An Analysis of User Behavior and Demand
Swapping Policies in Time-Sharing Systems

YASUFUMI YOsHIZAWA* and TosHIYUKI KINOSHITA*

One bottleneck encountered in large scale time-sharing systems (TSS) is excessive interactive swaps. The
storage management of operating systems should minimize the number of physical interactive swaps. If work-
ing sets can be left resident until users complete their inputs, the number of swaps can be minimized. A demand
swapping policy which maintains working sets in the main storage and swaps them only when a shortage of free
storage space develops is a useful technique for resolving such bottlenecks.

One important aspect of the demand swapping policy is the algorithm to determine which working set to swap
out. To develop this demand swapping algorithm, the trace data of the behavior of actual TSS users at a ter-
minal are accumulated and user input processes are analyzed. Five demand swapping algorithms (LRU, RAND,
LUFO, PRED and SLRU) are proposed from the results. The number of physical interactive swaps that come
from each demand swapping algorithm is compared using a trace-driven simulator. From this analysis, it is
found that LRU is the best algorithms among the fixed-space demand swapping algorithms. However, SLRU,
which is a kind of variable-space demand swapping algorithm, reduces the number of physical interactive swaps

more than LRU within a given critical time range.

1. Introduction

Virtual storage operating systems with working-set
(WS) strategy [12] transfer pages between the main
storage and the auxiliary storage. These page transfers
can be divided into two classes. The first is caused by
the program behavior. This results in operating systems
(OS’s) transferring pages in order to maintain a WS for
each process and to dynamically assign each process to
its storage area. The second is caused by operating
systems in order to dynamically distribute scarce system
resources among processes. The first class is called pag-
ing and the second class is called swapping.

Furthermore, swapping can be classified into forced
swapping and interactive swapping. Forced swapping is
used to control the distribution of scarce system
resources among processes with long-running times,
which are observed in the batch processing environ-
ment. The objective of this resource distribution
(scheduling) [20] is to maximize the performance objec-
tive specified by the installation manager. That is, the
objective of forced swapping is decided by the schedul-
ing policy [8] of each operating system.

On the other hand, interactive swapping occurs
typically in the TSS (Time Sharing System) environ-
ment whenever a process enters a long-wait situation
(for example, this situation occurs when a TSS process
waits for input from the corresponding terminal). The

*Systems Development Laboratory, Hitachi, Ltd., 1099 Ohzenji,
Asao, Kawasaki 215 Japan.

Journal of Information Processing, Vol. 12, No. 2, 1989

performance objective of TSS systems is to assure the
system responsiveness specified by the installation
manager. Therefore, the TSS operating system has to
minimize the swapping delay time caused by interactive
swapping.

As the TSS scale becomes larger, interactive swapp-
ing becomes more frequent than forced swapping. J. P.
Buzen [6] has pointed out that in virtual storage
operating systems, the number of transfers caused by in-
teractive swapping often exceeds the number of
transfers caused by paging. Therefore, the number of
page transfers caused by interactive swapping has to be
minimized by the TSS operating system. This minimiza-
tion can be realized by shortening the swapping delay
time.

Two policies are considered for interactive swapping:
these are immediate swapping policy and demand swap-
ping policy. An operating system with an immediate
swapping policy immediately swaps out the process’
WS when the process enters a long-wait situation (or at
the end of the time slice) [27]. The number of physical
interactive swaps is almost proportional to the number
of interactions. On the other hand, an operating system
with a demand swapping policy does not automatically
swap out the process’ WS even if the process enters a
long-wait situation. In the demand swapping policy [31],
WS’s are swapped out only when the amount of free
storage space is insufficient for required swap-in. As a
result, an operating system with the demand swapping
policy can decrease in number of physical page
transfers and reduce both CPU and I/0 load caused by

126

interactive swaps.

Demand swapping algorithms [31] are those
algorithms which swap out a process only when its
memory is needed. These algorithms correspond to the
page replacement algorithm which decrease in number
of page transfers caused by paging in the demand pag-
ing system [1][9][30]. When a user types a TSS com-
mand at a terminal, the operating system checks to see
if the working set still remains. If so, the command may
be accepted with no swapping required. If the working
set is not resident, a swap is required. When the re-
quired WS has been swapped out, the TSS operating
system has to immediately free a storage space in order
to swap in the required WS. This storage space can be
freed by swapping out a particular WS which is selected
as a swap-out candidate by a demand swapping
algorithm. In the demand swapping policy, the above
swapping operations are performed whenever a user
types a TSS command. This paper shows that if the de-
mand swapping algorithm uses the past history of the
time interval between successive TSS commands for
each individual user, the number of physical page
transfers caused by interactive swapping can be reduc-
ed.

Demand swapping algorithms using the past history
of the time interval between successive TSS commands
during each TSS session are considered in this paper.
Four demand swapping algorithms (Least Recently
Used: LRU, Random: RAND, Last Used First Out:
LUFO, and Prediction: PRED) have been proposed
and analyzed in [31]. A new demand swapping
algorithm, Shrunken Least Recently Used (SLRU), is
proposed in this paper based on the analysis of the ac-
tual TSS user behavior at a terminal. LRU, RAND and
LUFO are obtained by analogy with the page replace-
ment algorithm [1}[15][22]). That is, the time interval be-
tween successive references to the same WS is

Y. YosH1zawa and T. KINOSHITA

substituted for the time interval between successive
references to the same page in the demand paging
system. PRED predicts the next command input time
for a TSS user by using his past history. SLRU exploits
the correlation between successive interval times of TSS
commands.

We introduce the performance criterion defined as
the number of times which the required WS was found
in the main storage divided by the total number of com-
mands issued by a TSS user. Those five demand swapp-
ing algorithms are evaluated by the performance
criterion.

Trace data of the actual TSS user behavior at a ter-
minal were accumulated at the Computer Centre of the
University of Tokyo [16](17] for evaluation of demand
swapping algorithms. This Computer Centre has been
designated as the site for large scale TSS’s in Japan.
The Computer Centre had a heterogeneous, tightly-
coupled multiprocessor consisting of four CPU’s (two
HITAC 8800’s and two HITAC 8700’s) which shared a
main storage capacity of eight million bytes [23][24].
This system was controlled by a Hitachi operating
system (OS7 [25]), which supported multiple virtual
storage space of 2048 million bytes each as well as
dynamic linking and a ring protection mechanism both
of which were patterned after MULTICS [11]. The
HITAC 8800/8700 was the first system to employ both
multiple virtual storage space and cache memories.

2. Analysis of Input Process

2.1 Summary of Trace Data and Terminal Usage Pat-
terns

The data for this analysis were collected by a soft-
ware monitor which is invoked from the terminal in-
put/output controller routine and TSS command

Table 1 Summary of the trace data.

