An Efficient Representation of the Integers for the
Distribution of Partial Quotients over the
Continued Fractions

HipETOSHI YOKOO™*

A binary representation of the positive integers is proposed which is close to optimal for the distribution of
partial quotients over the continued fraction expansions of rational numbers. The average length of the propos-
ed representation is about 1% greater than the entropy of the distribution. This representation is order-preserv-
ing in the sense that the lexicographic ordering of the bit strings corresponds to numeric ordering of the values.
As aresult, it can be applied to lexicographic continued fraction representation for an internal representation of

real numbers in computers.

1. Introduction

The problem, called a representation or an encoding
of the integers, is one of the most fundamental and im-
portant problems of information sciences. In Turing
machine theory, it is required to represent integers
separably as sequences of symbols on the tape.

In information theory, the objective of source coding
is to find a particular representation for a certain source
so as to minimize the expected length of the representa-
tion. In general, however, there is no constructive way
for infinite prefix-free encoding of the integers, so that
the notions of universality and asymptotic optimality
are introduced instead and the performance of the
representations is discussed in terms of such criteria [1].
In particular, asymptotically optimal representations
have been presented in [2], [7], which reveal that the
quantity  logFi=log,i+log;logi+. . . (only  the
positive terms are included in the sum.) plays an impor-
tant role for the distribution of integer i.

While these discussions on the asymptotic optimality
are mainly conducted by the theoretical interests,
specific representations for some -particular distribu-
tions on the integers become important in practice. In
run-length encodings [4] for the compression of binary
images, geometric distributions are assumed for the in-
tegers. Humblet [5] proposes an optimal representation
of the integers whose distribution is Poisson. The par-
ticular case that we deal with in this paper is the distribu-
tion of partial quotients over the continued fraction ex-
pansions of rational numbers [8]. This paper proposes
an efficient representation of the integers for that
distribution. Since the proposed representation has
another advantage that lexicographic order of the
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codewords corresponds to the numeric order of the in-
tegers, it can be applied to lexicographic continued frac-
tion representation of rational numbers which is in-
troduced by Matula & Kornerup [9] as an internal
representation of real numbers in computers.

In the next section, we give a formal definition of a
representation of the integers and describe the distribu-
tion of partial quotients over the continued fraction ex-
pansions of rational numbers. Section 3 presents the
new representation of the integers, whose efficiency is ex-
plained in comparison with an alternative simpler
representation of the integers. Section 4 gives remarks
on the application of the proposed representation to the
lexicographic continued fraction representation as a
computer internal representation of real numbers.

In the sequel, log x and In x mean log,x and log.x, re-
spectively.

2. Preliminaries

2.1 Representation of the Integers

In the following, a source (Z*, P)is a set Z* of the
positive integers and a probability distribution function
P:Z*—(0, 1] that assigns a positive probability P(j)>0
to each integer je Z ™.

Let B=1{0, 1} be the code alphabet and B* denote the
set of all finite sequences of symbols, each symbol
selected from the set B. A representation of the integers
is a codeword set CCB* and a one-to-one encoding
function f: Z*—C, which assigns a distinct codeword
f(j)e C to each integer j. The set C and the encoding
function f are said to be uniquely decipherable if for
each sequence of integers, the sequence of codewords
corresponding to that integer sequence is different from
the sequence of codewords corresponding to any other
integer sequence.
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A uniquely decipherable set Cc B¥ is said to be com-
plete iff adding any new sequence ¢’ € B*, c'¢C,t0 C
gives a set C’ =CU{c’} that is not uniquely
decipherable.

Let ¢ be a codeword in C of length / and represented
by c=ciC2 . - - Ci where ¢, ¢, . . . , ¢ denote the in-
dividual symbols in B. Any initial part of c, that is, i
.. Cm for some m=lis called a prefix of c. A prefix
condition set is defined as a set in which no codeword is
the prefix of any other codeword. A prefix condition set
is uniquely decipherable, as is easily shown.

