-~

Approximate Square-free Decomposition and
Root-finding of lll-conditioned Algebraic Equations

TATEAKI SasakI® and MATU-TAROW Nopa**

The exact square-free decomposition is generalized to polynomials with coefficients of floating-point
numbers, and an algorithm of approximate square-free decomposition is presented. Given a polynomial P(x)

and a small positive number ¢, 0 < £« 1, the decomposition algorithm calculates polynomials Qy, @, . . .

, Q;such

that P(x) = Q,(x)Q3(x) . . . Q/(x), where each root of Q,,(x)=0 is approximately equal to m multiple root or the average value
of m close roots of P(x)=0. The decomposition is performed by using a generalized Euclidean algorithm, and the properties
of approximate GCD (greatest common divisor), computed by the Euclidean algorithm, is investigated by developing a theory
of approximate GCD. The equations Q,(x)=0, i=1, . . ., I, are much easier to solve numerically than P(x)=0. Hence, we
apply the approximate square-free decomposition to solving ill-conditioned algebraic equations and propose an algorithm

which finds not only multiple but also close roots nicely.

1. Introduction

A polynomial Q(x) is called square-free if the equa-
tion Q(x)=0 has no multiple root. Any polynomial P(x)
with coefficients in a field or a Euclidean ring can be
decomposed uniquely into square-free factors Q,, . . .,

Ql as
PX)=Qi(0)0%x) . . . Qi(x),

QOn(x) contains all the m-multiple factors of P(x).

Finding @, i=1,..., I, for a given P is called the
square-free decomposition [5, 8] and it is a very impor-
tant operation in algebraic computation.

So far, only exact arithmetic has been used for
coefficients in performing the square-free decomposi-
tion. In this paper, we generalize the decomposition to
polynomials with coefficients of floating-point numbers
so that approximately equal factors may be separated as
approximately multiple factors. One may think that the
generalization is trivial, but this is not true. When handl-
ing polynomials with coefficients of approximate
numbers, we must investigate the accuracy of the
coefficients carefully, which is completely unnecessary
in the conventional exact decomposition. We introduce
a concept of approximate GCD (greatest common
divisor) in 2., and in 3., we investigate the Euclidean
algorithm for calculating approximate GCD. Since the
algorithm causes strong cancellation of numbers, the
accuracy of polynomial coefficient is investigated in 4.
On the basis of theory of approximate GCD, we present
an algorithm of approximate square-free decomposi-

*The Institute of Physical and Chemical Research, Wako-shi,
Saitama 351-01, Japan.
**Faculty of Engineering, Ehime University, Matsuyama-shi,
Ehime 790, Japan.

Journal of Information Processing, Vol. 12, No. 2, 1989

tion and many examples in 5.

We can apply the approximate square-free decom-
position to solving algebraic equations nicely. As is
well-known, an equation having multiple and/or close
roots is not easy to solve numerically (i//-conditioned
equation). Although many authors investigated this
problem [1, 2, 3, 7], the ill-conditioned equation is still
attracting many researchers. We note that, even if an
equation is ill-conditioned, we can find a root easily so
long as an approximate value and ‘‘multiplicity’’ of
multiple/close roots are known. (By ‘‘multiplicity’’ of
close roots, we mean the number of mutually close
roots.) The approximate square-free decomposition
gives us such information nicely as we will explain later.
In 6., we present an effective algorithm for solving ill-
conditioned equations numerically.

2. Approximate GCD (greatest common divisor)

Throughout this paper we treat only univariate
polynomials with coefficients of floating-point numbers
(may be complex). By ¢ and & (with indices, if
necessary), we mean small-magnitude numbers, with &
representing the distance between mutually close roots.
The eum denotes the machine epsilon (if M bits are used
to represent the mantissa of a floating-point number
then gy=27#),

Definition 1 [degree, leading coefficient and leading
term]. Let

Px)=ax'+ - - - +ao, a#0.)

The / and a, are called degree and leading coefficient, re-
spectively, and written as deg(P) and Ic(P). The term
a;x' is called leading term. /

Definition 2 [maximum magnitude coefficient]. The ab-
solute value of the maximum magnitude coefficient of

160

P(x) is written as mmc(P):
mmc(P)=Max {lal, ..., lal}.”/ (#))

Definition 3 [numbers of similar magnitude]. If a
number g is such that A/c=< |g| = hc, where A and c are
positive numbers and ¢ is not much different from 1,
then we denote g=0(h)./

(Note). Usage of ““O”’ is not the same as Landau’s
symbol ‘“O”’.

Definition 4 [regular polynomial]. The P(x), defined in
(1), is called regular if lc(P)=0(1) and Max {la;-,|,
..., lagl}=either O(1) or 0./

(Note 1). Any univariate polynomial can be made
regular by scaling transformations P—¢P and x—nx,
where ¢ and 7 are numbers.

(Note 2). Let u be a root of P(x)=0, then lul sO(1)
if P(x) is regular. Hence, if the relative distance between
some roots of P(x)=0 is much less than 1 then we call
them close roots.

Definition 5 [polynomial of small coefficients]. Let ¢
be a small positive number, 0<e« 1. If P(x), given in
(1), is such that mmc(P)=0(¢) then we write P(x)
=0(e(x)). If lail <e, i=1, ..., 0, then we write P(x)
=0 (cutoff €). 7/

Definition 6 [approximate GCD)]. Let ¢ be a small
positive number, 0<e« 1. If polynomials P,(x) and
Py(x) are such that mmc(P,)=0O(1), mmc(P,)=0(1),
and

{P.) =D)P\(x) + O(e(x)), 3)

Py(x)=D(x)Py(x)+ O(e(x)),

then D is called an approximately common divisor of P,
and P, with accuracy €. Among the approximately com-
mon divisors of P, and P, with accuracy &, a polynomial
of the largest degree is called approximate GCD with ac-
curacy ¢ and written as GCD(P,, P»; €). We usually nor-
malize D as lc(D)=1 or mmc(D)=0(1)./

(Note). The number of GCD(P,, P,; &) is not one but
infinite in general. In fact, D(x) + O(&(x)), with D given
in (3), is also an approximately common divisor of P,
and P, with accuracy &. Furthermore, if £’ >¢ then deg
(GCD(P,, Py; €')) may be greater than deg(GCD(P,,

Py; £)). Hence, the above definition of approximate
GCD is quite vague for some value of &. However, it
does not cause any serious problem practically.