Item Case 1 Case 2 Case 3 All Cases
Observation 477 min. 497 min. 599 min. 1,573 min.
period

Number of 23,574 23,211 24,834 71,619
interactions

Number of 14,814 14,606 15,988 45,408
output interactions

Average URT* 19.2 sec 18.4 sec 20.9 sec 19.5 sec
Average SRT** 1.53 sec 2.84 sec 1.89 sec 2.08 sec
Average OUT*** 10.6 sec 10.3 sec 9.51 sec 10.2 sec
Average cycle time 31.6 sec 31.5 sec 32.3 sec 31.8 sec
Number of 563 563 577 1,703
sessions

Average 22,9 min. 22.7 min. 25.0 min. 23.6 min.
session time

Average interactions 43.5 43.2 46.4 44.5

in one session

Average number 26.8 25.7 24.3 25.5

of TSS users

URT™: User Response Time, SRT**: System Response Time, QUT***: Output time

An Analysis of User Behavior and Demand Swapping Policies in Time-Sharing Systems 127

Table 2 Classified terminal inputs

Classified Inputs Frequency
Commands for Program Execution
s T 6.4(%)
(compiler, application, etc.)
Commands for Job Control o
(logon, logoff, etc.) 3.8(%)
Commands for Text Editting o
(insert, delete, replace, etc.) 45.20%)
Parametgr Inputs for Program 38.0(%)
Execution
Miscellaneous o
(file maintenance, attention, etc.) 6.6(%)
Total 100.0(%)

No. of sessions
1,703

Average session time
23.6 minutes

60
50
40

30

Average

AN

1 L 1 L i L 1 L L

{ 1
o] 20 a0 60 80 100 120

Duratlion of session (minutes)

1
140

Fig. 1 Distribution of session time.

%
100
90}
8ol ,“
F- "> H No. of sessions
1,703
60 : !
\ Average interactions
S0} : per session
a0} | 44.5
{
L i
30 |
20 |
| Average
10 I
4
o U N WA T < KOS ROV WU WU AN DT SOU S S I W'
o 20 40 60 80 100 120 140 160

Fig. 2 Distribution of the number of interactions per session.

analyzer routine. This software monitor records the
following items:

(1) user identification code;

(2) system and user response times where system
response time includes the queueing delays
which depend on the system load; and

(3) the leading eight characters of the input.

This information was written out on magnetic tapes dur-
ing three days in February, 1978, at the Computer Cen-
tre of the University of Tokyo. The summary of the
measured data is shown in Table 1. The analysis of the

» 401 case |
®
"
3
k] Average
s 26.8
E Maximum
E] 37
z "
€ hour
“
<
®
»
3
o Avercge
5 257
2 Maximum
E 37
3
z L
6 hour
«
s
"
3
s
°
a
E
H
z ° L L . L L L L L
AM 9 10 n 2PM I 2 3 4 S 6 hour

Fig. 3 Number of TSS users.

user input process is based on terminal sessions. The
duration of a terminal session is defined as the total
time between a user’s signing on the system (typing
logon command) and disconnecting the terminal from
the system (typing logoff or next logon command).
Table 2 shows the classified terminal inputs and their fre-
quency.

During the three day period, the system operated for
about 26 hours, and there were 1,703 terminal sessions,
and 71,619 interactions. Fig. 1 is a plot of terminal ses-
sion times. The average terminal session time was 23.6
minutes. The plot shows that there were many short ter-
minal sessions; that is, more than 50% were less than 10
minutes long. Fig. 2 shows the distribution of the
number of interactions in a terminal session. The
average was 44.5. There were 45,408 interactions with
printing messages, which represented 63% of all interac-
tions. The mean cycle time, which is the average inter-
val between two successive requests, was 31.8 seconds.

The number of sign-on users was averaged every ten
minutes. The results are shown in Fig. 3. The average
number of sign-on users for the three days were 26.8,
25.7, and 24.3. In order to prevent deterioration of
heavy batch processing, the maximum number of
simultaneously signed-on users was set to 39 for this
system.

2.2 Components of Cycle Time

The cycle time (CT) is the interval between two suc-
cessive requests to the system from a terminal. In
general, CT can be divided into three portions:

(1) the user response time (URT),

(2) the system response time (SRT), and

(3) the output time (OUT), as shown in Fig. 4.
URT is defined as the time between the system’s pro-
mpting for the user to enter the next command and the
user’s typing of the carriage return (sending a fransac-
tion for processing). SRT is defined as the time between

128

Cycle Time: CT

User System Output:
Response Response our URT
Time: URT Time:SRT
Think
At a Think time Input time 'nPUt
terminal }—-—"—"‘ J

L_ User Time: UT “"T--’

Fig. 4 Typical behavior in TSS interactions.

0.09F

0.08 I

o007 H Number of interactions

observed 71,619
oM User Response Time

0.06 [
< mean 195
g standard deviation 330
3
2 oos
=
P
a
S ©0.04H
c
°
3
4
o
u“ 003

! JRp -
1) & ——
[A%2] o5 & 188
0.02
more than {20 sec
0.0163 \
00!
° PR S SR W i
o 20 40 60 80 100 120 ssc

User Response Time

Fig. 5 Comparison of observed URT with that of assumed ex-
ponential distribution.

the user’s typing the carriage return and the system’s
next output to the terminal. OUT is defined as the time
between the system’s first output to the terminal and the
system’s next prompting. If the system’s first output is a
prompting message, OUT is zero. In our observation,
the ratio of interactions with non-zero QUT is 63%. If
we let CT; denote the i-th CT in a session, CT;=
URT;+SRT;+OUT,. We define the user time (UT)) as
the time of OUT;-,+ URT;, because WS’s are not need-
ed in the main storage for this period.

The frequency distribution of URT, g*(t), is shown
in Fig. 5. For comparison with the observed URT
distribution, an exponential distribution with the same
mean value, g(¢), is also shown in Fig. 5. The mean
URT is 19.5 seconds. In this TSS, the operating system
terminates a terminal session if a URT is longer than
600 seconds. The observed distribution of URT looks
more or less exponential, but the observed data shows
more short URT’s than does an exponential curve with
the same mean value. On the other hand, the exponen-

Y. YosHizAwA and T. KINOSHITA

0.051
0.04H -
! number of interactions : 71,619
observed
f*(,, Lmean user response time @ 29 7sec.

<
2 oo03
2
2
=
=
a
>
o
c
g 002
4 more than |160sec 00I7
[y \

001}

0 P S S S S W
0 20 40 60 80 100 120 140 160

User Time, sec.

Fig. 6 Comparison of observed UT with that of assumed exponen-
tial distribution.

tial curve overestimates the frequency in the 13 to 70 sec-
ond range. Moreover, the ratio of observed URT’s of
longer than 120 seconds is 1.63%. This is 7.7 times the
cumulative percentage of the URT’s, which are longer
than 120 seconds in the exponential distribution.

Comparison of the observed UT distribution, f*(¢),
with an exponential distribution, f(¢), is also shown in
Fig. 6. The mean UT is 29.7 seconds.

The observed UT distribution shows a tendency to a
biphase or triphase hyperexponential distribution
rather than an exponential distribution. This result is
like the distribution of interarrival times in SDC-ARPA
TSS [10]. The ratio of observed UT’s which are longer
than 160 seconds is 1.70%. In the exponential distribu-
tion, the cumulative distribution of UT’s of this range
is 0.457%. Therefore, the observed ratio of long UT’s,
it is possible to divide UT’s into three ranges:

(1) 0=UT< 10 (sec). About 40% of all UT’s are con-
centrated in this range. User responses in this range con-
sist of easy or simple replies.

(2) 10=UT<70 (sec). Half of all UT’s are contained
in this range. user responses include simple data set
editing or file maintenance operations.