A codeword c=cic;...c is said to be lex-
icographically smaller than a codewordd=d d; . . . dn
if c,<d; or if ¢;=d; for i<n and ¢, <d, for some n=l,
m; orif c=d;for1<i=/and I<m. The encoding func-
tion f is said to be order-preserving iff f(i) is lex-
icographically smaller than f() fori<y.

The length function L of the set C is defined by

L()= /DI

where 1f(j)! denotes the length of the codeword f(J).
Our principal objective in this paper isto find a set C

and an encoding function f, which satisfy the following

conditions:

(@) Cis a prefix condition set;

(b) fis order-preserving;

and minimize the average value of the function L with

respect to the given P,

Ep(L)= ; PLQ)- ¢y

If a code has the minimum average codeword length,
the minimum being taken over all uniquely
decipherable codes, then the code is said to be optimal.
It is known from information theory [3] that if the
source (Z*, P) has a finite value of entropy

HP)=— ; P(j) log P(j), @)

Ep(L) is lower bounded by H(P).

2.2 Distribution of Partial Quotients over the Con-
tinued Fractions

Utilizing the notation /a,, a2, as, - . ./ for the con-

tinued fraction

a1+

az+

a3+ KR

where the partial quotients a;’s are assumed to be in-
tegers, every rational number v/u in the range
0<v/u<1 has a finite expansion

- anl, ©)]

which is unique with the added requirement a» = 2. For
the distribution of partial quotients when (3) is uni-
formly distributed in the range, it can be demonstrated
(8] that, for sufficiently large i, the probability that any
particular partial quotient a; takes a specific value j
depends only on j and is given by

G+

P(j)=log - )
D=8 G2
This satisfies the requirement
2 P(H=1,
j=1
and has the entropy
< y+1y (+1y
HP)=—),log = log log=—==3.45, (5
(PY== 210 5530) G+

which is numerically evaluated.
3. Proposed Representation

3.1 Primitive Method

It seems so difficult to find an efficient representation
of the integers, in the sense that it minimizes the average
length (1) for the distribution (4), which satisfies both
the requirements (a) and (b) in section 2.1. However, we
see that the following primitive method not only
satisfies the requirements but also is fairly efficient.

A full k-bit integer is a positive integer j whose or-
dinary binary representation contains k Dbits with
leading bit 1, so then 2¢~' < j=2*—1. The codeword of
the primitive method for full k-bit integer j is formed
from the ordinary binary expansion simply by replacing
the leading 1 by a sequence of (k—1) 1’s and a zero [7],
[9]. That is, if the ordinary binary expansion of j is la
where « is any sequence of 0’s and 1’s, the representa-
tion of j by the primitive method is

llaloa,

where |a| denotes the length of « and the part a may be
called a postfix of the representation.
This method has the length function

L(j)=2|logj] +1,
(|x] means the greatest integer not greater than x.)
and the average representation length

EP(L)=§] @ |logJj] +1)log P(j)=3.51,

which is less than 2% greater than the entropy (5).

3.2 Proposed Method

Our new method may be considered as an improve-
ment of the primitive method, because the new represen-
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tation has the same leading part 1'*'0 for an integer j
whose ordinary binary expansion is la. The encoding
function of the proposed method is represented as

SU)=10B0),

where f(j)e B* is called the postfix of a codeword f()).
In the proposed method, (1) is an empty string, and
for j=2, B(Jj) consists of a leading bit f4(/) and the rest
B’ (j), that is,

BU)=Bo(NB' ().
For a full £-bit integer j, let

uh) =5 @1 = (=17, ©)

which is always an integer for k=1. Then the leading
bit Bo(j) is set to 0 for j<2¥ '+ u(k) and to 1 for
Jj=2"'+ (k). Thus, among all full k-bit integers, the
first u(k) codewords have 0 for So(j) and the rest
2k=1—u(k) codewords have 1 for By(j). Note that

27 = k) =p(k+1). (M

In j=2%"'+u(k), the part f’(j) is defined as an or-
dinary binary expansion of j—2'"'—pu(k) of length
(k—2) bits for j<2* '+2u(k), and as an ordinary
binary expansion of j—2"! of length (k—1) bits for
J=2 "+ 2 u(k). For j<2k'+u(k), B’'(j) is recursively
defined as

B (=B —uk)). ®)

Table 1 gives the representations of the primitive
method and the proposed method. In the table, copying
processes correspond to the facts (7) and (8).