Let us investigate the relationship between the ac-
curacy € of GCD(P,, P;; €) and the distance J between
mutually close roots of P,=0 and P,=0.

Lemma 1. Let é be a small positive number and let

Di=(x—u—41)...(x—u—=an),
10il =09), i=1,...,m,

Dy=(x—u—907)...(x—u—-2a,),
16/ 1 =009), j=1,...,n,

where mzn. Let D=GCD(D,, D,; €) and deg(D)=n,
then

@

T. Sasaki and M. Nopa

£z O(Mday— nda), ©)
Ou={+ - +0m)/m,8:=(i+ -+ +61)/n.

(Proof). Let the approximate GCD be

D=x—u—34) ... (x—u—4,,

then 1J;l £0(d), j=1, ..., n. We can express D as

D=(x=uy'—(x—u)"" "6+ - +8,)+ 0%).
Expressing D; and D, similarly, we find
Di=DxX(x=u)" "= (x—u)"'[(G1+ ** +5n)

=61+ +8)1+0(6*(x)),
D,=D—(x—u)"'[(6i{+- - +)— (61 + - +8,)]
+O(5%(x)).

By determining &, ..., &, so that coefficients of
(x—u)""! term of D, and (x—u)""! term of D, become
smallest simultaneously, we obtain Eq. (5)./

(Note). If md,,=nd;, then terms of coefficients of
O(0%) become dominant in D, and D, hence
£=0(md.,—nd,,) so long as |md,,—nd.,| >O0(5?).
Theorem 1. Let J be a small positive number and let

Pi=(x—u—2ay)...(x—u—0omP,
16:)1 =0(9), i=1,...,m,

Pi=(x—u—4) ... (x—u—9)p,
16/ 1 =00), j=1,...,n,

where mz n and P, and P, are regular polynomials hav-
ing no root in the #”-neighborhood of x=u with 6”
sufficiently larger than 8. Let D=GCD(P,, P,; €) and D
contain (x—u)" as an approximate factor. If every fac-
tor in D is an approximately common divisor of P, and
P, with accuracy s O(J), then ¢=0(d) unless a special
relation holds among close roots of relative distance
s O(0). If, however, Py(x)=dP\(x)/dx, then e=0(6?)
unless a special relation holds among close roots of rela-
tive distance < O(9).

(Proof). The first claim of the theorem is a direct con-
sequence of Lemma 1. Next, putting
Ow=(01+ "+ +5,)/ m, we have

Pi=[0c—u)"=(x=w)"" (01 + - - - +m) + OO’ (M) Py

6)

=[(c—u—384)"+ O(5*()) ..)
Hence, if P,=dP,/dx, then
Py=(x—u—35,)"""'5; + O(6%x)). 8)

That is, (x—u—dJ,)™"! is an approximately common
divisor of P, and P, and its accuracy is O(d?) unless the
coefficients of O(d%) terms in Eq. (7) cancel
accidentally. /

3. Euclidean Algorithm for Approximate GCD

We must mention that the theory developed in this
section is not applicable to some polynomials of high

Approximate Square-free Decomposition and Root-finding of Hl-conditioned Algebraic Equations 161

degrees. By restricting ourselves to handling only
polynomials of low or medium degrees, we are able to
prove beautiful and strong theorems. Note, however,
that the restriction is only to satisfy some weak condi-
tions. In particular, we often use the fact: ‘if degrees of
polynomials F and G are not large, then

[mmc(F) X mme(G)]/ mmc(FG)=0(1).”

We will calculate an approximate GCD by the
generalized Euclidean algorithm which computes re-
mainders successively. We impose the following three
rules for the remainder computation.

Rule 1 [leading term elimination). Let F(x) and G(x) be

F)y=fix'+ -+ +fo, i#0,
GX)=gmx"+ - +go, gm#0,I=m.
We eliminate the leading term (x’ term) as

F=[F)—fx'1=x"""(f/ gm)|G(x) = gmx™
=Z; Ui-i—(fi/ gm)gm-dx""" 1/ 10)

)

Rule 2 [zero coefficient]. If x'~ term of the above equa-
tion satisfies

'ﬁ—i—(ﬁ/gm)gm—il =O(€M|ﬂ—i|), an

then we discard the term as a zero coefficient term. 7
Rule 3 [normalization of remainder]. Let Q be the quo-
tient of the division of F by G, then we normalize the re-
mainder R as

F=QG+Max {1, mmc(Q)} XR./ (12)

With Rule 1, we are free from error in fi— (fi/ gm)gm
which must be 0 theoretically but may not be 0 actually.
If Igml =0(emlfil)#0, which may happen in the
floating-point arithmetic, then the elimination is mean-
ingless (F in Eq. (10) is almost proportional to G). Rule
2 is imposed to avoid such hazardous situation. As will
see in 4., in the calculation of approximate GCD by the
Euclidean algorithm, the magnitude of the coefficient of
polynomial contains very important information. The
above normalization in Rule 3 is determined so as to
preserve the information during the calculation. We
will explain the meaning of the normalization in 4.

With the above rules for polynomial and coefficient

arithmetic, we calculate the so-called polynomial
remainder sequence (abbreviated to PRS).
Definition 7 [PRS with cutoff €]. Given regular
polynomials P;(x) and P,(x), deg(P)=deg(P,), and a
small positive number &, 0<e<« 1, we calculate a se-
quence of polynomials

(P, Py, . . ., Py#0 (cutoff &), Pes1=0 (cutoff g)) (13)

by the iteration formula

P, =QiP;+Max {1, mmc(Q)} X Piyy, i=2,.. ., k,
(14)

as well as Rules 1 and 2. We call the sequence (13) a
PRS of P, and P, with cutoff ¢, and we write P, as

Py=GCD’'(P,, Py; €)./ a15)

(Note). Although the length of PRS depends on ¢,
polynomials P, . . ., P, are not dependent on & and
GCD’(P,, P;; ¢) is uniquely determined.