(3) 70(sec)=UT. In this range, a long time is prob-
ably required for users to consider to observe computa-
tion or debugging results.

2.3 Correlation Coefficients

It is desirable to predict the next user time (UT') at the
end of the system response time (SRT) for the storage

An Analysis of User Behavior and Demand Swapping Policies in Time-Sharing Systems 129

(sec)
a0

20

Mean URTi+!

0 1 2 L L 1 : L
] 10 20 30 40 50 60 70 (sec)

t-1 &£ URTI C ¢ t

Fig. 7 Mean URT,,, when URT,; falls in the interval [t—1, ¢].

management in an operating system which employs the
demand swapping policy. If an accurate prediction of
the next UT is possible, the storage management could
select the WS for swap-out whose next UT is farthest in
the future when storage space is unavailable for another
user. If this is possible, the storage management could
maintain WS’s whose next input may be completed in
the near future. Thus, the storage management could
reduce interactive swapping.

In general, the possibility of predicting the next value
of variables depends on the correlation coefficient of the
two successive variables. Therefore, we calculated the
correlation coefficients of the variables between the user
response time (URT) and elements of cycle time (CT).

Correlation coefficients of values between elements of
CT are shown in Table 3. The values of correlation
coefficients except Cor(URT,;, URT,.,) are almost zero.
Thus, they seem independent of each other. E. G.
Coffman Jr. and R. C. Wood showed the serial correla-
tion function (Con(UT;, UT;+,)) computed for n=0, 1,
2,..., 10. From these computations in the SDC-AR-
PA TSS, they concluded that ‘‘the length of any given
interarrival period is statistically independent of the
length of all previous periods” [10]. Our observations
also support their results. However, in our analysis, the
serial coefficients of URT’s are larger than the others.

The observed serial correlation coefficients for three
separate days are 0.189, 0.213, and 0.150. These values
are not so large statistically. The observed distribution
of URT is more skewed than the exponential distribu-
tion. Accordingly, the correlation between the two suc-
cessive URT’s should be examined from another angle.
The mean values of URT,,, when the URT,; falls in the
interval (¢/—1, ¢), are investigated and shown in Fig. 7.
This shows that URT;, tends to be short if the previous
URT,; is short.

2.4 Run of the Short-URT’s

The mean run length of the short URT’s is calculated
in this section in order to investigate the dependence be-
tween successive URTs. Let s denote a URT which is
less than or equal to ¢ seconds, and let r denote a
URT>t. Thus, the sequence of URT’s in a terminal ses-

Expected run length

time unit 1 (sec)

Fig. 8 Expected run length of short URT’s.

sion can be represented by the sequence {s, r}. For ex-
ample, if =S5 seconds, the sequence of URT {15, 3, 5,
2,8,...}is described as {r, s, s, s, r,. .. }. The suc-
cessive s’s are called a short-URT run. Let I be the
length of a short-URT run. If URT’s are mutually in-
dependent, /, is geometrically distributed; that is,
P{l=k}=p(t)*"'xq(t), for k=1, where p(t)
=P{URT=st}, q(t)=1—p(t). The mean [is:
=35, kxP{l=k}=1/q(1).

However, the number of interactions in a terminal ses-
sion is finite and distributed, as in Fig. 2. When the
number of interactions in a session is finite number N,
the mean run length of short URT’s is:
Ex=N/{1+(N—-1)q(t)} for Nz1. The derivation of
Ey is shown in Appendix A. Now let fv be the distribu-
tion of N, as shown in Fig. 2. The mean run length of
short URT’s is given by: L,=X%=, fn X En.

Mean lengths of short-URT runs (I, and L;) which
were previously defined by p(¢), Ey and fu, are
calculated with respect to ¢. Furthermore, let L} be the
observed value of L,. Thus, the three mean lengths of
short-URT runs, I, L, and L} are shown in Fig. 8. The
observed mean length L} of short-URT runs is larger
than L,. This fact also supports the conclusion that the
successive URT’s are not mutually independent. For ex-
ample, the mean run length of short URT’s which are
shorter than 30 seconds, is 6.5 in the observed data, but
with the assumption that URTs are mutually indepen-
dent, L,=4.2. From this result, we propose a demand
swapping algorithm, SLRU, using this characteristics in
the next section.

3. Demand Swapping Policies

3.1 Objectives

With the immediate swapping policy of TSO [27],
and the early version of MVS [28][29], excessive swapp-
ing is the system bottleneck usually encountered,
especially when the TSS becomes large scale [3][6].
Therefore, two important design considerations are (1)
estimation of the main storage capacity required and (2)
the swapping rate due to interactive swapping in such a

130

swapping policy.

For the first design feature we estimated the main
storage capacity required for TSS in the immediate
swapping policy. Here, the total demand of WS’s, M,
accessing to CPU is approximately:

M=nxSRTxw/CT, 1)

where n is the number of users and w is the average
WS’s size. For instance, it is assumed that CT is 20 sec-
onds, w is 800 KB (10° bytes of the main storage), and
SRTis 2 seconds as reported by T. Bertvas in [3]. Thus,
M=80xnKB in Eq. (1). With a large scale TSS, such
as n=300, M can be estimated as 24 MB (10° bytes).
Such main storage capacity would not be considered
large in today’s large scale computer systems.
Moreover, CT will be longer than 20 seconds, judging
from the result reported in [4] and our measurements.
Consequently, the total amount of the main storage,
which must be provided for the TSS user while his WS
is swapped in (so that it can be accessible to the CPU),
may be smaller than 24 MB in this situation.

For the second design feature, we estimate the swapp-
ing rate (SPR [3]) which is the number of transferred
pages per second between main storage and auxiliary
storage due to swapping. We assume that WS is copied
out to auxiliary storage or brought into the main
storage by the swapping, rather than the paging
mechanism. Thus, SPR=fX wx n/CT, where f reflects
the fact that both swap-in and swap-out take place. The
value of fis almost 2, so, SPR=24 MB/sec under the
above assumption. Thus, twenty three channels may be
dedicated to swapping, where the channel transfer rate
is 3.0 MB/sec and channel utilization is limited to 35%
practically. In addition, several channels are necessary
for file access and paging. Therefore, the design of a
large scale TSS is probably limited by the system con-
figuration—especially by the number of channels.

In the immediate swapping policy, it is not possible to
use large scale storage effectively, even when it is
available; many channels are needed for swapping. To-
day, the main storage of 64 to 128 MB in large scale
computer systems is much more than required for the
immediate swapping policy. Thus, a more favorable
balance between the main storage and channel usage
can be achieved using the demand swapping policy.

In demand swapping policy, WS’s are not swapped
out immediately at the completion of a TSS command
processing (called transaction), and can be left in the
storage until it is required by another user. So, if a W§
is still resident, the system can start working on the tran-
saction without encountering a swapping delay.

Now let us define the working set hit ratio (WSHR)
for the performance measurement of the demand swap-
ping algorithm. WSHR is defined as the number of
times the desired WS was found in the main storage (a
hit), divided by the total number of transactions made
by TSS users. WSHR depends on the main storage
capacity, the user’s input process, and the demand swap-

Y. YosHizAwA and T. KINOSHITA

ping algorithm. The demand swapping algorithm
selects a swap-out candidate only when the storage is
needed for another user whose WS is already swapped
out.

