Fig. 8). The
system virtually flattens the form type (unnest[6]) to
create a first normal form relation, searches each row to
check the conditions, then extracts satisfying rows and
projects them on specified items. The result is a flat
table (optionally rows can be added for Total, Average,
Maximum or Minimum; sorting is possible for the
resulting table). Moreover, the resulting table can be
stored as a form type (see the lower chart in Fig. 8). In
this case, some number of rows (specified by the user)
constitute a form instance (nest[6]). The system creates
an item called a ‘‘Page”’ as a primary key, and generates
its value for each instance.

4.2 Derived Form

Office workers often need summary reports in order
to grasp the meaning of office activities and control
them. A user can define a derived form type over some

PALET: A Flexible Office Form Management System

(a)

Section Orders

Name

285

(b)

Equipment Cost

Department | Computer

Name System
A
E:> Name Quantity Cost L———7> Section | Section Section

Printer 4 5200 Quantity| Cost
wp 3 114400 0IS-G 14 25950
PC9800 2 | 5000 KB-G 8 14700
FDD S 1350 0S-G 11 20980
Total 14 1259850 4 DB-G 7 11240
@tal 40 72870

SectionName=PARTITION (Section)
Name=GROUP (EquipmentName)
Quantity=GCOUNT (Equi pmentName)
Cost=GSUM(Price)
TotalQuantity=SUM(Quantity)
TotalCost=SUM(Cost)

Section=SectionName
SectionQuantity=TotalQuantity
SectionCost=TotalCost
TotalSectionQuantity

= SUM(SectionQuantity)
TotalSectionCost

= SUM(SectionCost)

Fig. 9 Derived Form

other form type. The former includes the summary in-
formation for the latter. For example, assume that a
department has several sections, and that each section
issues a number of EquipmentOrders (Fig. 1). In this
case, a user can define a derived form type, Sec-
tionOrders, over EquipmentOrder (see Fig. 9(a)). A Sec-
tionOrders instance contains all equipment names
ordered by the section, where the same type of equip-
ment is grouped and its quantity and cost is calculated.

A user defines a derived form type by specifying
generation rules. The syntax given below is the superset
of that for the derived item generation rules specified in
3.2.

Jr=PARTITION(/,) or Jy,=null
Js=F(\, L,. .., I)or J,=F(J, Js,. . ., J»)

(=1, 2,. .., m) is an item for the source form,
J(s=1, 2,. .., n)is an item for the derived form, J; is
the primary key for the derived form, and F is a genera-
tion rule.)

Here, if PARTITION is specified for Ji, source form
instances having the same value for /; constitute a set,
and for each set, one derived form instance is created
(Fig. 9(a)). Otherwise, when J; is a non-derived item, all
source form instances are assembled to create a single
derived form instance (Fig. 9(b) generated from (a)).
Generation rule F includes simple copying of items,
arithmetic operations, SUM, AVR, MAX, MIN,
GROUP, GSUM, GAVR, GMAX, GMIN and
GCOUNT. Group operations (from GSUM to
GCOUNT above) must be accompanied by a single
GROUP within a frame.

As a PALET special feature, a derived form type,
freely designed by some user, may be stored as a set of
physical forms. Therefore, a derived form type can be
seen as a set of snapshots. Users can easily define higher
level derived forms over the stored forms. A user may
generate whole derived instances of a type at once, or he
can generate a specific instance in order to modify an
old one. Since a derived form type is physically stored,

a user may add non-derived items for the derived form,
and can modify these items as well as the snapshots of
derived items.

Though the derived form is mainly for summary
report snapshot generation, it can be used like a view (a
view set is more appropriate, because the definition
generates a set of form instances). In the simplest case,
items for a derived form are a subset of items for a
source form (a kind of subschema).

As a special function, an external form instance can
be transformed into a text document, as well as into a
graph/image document.

4.3 Remote Processing

PALET can be seen as a distributed document base
management system. It can handle forms and text
documents distributed over several offices (sites). The
basic functions are remote query and electronic mail.
Important features are: effective distributed informa-
tion management using replicated directories and
replicated form schemas, and remote form queries
through freely designed screen formats.

A user can make a query for forms or for text
documents existing in a remote document base. The
retrieved forms/documents can be stored in the user’s
document base. Also, a user can send forms or text
documents to other users residing in remote offices.
Forms/documents received in a mailbox may be stored
in a document base of the recipient.

In order to control the distributed document bases,
PALET maintains a distributed directory in each office.
Each directory has the same content (replicated). It con-
tains mainly location and relationship information for
offices, users, document bases, form types, and docu-
ment groups. Form instances in a specific form type
may be physically distributed to several document
bases, as described in the directory. The system can find
the location of any form, merely by checking the local
directory. There is no need to consult other offices. This

286

Office 1

Document Base 2

K. TSURUOKA, K. WATABE and Y. NISHIHARA

Document. Base 4

Fig. 10 A Scope

reduces the communication cost and shortens the
response time for a remote query. For update activities,
only form types are registered in the directory, not each
form instance. Therefore, update frequency is not so
high. A user registers shared form types to the direc-
tory. Other local form types cannot be seen by remote
users.