As we have noted below Def. 6, D=GCD(P,, Py; €)
is not unique: when deg(D) is fixed, the accuracy ¢ will
be small for some D while ¢ will be large for other D.
Then, a question arises: what is the accuracy of
D’'=GCD'(Py, P,; €')? The following theorem shows
that D’ is an approximate GCD of almost the smallest
accuracy for a given deg(D’).

Lemma 2. For each P; in PRS (13), there exist
polynomials 4; and B; such that

P;=A,P,+ B;P, (+ O(em(x))),
deg(A)) <deg(P;) —deg(P), (16)
deg(B) < deg(P)—deg(P).
Furthermore, if deg(Py) and deg(P,) are not large, then
mmc(A4;) = O(1), mmc(B) = O(1). a7

(Proof). The A4; and B, satisfying Eq. (16) are
calculated by the extended Euclidean algorithm: put
A,=1, B,=0, A,=0, B,=1, and calculate 4;,, and B,
by the iteration formula

Ai+l=(Ai—|—QiAi)/Ci, Bi+|=(Bi-1‘QiBi)/Ci, (18)

where Q; is the quotient in Eq. (14) and ¢;=Max {1,
mmc(Q)}. Hence, mmc(Q)/c;i=<1. Since we assumed
that deg(P)) is not large, the interation in Eq. (18) does
not cause the coefficients of 4;,, and B;4, large and we
obtain Eq. (17).7

(Note). Since deg(4)>deg(4;-1)) and deg(B)>deg
(Bi-1), formulas in (18) show that mmc(4;,,)=0(1) and
mmc(Bi+))=0(1) in most cases even if mmc(P;+))
becomes small.

Theorem 2. Let P, and P, be regular polynomials and
let D=GCD(P,, P;; ¢) be an approximate GCD of the
smallest accuracy &€ among approximate GCD’s of
degree d=deg(D), where we set lc(D)=1. Let (Py, P,,
«++3yPr...) be a PRS calculated by formula (14).
If deg(Px)=d and deg(P,) is not large then

P,=DP,+ O(e(x)). (19)

That is, P, 2<i=<k, contains D as an approximate fac-
tor of accuracy &/ mmc(P)) at greatest. In particular,
Py=constant X D+ O(&(x)). (199

(Proof). By assumption, there exist polynomials B,
and P; such that

P| =Dﬁ| +€|(x), 81(X)= O(G(x)),
Py, =DPB;+ &x(x), &:(x)=O0(e(x)).
Substituting these into Eq. (16), we have

162

P,'=A,‘P1 + B,‘Pz
=D(A;P,+ B;Py) + A;e,(x) + Biex(x).

By division, we rewrite the last two terms of this equa-
tion as

Ai&1(x)+ Biea(x)=DE&i(x) + ni(x), deg(n) < deg(D).
Thus, we have
P;=D X [A;P,+ B,P,+ £,()] + n:(%).

Since P, and P; are regular polynomials of degrees not
large and lc(D)=1, we have mmc(D)=0O(1). Further-
more, Lemma 2 tells that mmc(A4,) = O(1) and mme(B;)
=0O(1). Hence, ni(x)=0(¢(x)) and the main part of
the theorem is proved. For i=k, we have
[A« P+ B, P;+ £i(x)) =constant because deg(P)=deg
(D). Hence, we have Eq. (19').7

(Note). In the division by D, we must be careful about
the magnitude of lc(D). If, for example, |lc(D)!
«mmc(D) then the above theorem does not hold,
because the division may give quotient and remainder
with coefficients of much larger magnitude than those
of dividend.

Theorem 2 tells us that Euclidean algorithm
calculates GCD of almost the smallest accuracy. Next,
we investigate the magnitude of coefficients of
polynomials in PRS. Below, by quo(F, G) and rem(F,
G) we denote the quotient and remainder, respectively,
of the division of F by G.

Lemma 3. Let ¢ be a small positive number, 0<e«1,
F and G be polynomials such that mmc(F)=0(1),
mme(G)=0(1), 1e(G)=0(1), and

F=DF+¢\(x), &1(x)=0(e(x)),
G=DG + &(x), £2(x)=O(e(%)).

If 1lc(D)| =0(1) and degrees of F and G are not large,
then

(20

rem(F, G)=D xrem(F, G)+ O(&(x)). @1
(Proof). Put g=quo(F, G) and R=rem(F, G), then
F=QG+R. Hence, DF=DGJ+DR and we can
rewrite F as

F=DGO+ DR +¢&,(x)
=0 x [DG+ ex(x)] + DR — Qex(x) + £1(x).

By division, we rewrite the last two terms of this equa-
tion as

— Qex(x) + €)= GEX) + n(x), deg(n) <deg(G).
Thus, we have
F=[0+&®)] % G+DR+n(x).

Since mmc(G)=0(), Ic(G)=0(1) and |lc(D)| =0(1),
we have mmc(Q)=0(1). Hence, n(x)=O0(e(x)) and we
obtain Eq. (21)./

Theorem 3. Let P, and P; be regular polynomials and
D=GCD(P,, P»; ¢), with ¢ a small positive number. Let

T. Sasaki and M. Nopa

(P, P, ...,P,,...)beaPRS of P, and P,. If deg
(P)=deg(D) and deg(P,) is not large, then

P =0(e(x)). (22)

(Proof). Put P/=P;/mmc(P), then Theorem 2 tells
us that P;_, and P contain D as an approximate factor
of accuracies ¢/mmc(P,—;) and &/mmc(P;), respec-
tively. First, consider the case mmec(P-;)=mmc(P). In
this case, we may think that the accuracy of D is
2=¢/mmc(P;). Let