3.2 Demand Swapping Algorithms

The object of the demand swapping algorithm is to
gain high WSHR. The demand swapping algorithm can
be regarded as the page replacement algorithm when the
time interval between successive references to the same
WS is substituted for the time interval between suc-
cessive references to the same page in the demand pag-
ing system. Now our attention is concentrated on the
demand swapping algorithm in relation to the input
process. Therefore, the working set size is assumed
constant in this paper.

The optimal demand swapping algorithm, which
yields the maximum WSHR over the space of all de-
mand swapping algorithms for every input process and
every main storage capacity, has the following
characteristics.

Whenever WS must be swapped out from the main
storage, the chosen WS is the one whose next input is
farthest in the future. This optimal demand swapping
algorithm is analogous to MIN [2] or OPT [22] in the
page replacement, where the input process of TSS users
is substituted for the page reference string. We can
regard the input process of TSS users as the reference
string of WS’s. Unfortunately, the optimal demand
swapping algorithm cannot be achieved in an actual
operating system because it requires knowledge of
future input processes, such as MIN or OPT.
Therefore, we proposed five demand swapping
algorithms. These five demand swapping algorithms are
considered here, since they are of practical importance:

Least Recently Used (LRU) Algorithm

In this algorithm, the swap-out candidate of WS is
the one with the longest resident time since the last com-
pletion of a transaction.

Random (RAND) Algorithm

When there are m, WS’s in the main storage, any
given WS is chosen for swap-out with a uniform
probability of 1/my.

Last Used First out (LUFQ) Algorithm

In contrast to LRU, this algorithm chooses a WS
with the shortest resident time since the last completion
of a transaction. In this algorithm, users who have been
thinking for a long time are expected to complete their
inputs sooner.

Prediction (PRED) Algorithm

In this algorithm, the next user time (UT) is predicted
from past UT’s. From this prediction, PRED chooses a
WS whose predicted completion input time is farthest
in the future. In this algorithm, it is assumed that each

An Analysis of User Behavior and Demand Swapping Policies in Time-Sharing Systems 131

user has a characteristic input process. That is, each
user continuously employs roughly similar UT’s during
his session. The exponential smoothing method (5] is
used to predict the next UT. This prediction formula is:
X/zl?i—| +ax (x,-_l—)?.-_l), for i= l, 2, 3, .. . where)?,
is the predicted value of the next UT, x;-, is a previously
observed value, and a(0<a < 1) is the smoothing con-
stant [31].

Shrunken Least Recently Used (SLRU) Algorithm

From the analysis of the input process, especially the
run of the short-URT, we know that successive URT’s
are not independent. This algorithm takes advantage of
this fact. That is, at the end of SRT, WS is swapped out
if the previous URT is greater than f,. Otherwise, the
WS is kept in the main storage. In the virtual storage
operating system, adequate amount of free storage is re-
quired because of preventing paging and swapping
delay [32]. SLRU can achieve the replenishment of free
storage and demand the swapping policy at the same
time. The selection method of WS for swap-out—when
the storage becomes insufficient for another user—is the
same as for LRU. This ¢ is called critical time. If we
make £, infinite, WS is always kept resident at the end of
SRT. Therefore, SLRU is the same as LRU when ¢, is in-
finite. On the other hand, SLRU is the immediate swap-
ping policy when t, is zero. This critical time, f;, is an im-
portant parameter in this SLRU algorithm.

Fixed-space demand swapping algorithms (LRU,
RAND, LUFO, and PRED) can be compared in terms
of their WSHR at equal storage sizes. But SLRU may
be a variable-space demand swapping algorithm; de-
pending on f,, some WS’s are swapped out at the end of
SRT. The main storage capacity for the demand swapp-
ing policy varies dynamically with time and is less than
or equal to the total capacity of the main storage. From
this reason, the WSHR of SLRU could be analyzed
differently from the others.

4. Analysis of Demand Swapping Algorithms

The actual behavior of TSS users at a terminal is ob-
tained as time series data in order to analyze the relation-
ship with the five proposed demand swapping
algorithms. For this analysis, a trace-driven type [7][19]
simulation model has been developed. The input infor-
mation is the trace data. The real time behavior of the
original workload with a varying level of multiprogram-
ming can be reproduced by this simulator.

4.1 Simulation Model

4.1.1 TSS User Model

This simulation model bases on the input process dur-
ing a terminal session. Four terminal states are con-
sidered by this simulator. Three of those four states cor-
responds to system response time (SRT'), user response
time (URT) and output time (OUT). The fourth cor-
responds to a logged-off state which enters by a logoff

command and left by a logon command. A state of SRT
is entered from a state of URT at a command input and
left in a state of URT or OUT. A state of URT is
entered from a state of SRT directly or from a state of
OUT at the end of the output request. This simulator
makes a terminal state transition when an event is
found in the trace record which is either (1) a
logon/logoff command, (2) a system prompting for the
user to enter the next command (3) a user depressing the
carriage return, or (4) output messages to a terminal.

4.1.2 Swapping model

Fig. 9 shows the structure of the trace-driven
simulator for the demand swapping analysis. This
simulator maintains mg§ WS’s in the main storage. That
is, the main storage capacity, M, is equal to mg X w.
Where w is the average WS size. There are three kinds
of queues: (1) active queue, (2) survival queue, and (3)
swap-out queue.

The queue element represents the process state con-
taining a terminal state and statistical information
related to the TSS process. The active queue contains
elements that represent terminals during SRT. WS’s
related to the active queue element are used for access-
ing to the CPU. The element of the survival queue
represents the terminal whose WS is kept in the main
storage during user time (URT or OUT). Swap-out
queue elements represent the terminal whose WS’s have
been already swapped out. the total number of active
and survival queue elements is less than or equal to m,.

When the simulator gets a record of a user typing the
carriage return, the corresponding queue element is
searched in the survival queue. If the corresponding
queue element is not found in the survival queue, and
the total number of elements in the active and survival
queues is equal to m,, a queue element corresponding to
a swap-out candidate is removed from the survival
queue and placed in the swap-out queue. This swapping
decision is made by a demand swapping algorithm
which is specified by a parameter of this simulator. This
simulator neglects the swapping time, and the corre-
sponding element is placed in the active queue.

This queue element is created at logon command,
transferred between the three queues, and destroyed at
logoff command. At the end of SRT, the corresponding
element of the active queue is removed and placed at the
end of the survival queue, except for in PRED and
SLRU. In PRED, the simulator calculates the next
predicted user time (UT) using previously observed UT
values and the smoothing constant. It then merges the
queue element into the survival queue based on the
predicted UT value. In SLRU, if the previous URT is
greater than the critical time /£, the queue element is
removed from the active queue and placed in the swap-
out queue. Otherwise, the queue element is placed in the
end of the survival queue. The critical time f, is given as
a parameter to this simulator.