A user can distribute a form schema in a form type to
several document bases. The distribution enables scope
management. The user scope consists of a set of form
types to which he has access. The accessible form types
are those local forms existing in the user’s document
bases, and those remote forms whose form schemas ex-
ist in his document bases. Fig. 10 shows the scope
(within the dotted line) of user X in office 1, where rec-
tangles show form types.

The form schema distribution provides flexible securi-
ty control. For example, in Fig. 10, if the owner of form
type E transfers its form schema to document base 1,
the users of document base 1 will have access to E in
document base 3. That is, a user distributes form
schemas to other user groups (corresponding to docu-
ment bases), who can use the form types. Using the
form distribution, users can manage forms more secure-
ly than is possible when merely dividing them into
shared and local forms.

The replicated form schema is utilized for various pur-
poses. The form schema is needed for local processing,
such as to handle received forms locally. Moreover,
when making a query for remote forms, a local form
schema is used to display and control them. This local
processing reduces the communication cost and allows
the remote query to be executed rapidly.

When replicated form schemas are distributed among
offices, update control is necessary to avoid inconsisten-
cy. PALET identifies the copy/original and revisions of
form schemas. The distribution source form schema is
the original (shown by hatching in Fig. 10), and

distributed form schemas are copies. Only the original
form schema can be updated and re-transferred. Addi-
tionally, when an attempt is made to make a remote
query or to transmit a form into the mailbox, revisions
in the remote and local form schemas are checked so
that no inconsistencies will occur. The copy/original ID
and revision are included in the distributed directory to
be checked locally, so that no excessive communication
occurs.

5. Conclusion

PALET presents the following outstanding features,
which enable office workers to speedily and flexibly
design and handle miscellaneous office forms.

(1) Forms with relatively complex formats can be
designed flexibly on the screen. Moreover, their basic
logical and physical data descriptions are automatically
generated from the screen formats interactively. Thus,
the logical form in non-first-normal-form can be defin-
ed easily.

(2) The logical form structure (in non-first-normal-
form) can be dynamically changed during program ex-
ecution, through screen format change. This is possible
even if the form data are stored, without any need for
database reconstruction.

(3) Simple queries for forms in non-first-normal-
form can be easily expressed on the screen. The query
conditions may include repeating group items. Addi-
tionally, query for unnested forms (query for a table) is
possible

(4) A derived form can be defined, which enables
easy construction of summary reports. Higher level
derived forms can be defined hierarchically.

(5) Remote processing, such as remote query and
electronic mail, can be effectively executed with
distributed directories, distributed form schemas, and
scope management.

PALET: A Flexible Office Form Management System

PALET can greatly reduce programming cost and
data maintenance cost. As an example, a user may
design an application form and its summary list to plan
a sightseeing tour. He designs the forms using PALET,
distributes the forms to remote offices, receives them
with the contents filled in, and gathers them together in-
to a summary list by the use of derived form functions.

PALET, with the functions described in this paper, is
currently running on NEC small business computers.
Local PALET functions are commercially available as
NEC products (Japanese version only). Network func-
tions are experimental.

Acknowledgment

The authors would like to thank the following NEC
members: Asao Kaneko, who joined in the functional
design of the PALET early version, and was particular-
ly responsible for its user interface; Mitsuhiro Hattori,
for his valuable suggestions for PALET basic architec-
ture; Shin-etsu Kozuka and Hideki Hamura, who
designed and refined the PALET extended version;
Kazuhiko Honda, for his valuable discussions.

287

References

1. Czejdo, B. and Embley, D. W. Office Form Definition and Pro-
cessing Using a Relational Data Model, Proc. ACM SIGOA Conf.
(1984), 123-131.

2. Lefkovits, H. C. et al. A Status Report on the Activities of the
CODASYL End User Facilities Committee (EUFC), SIGMOD
Record, 10, Nos. 2&3 (1979), 1-26.

3. Lum. V. Y. et al. OPAS: An Office Procedure Automation
Bystem, IBM Systems Journal, 21, 3 (1982), 327-350.

4. Luo, D. and Yao, S. B. Form Operation by Example--A
Language for Office Information Processing, Proc. SIGMOD Conf.
(1981), 212-223.

5. Purvy, R. et al. The Design of Star’s Records Processing: Data
Processing for the Noncomputer Professional, ACM Trans. Office
Inf. Sys. 1 (Jan. 1983), 3-24.

6. Schek, H. -J. and Pistor, P. Data Structures for an Integrated
Data Base Management and Information Retrieval System, Proc.
VLDB (1982), 197-207.

7. Shu, N. C. et al. Specifications of Forms Processing and Business
Procedures for Office Automation, IEEE Trans. Soft. Eng., SE-8, 5,
Sept (1982), 499-512.

8. Tsichritzis, D. Form Management, CACM, 25, 7 (July 1982),
453-478.

9. Yao,S. B. et al. FORMANAGER: An Office Forms Management
System, ACM Trans. Office Inf. Sys., 2, 3 (July 1984), 235-262.

10. Zloof, M. M. Office-by-Example: A Business Language That
Unifies Data and Word Processing and Electronic Mail, /BM Systems
Journal, 21, 3 (1982), 272-304.

(Received May 21, 1985; revised November 22, 1985)