P\ =QiPr+ Py, deg(Pi+1) <deg(Pri),

then mmc(Qr)=0(1). Comparing this equation with
Eq. (14), we obtain

CiPrsr=mme(Pr-1) X Piyy,

where ¢ = [mmc(Py—,)/ mme(Py)] X mme(Qi) = mmce
(Pi-1)/ mmc(Py). Now, Lemma 3 is applicable to the
case F=P;_, and G=P4, hence P;+;=O(&(x)) and we
obtain Eq. (22). Next, consider the case mmc(Py-)
<mmc(P;). In this case, we may think that the accuracy
of D is é=¢/mmc(Py-)), and we see cr=Max {1,
[mmc(Py- 1)/ mme(Py)] X mme(Qi)} = 1. Hence, we ob-
tain Eq. (22) again./

Using Theorems 1, 2 and 3, we can calculate approx-
imately common factor, of root-separation <dJ, of
regular polynomials P, and P, as follows. Let e=O(J) if
P, and P, are arbitrary or e=O(d8?) if P,=dP,/dx. (We
set =4 or £=2 X §% in our program.) Calculate PRS of
P, and P; with cutoff ¢, then the last element of PRS is
the required PRS.

4. Accuracy of Coefficient and Examples of PRS

This section has two aims, one is to investigate the ac-
curacy of coefficients in PRS, and the other is to check
the theory developed above by examples.

Theorem 3 tells us that some polynomials in PRS are

such that their coefficients are of very small magnitude
if P, and P, have approximately common factor, and
this magnitude reduction of coefficient is caused by
cancellation of almost equal numbers. The cancellation
of numbers leads to erroneous result in the floating-
point arithmetic. Therefore, investigation of accuracy
of coefficients in PRS is indispensable. Let us first
define the accuracy of number.
Definition 8 [accuracy of number]. Let a and b be
floating-point numbers accurate to the last bit and
la—bl=0(e xMax {lal, |bl}), with 0<e<1, then we
say that accuracy of the number a—b is €. (Fully ac-
curate number is of accuracy 1, and a number of ac-
curacy & is wholly erroneous and insignificant.)/

Now, we consider the meaning of Rule 3. The divi-
sion is a successive application of leading term elimina-
tion, so consider Eq. (10) as well as Eq. (12). If
Ifil < lgm| then elimination of x’ term in F gives (fi/ gm)
x!~™ term in Q, and this term does not affect the nor-
malization of R. In this case, G is multiplied by f;/gn to

Approximate Square-free Decomposition and Root-finding of Ili-conditioned Algebraic Equations 163

cancel the leading term. On the other hand, if
Ifil > |g! then the magnitude of the coefficients of F is
reduced by Ig./fil to give R. In this case, we can regard
F as multiplied by ¢,/ to cancel the leading term (the
result is the normalized remainder). Summarizing both
the above cases, we may say that R in Eq. (12) can be
calculated by adjusting the polynomial with larger
magnitude leading coefficient to the other and canceling
the leading term.

Suppose that the accuracy of a number is nearly
equal to the magnitude of the number. Let a, b, ¢, and
¢, be numbers such that lai <1 and |bl =1, and con-
sider c,a—cyb=d. As we have discussed above, we may
regard Rule 3 as if requiring c,=1=ic,| when
ibl = lal and ¢,=1> l¢c,| when |lal > |b|. Then, the ac-
curacy of d is almost equal to the magnitude of d
regardless of cancellation in c,a—c,b. We recall that
mmc(P)=0(1) and mmc(P;)=0(1) in PRS (13).
Hence, Rule 3 leads to the following important results.
Property 1. Let P, and P; be regular polynomials,
with their coefficients accurate to the last bit. Let (P,
P,,...,P,...)beaPRScalculated by formula (14),
then mmc(P;) is nearly equal to the accuracy of
coefficients of P;.

Property 2. Let P, and P, contain approximately com-

Example 1. Normal PRS.
P:=(X—0.5)%(X—0.502)*(X + 1)*(X —2)*(X—1.5)
P:=(X—0.501)*(X—0.503)%(X — 1)*(X+2)*(X+1.5)

mon factor D, of accuracy &, D, of accuracy &,, and so
on, where ¢, is enough larger than ¢,, ¢; is enough larger
than ¢;, and so on. Let Py, P, ..., be such that
deg(Px)=deg(Dy), deg(Pw)=deg(D,), Then, the
accuracy of coefficients of P; decreases to O(g;) at
i=k1+1, decreases to O(¢;) at i=k2+1, and so on.
Property 3. If P, and P, have the same roots but no
close root, then the common factor can be separated
very accurately.

Let us show several examples of PRS calculation.
The calculation was performed by double-precision
arithmetic and the 9 MSD (most significant digits) of
each number are printed (this unfamiliar output style is
due to a host Lisp system on which our program runs).
In the examples, we show not only the PRS but also
polynomials 4; and B; defined in Eq. (16). This will help
the reader’s deeper understanding of PRS. Below, we
classify the PRS into normal and abnormal, as follows.
Definition 9 [abnormal PRS]. If the PRS (13) is such
that

He(P) | « O(mmce(P)) for some i, 3<isk,

then the PRS is called abnormal, otherwise the PRS is
normal. /

P;=—4.998+X*%4+5.013997+X*%3+4.7414925* X**2— 6.0174985* X + 1.509009

A3=1, B;=-1

P,=6.97880794E — 1* X*%3 —7.01037162E — 1*X**2+1.78930204E — 1* X — 1.4439101E—3

A4=2.00080032E — 1 * X'+ 5.00040152E—1
B,= —2.00080032E — 1*X +4.99959848E — |

P;=8.40067492E — 1* X**2 —8.41442765E — 1* X +2.10704053E — 1
As=2.00080032E — 1*X**2+5.0030468E — 1+ X+ 1.40293119E—1
Bs=—2.00080032E — 1*X**2+4.9969532E — 1*X —1.3897101E— 1

P=1.87196957E — 3% X —9.38795693E — 4

As=—1.6621523E — 1% X**3 —4.15145325E — 1* X**2+8.47317694E — 2* X + 5.00376473E — 1
Bs=1.6621523E — 1% X*%3 —4,15598395E — 1»X**2 — 8.34328336E —2+.X + 4.99626697E — 1

P;=-—1.39801471E—9

A7=1.6621523E— 1% X#*4+3.32015185E — 1% X*%3 —2,91914844E — 1 * X'**2

—4.56884248E — 1* X +2.50568671E — 1

B;=—1.6621523E — 1% X**4+4.98728536E — 1 * X**3 —1.24868536E — 1# X**2

—5.40240922E — 1* X +2.49571382E—1

The approximately common factor of P, and P, is ~(X—0.5015)? and its accuracy is ~0.001 by Theorem 1. Hence,
Theorems 2 and 3 predict that if P,% (x—0.5015)? then mmc(Py+;)=0(0.001). We see that P,=P;s and the theory is

well consistent with actual computation.
Example 2. PRS of P, and P,=(dP\/dX)/lc(P)).