Accordingly, a swap-out candidate is the first element

132

Y. YosH1zawa and T. KINOSHITA

r———— -
: Specifles storage slze and !
Measurement Ldemond swopping algorithm 1
f | 0 bee=aa .= ______ el
1SS v
Main storage contgining mg WS's
9
Maintains
Trace Gets terminal states
data event
records Makes swapplng
descision

Jond reports

[athers statisticy

Trace-Driven Simulator

Swap-out queue
{550

number of TSS users (n)

Fig. 9 Demand swapping analysis with trace-driven simulator.

of the survival queue in LRU, PRED, and SLRU. On
the other hand, the last element of the survival queue is
a swap-out candidate in LUFO. In RAND, the
simulator selects the swap-out candidate using the
pseudo random number, which is an integer uniformly
distributed between one and the number of the survival
queue element.

4.2 Fixed-Space Demand Swapping Algorithms

4.2.1 Simulation Results of WSHR

WSHR’s of the fixed-space demand swapping
algorithms are plotted in Fig. 10. The number of WS’s
in the main storage, m¢, is given by a parameter to this
simulator. Let @ be the average number of WS’s whose
process are running and in SRT state. Thus @ equal to
SRTxn*/CT. Where n* is the number of logged on
users. Let n be the average number of WS’s during UT,
so n=n*—aq. Thus, the average number of WS’s in the
main storage waiting for the completion of UT, my, is
given by m¢ —a. As mentioned in 3.2, we are concerned
with the demand swapping algorithm. Therefore, we
assume the working set size is constant, although WS
varies in the real world [18][21]{26]. The smoothing con-
stant in PRED is assumed to be 0.5.

From simulation results based on the trace data, the
WSHR’s of four demand swapping algorithms from the
highest to the lowest are LRU, RAND, PRED, and
LUFO. The differences of WSHR between LRU and
RAND are slight. However, the differences in WSHR
between RAND and PRED, and between PRED and
LUFO, are relatively large. For instance, if the mean
number of WS’s in the main storage is 15, the WSHR’s
of LRU, RAND, PRED, and LUFQO are 56%, 54%,
43% and 33%, respectively. Therefore, there are
differences in WSHR among demand swapping
algorithms.

(%)
1001

901
80
701
60
501
a0}

30

Working Set Hit Ratio

20+

11

) L L " . L s "
20 25 30 35

Number of WS’s in the Main Storage, Mg*

40

Fig. 10 Simulation results of WSHR.

4.2.2 Main Characteristics of each Demand Swapping
Algorithm

The relation between the user input process and de-
mand swapping algorithm is investigated in this section.
Two distribution functions, p¥ and g, are introduced
from the user input process and WSHR’s of LRU and
RAND are represented by them. The other WSHR’s are
explained by the results of the analysis of input process
in section 2. It is assumed that the main storage capaci-
ty, M, contains m, WS’s; that is, my=M/w where w is

An Analysis of User Behavior and Demand Swapping Policies in Time-Sharing Systems

0.06 Characleristics of observed p!
mean = 1.5
005} . voriation : 61.8
observed p, no. of samples : 71,619
s
£ 004
o
=
2
a 003 \
3 P " 255
s ooz}
g
N
w
7l \
o) L : n .
(o] 10 20 30 40 50

Number of Terminals which Completed Inputs during a UT, i

Fig. 11 Distribution of number of terminals which completed in-
puts during a UT.

0.05} Characteristics of observed qf

eon : 26.1
observed qf m

©LT36
004 variation

0.03

0.02

Frequency Distribution

0.01

o] 10 20 30 40 50 60 70 80

Number of Inputs during a UT, i

Fig. 12 Distribution of number of inputs during a UT.

the average WS size.

LRU

In this algorithm, the condition under which userA4’s
WS is still resident at completing his next input is that,
at most, mo— 1 distinct users complete their inputs dur-
ing A’s UT. The distribution, p¥, in which / distinct
users complete at least one input each within a UT is a
main factor in LRU. The distribution, p¥, is obtained
from the trace data and shown in Fig. 11. The mean
number of users who complete their input is 11.5. From
this distribution, and WSHR is LRU is obtained:
WSHRLRU=27§(; P,*-

RAND

The resident WS is selected for swap-out with a
uniform probability of 1/m, when the storage is needed
for another user whose WS has been already swapped
out. The number of opportunities of this selction dur-
ing a UT is an important factor in RAND. Thus, the
distribution, g7, in which i/ inputs (some possibly from
the same user) are made during a UT, is investigated
and shown in Fig. 12. The average number of inputs is

133

survival queue
A §

Mg my-1
cnoigare D] ® ----- O]

Next input (X}

position in
the queue

WS of X (not resident) WS of X (resident)

SWap-out SWap-out
candidate candidate
} My-1 1 § mo-l 1
Ol ®----0] [PO®----O]

Next input (Y)

é(swuaoed out)
WS of Y (not resl‘V lws of Y (resident)
swup-out;ccndldute
OC ©----0] [Ql® ©®©---@
B! t

swap-out
@ {swapped out)

candidate
Fig. 13 Schematic model of the transfer of the survival queue in
LUFO algorithm.

26.1.

Now consider the situation that a user X completes
his input during user A’s UT. Let P(n, mg) be the
probability for which user A’s WS is kept resident after
X’s input. Thus, the WSHR of RAND is:

WSHRranp= 2, qF X P(n, mo)'. ?)
i=0
The probability P(n, mo) is given in Appendix C.

LUFO

Let queue elements be merged (in order of priority,
longer UT’s first) in a survival queue. This schematic
model is shown in Fig. 13, where m, WS’s are still retain-
ed in the main storage and users are in UT. In Fig. 13,
the user Z spends the longest UT time and the user A
the shortest. WS of A is now the swap-out candidate.
That is, the swap-out candidate is the last element in the
survival queue in LUFO. In this situation, we assume
that the user X completes his input. If X’s queue ele-
ment is not in the survival queue, 4’s WS is selected for
swap-out.

However, if X’s queue element is in the survival
queue, A’s WS is kept in the main storage. X’s queue
element is placed at the end of the survival queue,
assuming that the system response time is negligible.
X’s WS becomes a swap-out candidate next, and A’s
queue element does not go to the end of the survival
queue until A’s next input comes, even if A’s UT is
long. This means that A’s WS is never swapped out dur-
ing his UT. To verify this fact, we assume that a user Y
completes his next UT. The same operation is perform-
ed in the survival queue at the X”’s input. As the results,
A’s element stays in the (710 — 1)th position or is transfer-
red to the (mp—2)th position of the survival queue.
Even if Y is X, A’s element stays in the (77,— 1)th posi-
tion of the survival queue.

134

Table 3 Correlation coefficients.

Case 1 Case2 Case 3
Cor (SRT;, URT,y,) 0.0129 0.00529 —0.00531
Cor (OUT,, URT,,}) 0.0835 0.00336 0.00432
Cor (SRT,+OUT,, URT;,,) 0.0840 0.0324 0.0327
Cor (UT?, UT,,) 0.0478 0.0522 0.0849
Cor (SRT;, UT,,)) 0.0123 0.0295 0.0269
Cor (URT,;, URT,,)) 0.189 0.213 0.150

*UT,=O0UT,_,+URT;

In the above consideration, UT is an important fac-
tor, especially for long periods in LUFO when WS’s are
resident at the completion of input. If the ratio of long
UT’s is large, WS’s waste the main storage. Thus, the
long UT time frequency of the UT distribution is
especially important. If the ratio of long UT is large,
the main storage will be wasted by those WS’s. The
distribution of UT, as shown in Fig. 6, is more skewed
than exponential distribution with the same mean
value. The long period portion is greater than the ex-
ponential one, as previously mentioned. Consequently,
there may be more WS’s maintained in the main storage
in LUFO for longer periods than in the other demand
swapping algorithms.