It is easy to see that the proposed representation
satisfies the requirements (a) and (b), and also that the
codeword set is complete. Therefore, it is possible not
only to represent any sequence of positive integers by
the finite bit sequence, but also to interpret any infinite
binary sequence as the infinite sequence of positive in-
tegers. An interpretation algorithm is given as follows,
which can decode an input binary representation into
an integer j by a left-to-right scan.

Interpretation procedure
I1. Set k<1, s<input symbol e {0, 1}.
12. While s=1, repeatedly set k<k+ 1, s<input sym-
bol.
I3. If k=1, set j«<1 and end.
14. Set s<input symbol.
I5. If s=0, set j<u(k)+Rk—1).
. Otherwise, set j<R(k).
I6. End.

Function R(k)

R1. Set R<1.

R2. If k=1, return.

R3. Repeatedly (k—2) times set
s<input symbol,
R<2R+s.

H. Yokoo

Table 1 The primitive representation and the proposed representa-
tion of the integers 1, 2, ..., 21. A space between the
leading part and the postfix is inserted for clarity.

k integer j Primitive Proposed

1 1 0 0

2 2 10 0 10 0
3 (=2"+u(Q2) 1 1

3 4(=2) 110 00 110 0
5 (=224u(3)) 110 01 110 1.0
6 (=22+2u(3)) 110 10 110 110
7 110 11 110 111:

)

4 8 (=2) 1110 000 1110 00
9 1110 001 1110 0110
10 1110 010 1110 0:11:
11 (=22+u4) 1110 011 1110 100
12 1110 100 1110 101
13 1110 101 1110 1:10
l4(=23+2y(4)) 1110 110 1110 1'110
15 1110 111 1110 11111

)

5 16 (=29 11110 0000 11110 000 :
17 11110 0001 11110 001
18 11110 0010 11110 010
19 11110 0011 11110 0110
20 11110 0100 11110 0111
21 (=24 u(5)) 11110 0101 11110 1000

R4. Set R—R+u(k)+2<2.

R5. If R=2""+2u(k), set s<input symbol,
R<2R—2u(k)—2"""+s.

R6. Return.

3.3 Near Optimality

Unfortunately, we have not yet proved or disproved
the optimality of the proposed representation, but it is
easy to show that the proposed method is more efficient
than the primitive method for the distribution (4). This
will be shown below after giving an explanation why the
primitive method is so efficient.

First, since P(1)=0.415 . . . , the integer 1 should be
coded by a single bit, i.e., |[L(1)I =1 (e.g., see [6]).

Next, noting that full k-bit integers have all the same
representation length 2k —1 in the primitive method, let
us consider the source (Z*, Q) with

0(j)=2"%"
Note that

for 2¥'<j<2k—1, k=1,2,....

; 20)=1

and that the primitive method is optimal for this source.
Then, we can show that the distribution Q is close to (4)
in the sense that the inequalities

PQ")>0()> PR - 1) ®

hold for k=2. In order to prove the first inequality of
), i.e.,

fe

[
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k=1 2
@ Ty (10)

log 3-i1+2) ’

we set y=2¢"! for notational convenience, then y=2
for k =2. According to a useful formula
In(1+x)=x for x>-—1 11

and its variation

—In(Q1—x)=x for x<1, (12)
we have
@'+ (+1)
In 7= =in
2121 +2) (y+2)
1
=—In|l1-
“( (y+1)2)
1
= 13
=017 9
since 0<1/(y+1)’<1/9 for y=2. Further, we have
_ 1 2 1 {2-In2)y*—2In2-y—In2}
I 2 2D Y IR AR

>0 for y=2.

This and (13) prove (10).