Pi:=(X+1)%(X —2)*(X—0.5)*(X—0.501)*(X —0.503)
Py:=(dP,/dX)/5

P3=—9.0000136E — 1%X%*%3+1.35432204* X**2—6.79323541E— 1*X+1.13581429E — |

A;=1, B3=—X+5.008E—1

164 T. Sasaki and M. Nopa

P,=—1.21499582% X**2+1.21823582+.X —3.05370171E — 1
A,=X—4.98400006E — 1
B,= — X*#2+9.99200006E — 1*X +6.50402637E — 1

P;=3.49999695E — 6+ X — 1.75299848E — 6
As= —7.40744406E — 1+ X*%2+7.41139463E — 1*X +8.14618898E — 1
Bs=7.40744406E — 1* X**3—1.11210426* X*%2—1.11012723+X+7.42718852E—1

Ps=1.92857883E — 12
Ag= —7.40744406E — 1* X**3+1.11285207+ X**2+4.42710932E — 1* X —4.08784963E — 1
Bs=7.40744406E — 1* X**4 —1.48381686* X**3 — 5.5206559E — 1% X*%2+1.29979415% X —3.72701526E — 1

The distance between close roots around X=0.5 is ~0.001, so Theorem 1 tells us that P, and P; have approximately
common factor of degree 2 with accuracy ~ (0.001)%, and Theorem 3 predicts that mmc(Py+1) ~ (0.001)? where deg
(Px+1)=1. This is observed in the actual computation. Furthermore, we see that Ps% [X —(0.5+0.50140.503) /3], as
predicted by Theorems 1 and 2.

Example 3. Abnormal PRS.

Pi:=(X—0.5)*(X+0.502)%(X+ 1)*(X —2)*(X—1.5)

P2 =(X —0.501)%(X +0.503)%(X — 1)#(X +2)*(X +1.5)

Py=—50+X*%4—8.997E — 3% X#*%3+7.2575075% X*#*2+ 1.14985E — 2+ X — 1.509009
A3= l, Ba= -1

Py=6.99999639E — 1+ X*%3+3.37121201E — 4% X**2 — 1.76050589E — 1*X + 1.44395856E — 3
A4=2.0E—1%X+5.0004012E —1
By=—2.0E—1*X+4.9995988E — 1

P;=8.40000382E — 1 % X**2+2.82174861E —3*X —2.11259248E — 1

As=2.0E—1*X**2+5.0030368E — 1*.X + 1.4065888E — 1
Bs=—2.0E— 1% X**2+4.9969632E — 1*X — 1.39341082E — 1

P=5.38066233E —6* X +9.37355668E —4
Ag= —1.66666505E — 1% X**3 —4.16439726E — 1*X**2+8.39841165E — 2#+ X+ 5.00377422E — 1
Bs=1.66666505E — 1% X*%3 —4.16892799E — 1+ X**2 — 8.26842652E — 2+ X +4.99625738E — 1

P,=9.373479E—4
A;7=9.56727001E — 4% X*%4 — 1.64275988E — 1*X*%3 —4.16921818E — 1 X**2
+8.11117845E —2*X+5.00377427E—1
B;=—9.56727001E — 4* X**4+ 1.69059623E — 1*X**3 —4.16418169E — 1%.X**2
—8.55522822E —2* X +4.99625733E— 1

We see that |1c(Ps)! =5 % 1075« 9x 10~*~mmc(Ps). The division of Ps by Ps gives quotient and remainder with
coefficients of much larger magnitude than those of Ps. However, formula (14) gives a reasonable P;, and we see that
the accuracy condition (Property 1 given above) is satisfied even by abnormal PRS. Note further that mmc(4,)
=0(1) and mmc(B;)=0(1) regardless of whether the PRS is normal or not.

S. Approximate Square-free Decomposition Algorithm Exact-SQFR (exact square-free decomposi-

tion)
Let P(x) be a polynomial such that Input: A polynomial P(x) with exact number
PR)=0,(0Q4) . . . 0i(x) coematents;
R ’ (23) OUtPUt: A list ((le l)r (QZs 2)7 LY (Ql! 1))s
Qn(x) contains all the m-multiple factors of P(x). where Q,, . . ., O satisfy (23);
e Step 0: QPP+« P; m+1; ANS«nil;
The square-free decomposition is based on the follow- iy >
ing well-known relation Step 1: [A] PP<~GCD(QPP, dQPP/ dx);
[B] QQ+—QPP/PP;
GCD(P(x), dP(x)/ dx)=Q:()Q}(x) . . . OI'(x). (24) Append (QQ, m) to ANS;
Diving Eq. (23) by Eq. (24), we obtain 1f PP=1 then go to Step 2;
m+<m+1; QPP+ PP; Go to Step 1;
00=Eq. 23)/Eq. 2H=Qi(0)Q:(x) . . . Qi(x). (25) Step2: Let ANS be ((QQ:, 1), (00 2),...,

Combining these relations, we can perform the decom-
position as follows.