PRED

The major feature of PRED is prediction accuracy.
For example, when a user A has had several short UT’s
in succession, PRED will predict that the A’s next UT
will also be short. So, A’s WS will be kept in the main
storage even if A’s next UT is long. Therefore, the main
storage space will be wasted. On the other hand, when a
user A has had several long UT’s PRED will predict
that A’s next UT will also be long. So, A’s WS will be
swapped out when storage space for another user’s WS
becomes necessary to swap in even if 4’s next UT is
short. Consequently, PRED is not effective when UT’s
are variable.

Therefore, the serial correlation coefficient, Cor
(UT;, UT:+)), is important in PRED. The observed
values, as shown in Table 3, are close to zero. We can
see that predicting the next UT from the past UT’s
yields undependable results.

4.2.3 Comparison of Simulation and Stochastic
Model Results

Four demand swapping algorithms use the past
history of the time interval between successive TSS com-
mands for each individual user. A stochastic model, in
which the time interval between successive TSS com-
mands is independent and exponentially distributed, is
introduced in order to make clear how WSHR’s depend
on the input process. As pointed out in the previous sec-
tion, the main factors of each WSHR are presented by
distributions, pf¥, ¢*, f*(¢), and the serial correlation
coefficient, Cor(UT;, UT;+). Using this model, we will

Y. YosHizAwA and T. KINOSHITA

Resident Demand Swapping Swapped out |y

mo WS's Algorithm (n-mg) WS's
4 ! jd

v

v During User Time (URT or OUT)

Out of User Time

Fig. 14 Transaction flow in the stochastic model.

examine these distributions. We will analyze the rela-
tionship between WSHR and the input process in LRU
and RAND which show high WSHR in the trace-driven
simulator.

The input process of TSS users can be regarded as a
stochastic process. Therefore, it is assumed that UT’s
are independent and exponentially distributed with
mean 1/A. The probability density is: f(¢)=A2 exp
(—At), (1z0). This assumed input process is called a
stochastic model. In this section, the WSHR’s with
trace-driven simulation are compared with those of the
assumed input process.

In this stochastic model, a TSS transaction enters the
system via the swapping state of a queueing network
model. Let n be the average number of users in UT as
defined in 4.2.1. The transaction flow can be shown as
Fig. 14, where m, is the average number of WS residing
in the main storage. So, (n—mg) WS’s are swapped out.
From the assumption that UT’s are exponential, in any
At interval time, the probability that every user stops
his UT is equal to A4t and that all users are indepen-
dent. In addition, WSHR is not affected by any demand
swapping algorithms. Therefore, the probability that
WS is still resident at the stopping UT is proportional to
the number of WS’s in the main storage. That is,
WSHR is equal to my/n.

The WSHR of the stochastic model, or, my/n, is also
shown in Fig. 10 where n is an average number of TSS
users based on the trace-data. The WSHR’s of LRU
and RAND closely approximate mo/n. However, the
WSHR’s of PRED and LUFO differ from mo/n.
Therefore, the differences in WSHR between m/n and
the simulation results are examined more precisely in
the following:

LRU

As previously mentioned, the distribution, in which i
distinct users complete at least one input each within a
UT, is an important factor. Let p; be this probability in
the assumed input process. Thus, p; is: pi=1/n, for
i=0,1,2,3,...,n—1 (proved in Appendix B), which
is a uniform distribution. Comparison of the observed
distribution, p?, with a probability p; of a uniform
distribution is shown in Fig. 11. In p¥, the number of
users varies as shown in Fig. 3, and the maximum
number of users which complete input during a UT is
37.

An Analysis of User Behavior and Demand Swapping Policies in Time-Sharing Systems 135

The difference in WSHR between the simulation and
the stochastic model can be formulated using p; and p?.
That is:

AWSHR ru= Z (P:* "Pi) (3)
i=0

The observed p? is larger than p; when i< 15. On the
other hand, observed p! is smaller than p; in the
16 <i=<26range. From Egq. (3) and Fig. 11, AWSHRru
is positive in the 0<my=22 range. This explains why
the WSHR’s in the simulation are greater than mo/n in
the stochastic model. These results are shown in Fig. 10.

RAND

In the stochastic model, n users are always in UT if
SRT is negligible. In any At interval, the probability
that a user will complete a UT is equal to 14¢ for every
user. So, the probability that user A completes his UT
as the next input to the system is 1/n. The probability
that the next input to the system will be made by others
is (1—1/n). Accordingly, at every input to the system,
Bernoulli trials [14] are made with the probability 1/n.
Thus, the probability ¢; that / inputs will be made dur-
ing a UT is a geometric distribution. That is:

g=1/n(1—1/ny, fori=0,1,2,....,.

The observed g is compared with a probability g; of
a geometric distribution in Fig. 12. The difference in the
mean number of inputs between ¢ and g; during a UT
is small. The observed g is larger than ¢; when i< 18.
However g is smaller than ¢g; in the i=19 range.

From Egq. (2), the difference in WSHR between the
simulation and stochastic model is: AWSHRganp
=320 (g’ —q) X P(n, my). The difference,
AWSHReano(J)=Zl=0 (¥ —q) X P(n, mo)', is obvious-
ly positive when j <18, because ¢*=¢; in the i<j=<18
range and P(n, mo) = 1. The probability P(n, mo) is pro-
vided in Appendix C. Accordingly, the WSHR of
RAND, which is evaluated in the simulation, is higher
than in the stochastic model. This reasoning explains
the behavior shown in Fig. 10.

4.3 Variable-Space Demand Swapping Algorithm

4.3.1 WSHR vs. Critical Time

From the analysis of the observed user input process,
successive URT’s are not mutually independent. In
SLRU, WS’s are swapped out at the end of SRT when
the previous URT is larger than f#. This simulation
model assumes that WS is invalid immediately upon be-
ing swapped out even if it can be reclaimed. That is,
freed spaces by swapped out are wasted and unused for
demand swapping policy. From this assumption, we
can compare the difference in WSHR between SLRU
and LRU and know the average storage capacity by us-
ing SLRU. This # is an important parameter in SLRU.
The sensitivity of #, in SLRU is investigated. The rela-
tionship between WSHR and ¢, is shown in Fig. 15. The
WSHR of LRU are also plotted in Fig. 15, because
LRU is a case of SLRU when ¢, is infinite.

(%}
30r

mo"=5 LRU
\
« 20F @ mmmmme—— M
I
1ok
g2 OF [ssec
° AT T S S U S
o] 10 20 30 40 ’ 4
critical time to (sec)
%)

60

WSHR

50

a0t

me* =15

WSHR

30

20

ol o 4
[10 20 30 40 @

critical time to (sec)

Fig. 15 WSHR vs. critical time in SLRU.

The WSHR of SLRU, where m§ =5, to=5 and where
mg =10, ty= 14, is greater than that of LRU. However,
the WSHR of SLRU increases with respect to # when
mg=15. Thus, a higher WSHR can be achieved in
SLRU than in LRU if a suitable critical time t, is
chosen. These results show that SLRU takes advantage
of the correlation between the two successive URT’s.