We proceed to the proof of the last inequality of (9),
ie.,
22k

C— D2 +1)
If we set z=2*, then z=4 for k=2. According to (11),

22k z2

-+ P e=De+D

27" D>log (14)

In

0 for j=0,

)=

(15)

since 0<1/(z*—1)=<1/15 for z=4. Combining (15)
with

2In2 1 (2In2—-1)72-2In2

2 z2-1 (z*-1)
>0 for z=4,

we have
n 2% 2In2

(2’<—1)(2*+1)< 22’

which proves (14). Thus, we have evaluated the efficien-
cy of the primitive method by the inequalities (9).

In order to see that the proposed method is an im-
provement of the primitive method, it is sufficient to
compare the average postfix lengths of both representa-
tions, because the leading part 1'*'0 is common in both
representations. In the primitive method, full £-bit in-
tegers have all the same postfix length: k-1. The average
postfix length of the full £-bit integers is

2k—1

Lyim(k)= ; P(j)k—1)
2642
=(k—1log 5 -

In the proposed method, on the other hand, when we
denote the postfix length for an integer j as /(j), then

k—2 for3skand2f'sj<2¥'4+uk—1)—1,

k—1 for2<kand2 '+uk—D=j=2""+2uk)—1,
k  for3=kand 2 '+2uk)<j<2%—1.

Let L,..,(k) be the average postfix length of full k-bit integers in the proposed representation and let

QI DR Huk—1)

(k)=

21025 T y(k—1)+1)
_ @ pt= )+ DE +2u(K)

n(k)=

@+ uk= 1)@ +2u(k)+ 1)
@+ 2ulk)+1)2

Ek)=
Then

Lyop(k)= {O

Since Lyim(k) can be expanded into

QM 2uk)RA+1)

for k=1,

(k—2)log L(k)+(k—1)logn(k)+klog &(k) for k=2.

Lyrim(k)= (k—1){log (k) +log n(k)+log (k)},

we have
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0
Lyiim(k) = Lypiop(k) = {log C(k)—log E(k) for k=2.

If we set z=2% and d=(—1)* for k=2, then
(z+2)(7z—4d)

(= rz—dd+12)
_ (5z+4d+6)z
5(k)_(5z+4d)(z+ 1)

and

3723 —2z2+(16d—48)7—32
(7z—4d+12)(5z+4d)(z*+2)
3z°—27*—32z-32
(7z+8)(5z+4)(z*+2)
if k is even,
3z3—27z2—64z7—32
(7z+16)(5z—4)(z*+2z) (16)
if k is odd.

Since the denominators of (16) are positive for z=1 and
the numerators 3z°—2z%—32z—32 and 3z°—2z2—64z
—32 are positive for z=4 and z=5.18 . . ., respec-
tively, then we have

{(k)zl(k) for k=z2.

{(k)—ck)=

Thus,
Lprim(k) ; LPI'OD(k)

holds for all k=1.

By numerical computation, the average representa-
tion length of the proposed method is shown to be 3.49,
which is about 1% greater than the entropy (5).

4. An Application to the Lexicographic Continued
Fraction Representation of Rational Numbers

An efficient order-preserving representation of the
real numbers is considered, where every rational
number has a finite representation length. Such a
representation is important in that, for many applica-
tions, exact arithmetic operations between rational
numbers are feasible, and that theoretically the
behavior of the representation length of rational
numbers could be investigated. Lexicographic con-
tinued fraction (LCF) representation introduced in [9]
is one of the representations which provide the above
properties. In this section, brief comparisons are made
between the original LCF —representation and the
LCF —representation which utilizes the proposed
method for the representation of the integers.

Let C and f be a codeword set and an encoding func-
tion which realize the requirements (a) and (b) respec-
tively, and f(j) be the complement of f(j) which
satisfies

D= 1ADI,

H. Yokoo

for k=1,

S DRf)=1"Y
where @ denotes the bitwise XOR.