QQs, 1);
For m=1 to /—1 replace (QQn, m) in ANS
by (QQm/QQm+ls m);

Approximate Square-free Decomposition and Root-finding of Ill-conditioned Algebraic Equations 165

Return ANS. 7/

Extending Eq. (23), we define the approximate
square-free decomposition.
Definition 10 [“multiplicity’’ of close roots]. The
“‘multiplicity’’ of close roots is the number of mutually
close roots. /
Definition 11 [approximate square-free decomposi-
tion). Let € be a small positive number, 0<g<« 1, and
P(x) be a regular polynomial such that

P)=Qi00i(x) . . . Qix)+O(ex)), (26)

where each Qn(x) contains all the multiple/close
factors, of ‘‘multiplicity’’ m, of P(x). Finding Q,, i=1,
..., I, for given P is called approximate square-free
decomposition. 7/
(Note). Let & be the average distance of mutually close
roots of P(x)=0, then Theorem 1 tells us that e=0(J?).
We can perform the approximate square-free decom-
position by modifying Exact-SQFR slightly. The GCD
operation in step [A] of Exact-SQFR may give a
polynomial of wrong degree if approximate arithmetic
is employed. On the other hand, if the algorithm works
well, we have the following relation (in the notation in
Exact-SQFR)

deg(QQ1) =deg(QQx) = . . . zdeg(QQ). 27

So long as this relation holds, the above algorithm gives
us a reasonable answer regardless of exactness of the
arithmetic used. Therefore, in each iteration in Step 1
of Exact-SQFR, we check the relation (27) and restore it
if violated. The restoration is done as follows: if deg
(QQm-1) <deg(QQm) then replace QQ. by QQ.—1 and
replace PP by quo(QPP/QQn-1). Thus, our algorithm
is as follows.
Algorithm Approx-SQFR (approximate square-free
decomp.)
Input: A polynomial P(x) and a small number 4,
0<d«1;
Output: A list ((Qy, 1), (@2, 2), . . ., (O,), where
Q. . . ., QO satisfy Eq. (26) with e=0(6?);
***¥Same as Exact-SQFR except for the following two
points:
1) interprete the division U/ V as quotient(U, V),
2) change steps [A] and [B] as follows.

[A] PP<GCD’'(QPP, dQPP/dx; 2 x 5*%2);

[Bl QQ<QPP/PP;
/* QOO+ QQ0m-1, QO—QQ.n */
If m=2 and deg(QQQ) < deg(QQ) then do
begin QQ—QQQ; PP QPP/QQQ;

end;
00Q+0Q;/
(Note). Eauations (24) and (25) give
GCD(Eq. (24), Eq. (25))=0:(x)Qs(x) . . . Qi(x). (28)

Hence, we can calculate Q, as Q,=Eq. (25)/Eq. (28).
One may think that this method is more efficient than

the above method, and this is true for algorithm Exact-
SQFR. However, in the case of using approximate
arithmetic, the above algorithm is better than using Eq.
(28). The reason is as follows. According to the theory
in 2. and 3., we must calculate Eq. (28) as

GCD’(Eq. (24), Eq. (25); 9)
while our algorithm calculates only
GCD’ (P(x), dP(x)/dx; 2% 82)

and the former GCD is much more erroneous than the
latter GCD.

Let us show the performance of algorithm Approx-
SQFR for various kinds of polynomials having
multiple/close roots. The algorithm was implemented
on an algebraic computation system, constructed by
one of the authors (T.S.), running on a Lisp system.
The calculations were made by using double-precision
arithmetic, and the 9 MSD of each number are printed.
The reader can read the following output as follows: if
only Q; and Q. are printed, for example, then P(X)
=Q¥X)QUX)+ 0% X)). The value of J is written
before Q..
Example 4.1

P(X):=(X+1)**3%(X—2.0/3.0)#*2%(X +4.0/3.0)
*%2x(X —2)
*xx)=0.01%%%
O:=X+1.0
Q,=X**2+6.66666667E — 1+ X —8.88888889E — 1
o1=X-2.0
P(X):=(X+ 1)x*dx(X — 1)**3%(X+0.555)*3
*HX—2)x(X—3)
*xx)=0.01%**
Q:=X+1.0
Q;=X**2—4 45E—1*X—5.55E—1
Qi=X**2—5,0«X+6.0

[multiple roots and no close roots].

Example 4.2 [close roots and no multiple roots].

P(X):=(X+ 1)*(X—2)*(X—0.5)*(X—0.501)
(X—0.6)(X—0.601)
kk)=0.01%%%
Q,=X#*x2—1.10100009* X + 3.00551047E— 1
Q1=X*%2—9.99999819E — 1 *X —2.00000208
P(X):=(X+1)*(X —2)*((X—0.5)**4 1+ 0.00000001)
xxxd=0,01%%*
0i=X—5.0E—1
Q1 =X**2— X —2.00000002

Example 4.3 [close roots as well as multiple roots].

P(X):=(X+1)%(X—1)**2%(X—0.5)*(X—0.501)
*(X—2)
xx0=0.01%%
Q,=X*%2—1.50050165*X +5.0050165E—1
Q1=X**2—9.99996699E — 1 * X —2.0000019

P(X):=(X+1)#*2%(X —2)**2x(X —0.5)%(X—0.501)
*(X—0.503)

166

k) =0.01%%»
O3;=X—5.0133334E—1
Q2= X**2—9.99999987E — 1*.X —2.00000156

Example 4.4 [close roots of different distances].

P(X):=(2%X#**2— 1)*(X —29.0/41.0)%(X—70.0/99.0)
xx%x0=0.01%%x%
Q;=X—7.07164833E—1
Q1=X+7.07106719E—1
wxxd=0.0001***
0,=X—17.07094337E — 1
Q1=X**»2—1.99106643E — 4+ X — 5.00140792E — 1

PX):=(X+1)*(X—1)*(X—1.1)»(X—1.01)
*(X—1.001)x(X—2)
xxxd=0,] %x*
Qs=X—1.02937394
Q1 =X#*#%2—9.93504252E — 1*X —2.00131081
wxxxd=0,01%%%
Q:=X-—1.00421665
Q1=X*%3—2.09835006%X*%2—9.01823625E — 1*X
+2.19670084
*%%x5=0.00] **x
0,=X-—1.00062163
O1=X*%4—3.10975675* X**3 +1.22048665* X **2
xx5=0,0001%%
Q1=X*%6—5.111%X**5+8.4451 1 * X**4— - - -

Example 4.5 [close roots some of which are multiple].