4.3.2 Comparison of SLRU with LRU

From the simulation study, LRU is the best algorithm
among the fixed-space demand swapping algorithms.
However, SLRU shows higher WSHR than LRU in a
certain 7, range. The characteristics of SLRU are exam-
ined more precisely in this section.

SLRU is a kind of variable space demand swapping
algorithm. This means the storage area using demand
swapping varies. To compare SLRU with LRU, the
average storage size allocated for demand swapping
policy in SLRU is shown in Fig. 16. Fig. 16 shows the
amount of main storage used for demand swapping
policy as a function of critical time #,. ‘‘Used for access-
ing CPU” in Fig. 16 means that the storage area is used
by active processes. This area size is almost a X w where
a is the average number of WS’s during SRT and w is
the average working set size. In SLRU, the storage area
is freed when WS’s are swapped out. Thus ‘‘Unused”’
in Fig. 16 means freed area. ‘‘Using for DS’’ means that
this storage area is used for demand swapping policy

136

6 used for accessing CPU
a sy L ey
o unused \
€ 2F—x e using for DS LRU
*=5
LY mes
o 10 20 30 40
critical time to (sec)
used for accessing CPU
10 ¢
8runused ___—‘\
. eF LRU
o
€ al using for DS
mo* =10
2r 14 sec 0
o - 1 —
o 10 20 30 40 oo
critical time to (sec)
16~ used for accessing CPU
)
wl /A
——
12|-unused - \
LRU
o
" 8}
€
6 using for DS
ab mg* =15
2F
obdon 4 - FE—
o 10 20 30 40 co

critical time to (sec)

Fig. 16 The allocation of memory use vs. critical time in SLRU.

and contains WS’s during UT.

Obviously, the average size increases with respect to
the critical time #. When mg =5 and =5, the WSHR
of SLRU is greater than that of LRU, as shown in Fig.
15. The average storage size, m,, for demand swapping
policy is 2.0 in SLRU where #,=5 seconds, but in LRU,
an m, of 3.8 is required, as shown in Fig. 16. If mg =10,
WSHRs ru= WSHRry Where 1= 14, as shown in Fig.
15. In order to achieve the same WSHR, an m, of 7.1 is
required in SLRU while an m, of 8.4 is required in
LRU. Consequently, SLRU can achieve higher WSHR
with smaller storage capacity than LRU.

4.4 Consideration of Demand Swapping Algorithms

WSHR of each demand swapping algorithm has been
analyzed. This WSHR is the most important perfor-
mance measurement in the demand swapping policy,
because interactive swaps can be minimized. However,
from the user’s point of view, another criterion must be
examined for the evaluation of demand swapping
algorithms.

Our observations show that trivial TSS transactions,
such as simple data set editing operations, occupy more
than 80% of the total interactions. The consumed
system resources for swapping are greater than those of
a trivial transaction. From the analysis of the cycle
time, the UT’s for those trivial transactions are rela-
tively short. That is, the system should be substantially
more responsive to trivial transactions than to transac-

Y. YosHizawa and T. KINOSHITA

%)
100

LRU averoge number of users :
4 25.5
overage user time
29.7 sec
average number of UWS's

90

80

in the main storage : m,

RAND 5.0

50

40

Working Set Hit Ratio

20

User time (sec)

Fig. 17 User time vs. working set hit ratio.

tions which take several minutes of CPU time [13].
From this point of view, it is advisable that the WSHR
for a short UT be higher than for a relatively long UT.
The relationship between UT and WSHR is the second
important criterion in the demand swapping policy, as
shown in Fig. 17.

WSHR of LRU is highest where UT is less than 21 sec-
onds (Fig. 17). However, WSHR of LRU is lowest
where UT is greater than 24 seconds. In contrast to
LRU, the WSHR of LUFO is almost constant at 30%
and is not related to UT. In RAND and PRED, WSHR
slowly decreases with respect to UT. From this we see
that LRU is the most effective in terms of this important
factor. That is, when a user completes his input quickly,
he can expect to shorten the swapping delay with LRU.

LRU and SLRU adopt the same approach of select-
ing WS for swap-out when the main storage becomes in-
sufficient. As we have shown, they are both useful de-
mand swapping algorithms.

5. Conclusions

Five demand swapping algorithms were evaluated us-
ing the trace-driven simulator. The main factors of each
WSHR in the demand swapping algorithm depend on
the past history of the time interval between successive
TSS commands, (UT).

We conclude that LRU, or SLRU, is the best demand
swapping algorithm. These two algorithms have the abil-

An Analysis of User Behavior and Demand Swapping Policies in Time-Sharing Systems 137

ity to automatically swap out working sets in the main
storage for long UT. This ability is most important in
effectively utilizing the main storage for the demand
swapping policy. Therefore, LUFO showed the worst
performance in WSHR, because it lacks this ability.
PRED also will lose this ability unless the next UT is ac-
curately predicted. However, PRED does not lose this
ability completely even when the prediction is inac-
curate.

LRU, or SLRU, takes advantage of the correlation
between the two successive URT’s. This ability is the
second important function. The URT’s which were
analyzed showed that successive URT’s are mutually
dependent. Therefore, LRU showed higher WSHR
than RAND.

SLRU is an improved version of LRU. The critical
time 4 in LRU is the parameter in setting higher
WSHR. From the simulation study, SLRU showed
higher WSHR than LRU in a given critical time range.

Acknowledgments

This research has been conducted as part of a project
concerning a large scale time-sharing system at the Uni-
versity of Tokyo. Many persons from the staff of the
Kanagawa Works, Software Works, and Systems
Development Laboratory (SDL) of Hitachi, Ltd., took
part. Authors would like to thank Dr. Takeo Miura,
(former General Manager of SDL), and Mr. Y. Hattori
(of the Software Works) for their encouragement in this
research. We are deeply grateful to Prof. H. Ishida of
the University of Tokyo who gave a willing consent to
accumulate trace data of TSS user process and reviewed
this paper. The authors also gratefully acknowledge the
help of Dr. K. Noguchi of the Software Works for sug-
gesting this area of research and for his constructive
comments, and the help of Mr. A. Harada and his col-
leagues of the Software Works for their work in
developing the demand swapping policy in VOS3.
Thanks are also due to Prof. H. Morimura of the
Tokyo Institute of Technology for his theoretical discus-
sions, Prof. T. Masuda of University of Tokyo for his
constant encouragement, and Dr. S. Mitsumori and
Mr. T. Kubo of SDL for their penetrating comments as
well as for reviewing this paper.

References

1. BELADY, L. A. A study of replacement algorithms for a virtual-
storage computer, /BM Syst. J., 5, 2 (1966), 78-101.

2. BELADY, L. A. and PALERMO, F. P, On-line measurement of pag-
ing behavior by the multivalued MIN algorithm, JBM J. Res. Dev., 18
(January 1974), 2-19.