Noting that a continued fraction (3) is equal to /a;,
ay, ...,an—1, 1/ and that the continued fraction in-
creases or decreases when the partial quotient a; in-
creases, according as i is even or odd, the LCF-represen-
tation corresponding to the continued fraction which is
unique in terminal index even formv/u=/a,, az, . . . , @/
is defined by

rer(;)

_ {0.0 for v=0,
0.f(a)f(a2) . . . fUazu-1)f(az) . . . f(am-1)f(az)
for O<v<u,

which can be extended to the right with an arbitrary
number of zeros*®. In this definition, the odd indexed
quotients are represented in complement form so that
an order-preserving representation is obtained. The
LCF-representation can be naturally extended to the
positive and negative real numbers. A fuller description
can be found in the original paper [9].

Consider, for example, the LCF-representation of
26/161, which has the ordinary binary expansion
0.0010100101 0101110111 0100000100 110 (repeating in-
definitely) and the continued fraction form:

26 _

=/6.5.5/

(terminal index is odd)

=/6,5,4,1/ (terminal index is even).

If we use the primitive method for C and f, which is the
case in [9], then

26
LCF(E) =0.SO S DA)
=0.00101-11001-00111-0
=0.001011100100111.

If we use the proposed representation instead, we have

LCF<1_266_1) =0./O /) @A)

=0.001001-11010-0011-0
=0.001001110100011.

These encoding processes are cleary reversible.
Specifically, by extending any finite bit sequence with an
sequence of zeros, a left-to-right scan uniquely deter-
mines a terminal index even continued fraction.

*The decimal point ““.”” for the fixed-point representation, which is
not used in the original LCF-representation, is here used for an
analogy of the ordinary binary expansion.
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While these representations have fine and interesting
properties, they obviously have the disadvantage that
the approximation error obtained by rounding to k-bit
LCF-representations is not uniform. In other words,
the gap sizes between neighboring k-bit representable
numbers are not uniform. Of course, this problem
never arises in the ordinary binary representation,
which doesn’t provide for exact representation of ra-
tional numbers, however.

If an irreducible fraction v/u has an LCF-representa-
tion

LCF (%)-—‘O.blbzb; L

and b;=0 for all i > k, then the fraction v/ u is said to be
a k-bit continued fraction. There are 2* distinct k-bit
continued fractions in the interval [0, 1). Let gi(i) be
the ith k-bit continued fraction for 0<i=<2‘—1, that is,
for i=2k_)b|+2k—-2b2+ e +bk,

LCF(qA(l)):Oblbz e bk.
* In order to compare the dispersions of the gap sizes,
we set

g(i)—qii—1) for 1=i=2*-1,

5*('):{ 1-q—1) for i=2,

and
2k
Si=> {6i)—27F}%,
i=1

which is a measure of the variance of the gap sizes. The
fact that equivalent uniform spacing as in ordinary
fixed-point binary expansion has a uniform gap size of
2% corresponds to S3=0, which is desirable.

Plots of this S% as a function of k can be made and
are shown in Figure 1. A comparison of two curves in
this figure shows that substantial improvement in the
distribution of the gap sizes is gained by introducing the
proposed representation of the integers into LCF-
representation.

5. Conclusions

This paper has proposed a binary representation of
the integers which is efficient for the distribution of par-
tial quotients over the continued fraction expansions of
rational numbers. The proposed method gives an im-
proved version of an internal representation of real
numbers in computers, which is called LCF-representa-
tion.

When we consider a variation of LCF-representation
to develop the merit of it, it is important to avoid
heuristic techniques and to define it as axiomatically as
possible. From this point of view, we must incorporate
a representation of the integers which is optimal in
some sense. Therefore, the significance of our proposed
method should be noted in this respect.

While an ordinary b-ary representation is well defined
for any base b, it is not obvious whether or not a
representation of the integers and so the corresponding

1072
Original LCF-
o Representation
%)
107°F /
Proposed LCF-
Representation
1074 L \ ! L i i ' 1 ) 1 AN
1 2 3 4 56 7 8 9 101 1213
Kk
Fig. 1 Comparison of the variances of gap sizes for k-bit con-

tinued fractions.

LCF-representation can be easily extended to the case
with any base. This is one of open problems which re-
quire further investigations.
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