P(X):=(X+ 1)2(X —2)%(X—0.5)%*2%(X—0.501)
*(X—0.503)
x%0=0.01%%x
Q.= X—5.01000003E — 1
Q1=X**2—9.99999988E — 1+.X —2.00000151
*x%xxd=0.000] **x*
Q:=X—4.99999991E—1
Q1=X*%4—2.00400002*X**3 —7.43996973E — 1*X
**2-{- PP

PX):=(X+1)»(X—-2)
*(X—0.5)%*2%(X —0.501)*(X—0.503)
*(X+0.5)%*2*(X+0.501)*(X+0.503)
xxd=0.01%%x
Qy=X%%2+5.63119694E —6%X —2.5100488E — 1
Q1=X#**2—1.00002242* X — 1.99998004
*kxd=0.0001 %%x
Q,=X*%2—4.6684407E — 8+ X —2.5000001E — 1
Q1= X*%6—9.99999907E — 1* X**5 —2.50401007+.X
xx4+ -

Summarizing the above results, we may say that the
approximate square-free decomposition is quite suc-
cessful. In fact, although the Approx-SQFR is equip-
ped with a mechanism of recovering from failure of
GCD operation (step [B] in Approx-SQFR), the
mechanism is not used for all of the above examples.
Furthermore, we can observe the following points: 1)
Approx-SQFR separates the multiple factors very ac-

T. Sasaki and M. Noba

curately if there is no close root factor; 2) Approx-
SQFR works well even if P(x)=0 contains close roots of
various distances.

6. Root-finding Algorithm for Ill-conditioned Equa-
tions

Now, we state how to solve ill-conditioned algebraic
equations by using approximate square-free decomposi-
tion. We first note that, when applying the approximate
square-free decomposition to solving ill-conditioned
equations, we had better choose a mediumly small
number as J (root-separation number). If ¢ is very small
then PRS may become erroneous when the equation
contains close roots of various distances, as Property 2
in 4. tells. In the following algorithms, we choose
0=0.01. Our algorithm is composed of main procedure
FIND-Roots and sub-procedure FIND-CloseRoots,
where we use the notation

P™(y)=d™P(x)/dx™ | y=..

Procedure FIND-Roots(P(%), 3)

Input: B(£)=a polynomial in £, may be irregular;
d=a small positive number such that close roots of

distance <4 are treated as multiple roots;

Output: All the roots of PFE)=0 and
multiplicities;

Step 0: P(x)«regularize P(%), where x=c# with c a
number;

Step 1: Apply Approx-SQFR to P(x) and find Q,, . . . ,
Q: such that
[CI PO)=Q:i()RB(X) . . . Qix)+O(e(x)), e=2%107%

Step 2: Foreach Q,, m=1, ...,/ solve Q,(x)=0by
low precision arithmetic, and let the roots obtained
be um, Umzy . . . ;

Step 3: Foreach uin {u, up, . . . }, solve P(x)=0ac-
curately by Newton’s method with initial approxima-
tion x=u;

Step 4: For each w in {tmiy thm, . . . }, m=2,...,1,
determine the multiple/close roots around x=u ac-
curately by FIND-CloseRoots(P(x), u, m, 9);

/ * close roots around x=u */

Step S: Let the roots and their multiplicities be
{@, m), Wz, my), . .. };

Return {(u,/c, my), (u2/c,my) . .. }./

their

Let us explain the above procedure. The square-free
decomposition [C] is such that the close roots with rela-
tive distance less than ~ 0.01 are factored out as approx-
imately equal roots. Hence, the roots of Qnm(x)=0,
m=1, ..., are well distant from each other and we
can find them by conventional Newton’s method. The
m of Q. means the ‘‘multiplicity’’ of multiple and/or
mutually close roots of P(x)=0. Thus, approximate
positions and ‘‘multiplicities’’ of the multiple and close
roots are known, and the roots are determined by
FIND-CloseRoots as follows.

Approximate Square-free Decomposition and Root-finding of Ill-conditioned Algebraic Equations 167

Sub-procedure FIND-CloseRoots(P(x), u, m, 8)

Input: P(x)=regular polynomial having m close roots
around x=u;

Jd=minimum distance of close roots to be separated;

Output: m close roots uy, . . . , un (With accuracy J)
around x=u, some of {u,, . . ., un} may be counted
as multiple roots;

Step 1: Putting x=u+J, expand P(x+4J) up to "
terms:

[D] P™w)é™/m!+ - - - + POu)d/ 11+ P(u)=0;

Step 2: Regularize [D] by putting z=cd, with c a large
number, and let the regularized equation in z be P(z);

Step 3: Perform the approximate square-free decom-
position of P(z):

P(2)=0:)}2) - . . On(2)+O(e@)), e=2%107%
Solve Qi(z)=0, i=1,..., m, by low precision
arithmetic;

Step 4: For each root 7 of 0\(z)=0, solve P(x)=0 ac-
curately by Newton’s method with initial approxima-
tion x=u+7%/c;

Step 5: For each root 7 of §,(z)=0, u=2, ..., m,
do if =1/100c then let x=u+Z/c be a u-multiple
root of P(x), else call FIND-CloseRoots(P(x),
u+z/c, pu,)

/% 1 very-close roots around x=u+%/c */

Step 6: Return the roots and multiplicities obtained. 7/

(Note 1). Equation [D] is not regular because P“(u)
=0, i=0, 1,..., m—1. Regularization in Step 2 is
equivalent to magnifying the area around x=u locally
by the factor c¢. By this, close roots of relative
distance=1/c¢ are converted to well-distant roots, see
an example below.

(Note 2). We need not solve 0i(z)=0 accurately in
Step 3. High precision arithmetic is necessary only in
Step 1, Step 4 and Step 5.

Example 5. Performance of FIND-CloseRoots on
P(x)=(x—0.99)(x—1.02)(x—2). Suppose we know
that x=1.0 is an approximate root of P(x)=0 with
“multiplicity”> 3. Then, equation [D] becomes

—38%—0.03 % 107252+2.98 x 107*5+2.0x 107¢=0.

This equation is not regular as we have noted above,
and after the regularization z=100x J we have

2°+0.03z2—2.982—2.0=0.

By the approximate square-free decomposition, we find
that this equation has two close roots around
z=—1.0018 and single root at z=1.9825. We see that,
although the regularized equation still has close roots
corresponding to multiple roots of P(x)=0, the close
roots of P(x)=0 are well separated. With the initial ap-
proximation x=1.019825, it is easy to calculate the
single root at x=1.02 accurately. The two roots around
x=1.0—0.010018 are investigated accurately by calling
FIND-CloseRoots recursively.

The procedure FIND-Roots is effective for equations

having close roots of any distances as well as multiple
roots. As a result, it is not fast. On the other hand,
many ill-conditioned equations to be solved actually
have no close root but multiple roots which are not
close to each other. Noting Property 3 in 4., we can
solve such ill-conditioned equations much faster than
FIND-Roots by modifying the procedure as follows.
Procedure FIND-Roots (modified version)
*xx0Only the Step 1 is modified as follows.
Step 1: Apply Approx-SQFR to P(x)and find Qy, . . . ,
QO such that
[C] P)=Q0:(NA®) . . . Q) +0(ex)), e=2x107%
Check the accuracy & of decomposition [C}], and if
2= 8? then solve each On(x)=0,m=1, ...,/ as m-
multiple roots and return the result; 7/

The accuracy check for the above decomposition [C] is
made easily by checking the magnitude of mmc(Pyx+,): if
P,=GCD(P,, Py; 3% then Piy=0(3%x)). If we want
to determine the multiple roots accurately, with ac-
curacy <« J, we may apply the conventional method for
determining multiple roots, described in literature such
as [4], by using the roots of Qn(x) as initial approxima-
tions.

7. Final Remarks

Computation of PRS’s of various initial polynomials
shows that much deeper study is necessary to explain
the magnitude of coefficients of polynomials in PRS. In
particular, knowing about the distance of neighboring
roots in GCD’(P,, P;; &) gives us a good information
on PRS. Such a study is apparently fruitful because ap-
proximate GCD is useful not only for the approximate
square-free decomposition but also for many kinds of
calculations. Furthermore, analysis of PRS is directly
applicable to Sturm sequence.

Another problem is the treatment of high degree
polynomials. As we have noted in 3. our theory of ap-
proximate GCD may not hold for high degree
polynomials. Besides this point, high degree
polynomials may cause another problem. If the degree
of a regular polynomial P(x) is high, say deg(P)=100,
then many roots are distributed within a circle of radius
O(1). Hence, the average distance between the neighbor-
ing roots is considerably small and the separation of
close root factor seems to be not easy. As for high
degree polynomials, more investigation, not only
theoretical but also experimental, is apparently
necessary.

The algorithms we have described in this paper are
somewhat different from conventional numerical
algorithms in that not only numeric computation but
also algebraic computation are desirable. If different
styles of computation are used combinedly in a single
calculation, we call it Aybrid computation. Although
our algorithms can be implemented in a language for
numeric computation, such as FORTRAN, they will be

168

most nicely performed on a hybrid algebraic-numeric
system. The hybrid computation has been quite un-
familiar so far, but it will surely become quite impor-
tant in future. For an example of hybrid computation
and system, see [6, 9], for example.

The approximate GCD and square-free decomposi-
tion are direct generalizations of conventional algebraic
algorithms. We think that many algebraic algorithms
can be generalized to apply for approximate expres-
sions, and we call such algorithms approximate
algebraic algorithms. We want to emphasize the impor-
tance and possible fruitfulness of approximate
algebraic algorithms as well as hybrid computation.

References

1. BAREss, E. H. The numerical Solution of Polynomial Equations
and The Resultant Procedure, in Mathematical Methods for Digital
Computers, 2, John Wiley (1967).

2. GARSIDE, G. R., JARRAT, P. and MAck, C. A New Method for
Solving Polynomial Equations, Comput. J., 11 (1968), 87-89.

3. HITOTUMATU, S. A Method of Successive Approximation based
on the Expansion of Second Order, Mathematica Japonicae (1966),
31-50.

T. Sasaki and M. Nopa

4. Iri, M. Numerical Computation, Asakura Publishing Co.,
Tokyo (1981).

5. Kavrtoren, E. Factorization of Polynomials, in Computer
Algebra: Symbolic and Algebraic Computation (Edited by B.
Buchberger, et al.), Springer-Verlag (1982).

6. NopA, M. and IwasHITA, H. Solving Ordinary Differential Equa-
tions on a Hybrid Computation System, J. IPS Japan 28 (1987), 689~
696.

7. PoMEeNTALE, T. A Class of Iterative Method for Holomorphic
Functions, Numer. Math., 18 (1971), 193-203.

8. Sasaki, T. Formula Manipulation, IPS Japan (sold by Ohm
Publishing Co.), Tokyo (1981).

9. Svzuki, M., Sasaki, T., Sato, M. and Fukui, Y. A Hybrid
Algebraic-Numeric System ANS and its Preliminary Implementation,
Proc. of SYMSAC’87 (Lecture Notes Comp. Sci.), Springer-Verlag
(1989).

(Received June 21, 1988; revised November 24, 1988)

Note added in Proof:

After submitting the paper, the authors found that Schéhage:
““‘Quasi-GCD Computations’’, J. Complexity 1, pp. 118-137 (1985),
discussed computing GCD of polynomials with real or complex
coefficients up to a given accuracy. Schonhage introduced ‘‘pivoting”’
to the Euclidean algorithm to avoid numerical instability (which may
happen in abnormal sequences, if conventional algorithm is used),
and he discussed mostly the time-complexity of the algorithm. His ap-
proach to the approximate GCD is considerably different from ours.