3. BERETVAS, T. Performance tuning in OS/VS2 MVS, IBM Syst.
J., 17, 3 (1978), 290-313.

4. Boigs, S. J. User behavior on an interactive computer system,
IBM Syst. J., 13, 1 (1974), 2-18.

5. BRrOWN, R. G. Smoothing, Forcasting and Prediction of Discrete
Time Series, Prentice-Hall, Inc., 97-105.

6. BUZzEN, J. P. A queueing network model of MVS, ACM Com-
puting Survey, 10, 3 (September 1978), 320-331.

7. CHENG, P. S. Trace-driven system modeling, /BM Syst. J., 8, 4

(1969), 280-289.

8. CHow, WE-MIN and CHU W. W. An analysis of swapping
policies in virtual storage systems, JEEE Trans. Softw. Eng., SE-3, 2
(March 1977), 150-156.

9. CHu, W. W. and OpPDERBECK, H. The page fault frequency
replacement algorithm, 1972 FJCC, AFIPS Conf. Proc., 41, AFIPS
Press, Montvale, N.J. (1972), 597-609.

10. CorrMaN, E. G. Jr. and Woop, R. C. Interarrival statistics for
time sharing systems, Comm. ACM, 9, 7 (July 1966), 500-503.

11. CoRBATO’s, F. J. and VyssoTsky, V. A. Introduction and over-
view of the multics system, 1965 FJCC Conf., AFIPS Press Conf.
Proc., 27, Spartan Book, Washington (1965), 185-196.

12. DENNING, P. J. The working set model for program behavior,
Comm. ACM, 11, 5 (May 1968), 323-333.

13. DoHEerTY, W. J. Scheduling TSS/360 for responsiveness, 1970
FJCC, AFIPS Conf. Proc., 31, AFIPS Press, Montvale, N.J. (1970),
97-111.

14. FELLER, W. An Introduction of Probability Theory and its Ap-
plications. 1, John Willy & Sons, Inc., New York (1957) Ch. 6.

15. GELENBE, E. A unified approach to the evaluation of replace-
ment algorithm, IEEE Trans. Comput., C-22, 6 (June 1973).

16. IsHIDA, H. A 4-CPU multiprocessor system of the University of
Tokyo, Journal of the Information Processing of Japan, 15, 7 (July
1974), 534-541.

17. IsHIDA, H., NomoTo, S. and Ozawa, H. Graphic monitoring of
the performance of a large 4-CPU multiprocessor system, Proc. of
the second USA-Japan Computer Conf. (1975), 271-275.

18. JEFFREY, R. S. and DENNING, P. J. Experiments with program
locality, 1972 FJCC, AFIPS Conf. Proc., 41, AFIPS Press, Mont-
vale, N.J. (1972), 611-621.

19. KoBavasHI, H. Modeling and Analysis: An Introduction to
System Performance Evaluation Methodology, Adison-Wesley
Publishing Company Inc. (1978), Ch. 4.

20. LyNcH, H. W. and PAGE, J. B. The OS/VS2 release 2 system
resources manager, IBM Syst. J., 13, 4 (1974), 274-291.

21. MADISON, A. W. and BATSON, A. P. Characteristics of program
localities, Comm. ACM, 19, 5 (May 1976), 285-294.

22. MATTSON, R. L., GEcsEl, J., SLutz, D. R. and TRAIGER, 1. L.
Evaluation techniques for storage hierarchies, /BM Syst. J., 9, 2
(1970), 78-117.

23. Nakazawa, K., MuraTa, K., IsHIHARA, K., IwakaMi, H.,
HorikosHi, H., NisHINO, H. and Nobpa, K. The development of the
high speed national project computer system, Proc. of the first USA-
JAPAN Computer Conf. (October 1972), 173-181.

24. NocucHI, K., OHNisHI, I. and MoriTA, H. Design considera-
tions for a heterogeneous tightly coupled multiprocessor system, 1975
NCC, AFIPS Conf. Proc., 44, AFIPS Press, Montvale, N.J. (1975)
561-565.

25. OuNisHI, 1., TOTUNE, S. and IsHiDA, H. Command language in
OS7, Proc. of IFIP Working Conf. of Command Languages (July
1974).

26. RODRIGUEZ-ROSELL, J. Empirical working set behavior, Comm.
ACM, 16, 9 (September 1973), 556-560.

27. SCHERR, A. L. and LARkIN, D. C. Time-sharing for OS, 1970
FJCC, AFIPS Conf. Proc., 31, AFIPS Press, Montvale, N.J. (1970),
113-117.

28. SCHERR, A. L. Functional structure of IBM virtual storage
operating systems part 2: OS/VS2-2 concept and philosophies, IBM
Syst. J., 12, 4 (1973), 382-400.

29. SCHERR, A. L. The design of IBM OS/VS2 release 2, NCC,
AFIPS Conf. Proc., 42, AFIPS Press, Montvale, N.J. (1973), 387-
394.

30. SmiTH, A. J. A modified working set paging algorithm, IEEE
Trans. Comput. C-25, 9 (September 1976), 907-914.

31. YosHIZAWA, Y., KiNosHITA, T. and Aral, T., Analysis of De-
mand Swapping Policies in Large Scale Time-Sharing Systems, Jour-
nal of the Information Processing of Japan, 21, 4 (July 1980), 314-
324.

32. YOSHIZAWA, Y., Aral, T., Kuso, T. and SHINOZAKI, T. Adap-
tive Control for Page Frame Supply in Large Scale Computer
Systems, Proc. of the 1988 ACM SIGMETRICS, 16, 1 (May 1988),
235-243.

(Received February 2, 1988; revised August 17, 1988)

138

Appendixes
A

It is assumed that the number of interactions in a ses-
sion is N (a finite number) and each URT is stochastical-
ly independent. Under these assumptions, the sequence
of URT’s described in {s,r} form, for example
By={r,s,s,r,...,r s} is regarded as a sequence of
N Bernoulli trials.

Let B(N, k) denote a sequence of N Bernoulli trials
which includes & r’s and the following symbols are in-
troduced.

L, : arandom variable of the run length of
short URT’s .
S(¥) : ajust i times successive run of short URT’s

F(N, k, i) : the number of S(i)in a B(N, k)

Then it is clear that the probability of B(N, k) appear-
ing is p(£)"* x q(t)*, where p(¢)=P{URT<t} and q(¢)
=1-—p(t). So, P{L,=i} is proportional to Z{=§ F(N,
k,) x p()N"*x g(1)~.

The following boundary conditions are obvious.

(1) FWN,k,i)=0 (i<0,N—k<i)

._Jo (i<N)
@ FW,0,i)= {1 (=N
w_ IN+1 (i=0)
3) F(N,N, l)—{o ©0<i)
Proposition 1. For i+k=Nand k=1,2,3,..., N,
N
F(N, k,)=Cn—i—1,k-1+ >, F(j—1,k—1,i)
j=itk

where C(n, r) represents the number of r-conbinations
of n distinct objects.
(proof)

When the last r in B(N, k) is in the j-th position, the
number of S(i) before the last r is F(j—1,k—1,i)
(j=i+k,...,N). On the other hand, S(i) after the
last r appears only when the last r is in the (N—i)-th
position in B(N, k). The number of these cases is
C(N—i—1, k—1). F(N, k, i) is the summation of these
terms.

Proposition 2. For i=0,1,2,...,N—1.and k=1,
2,...,N—i,)

FWN, k,)=(k+1)XC(N—1, k—1)

(proof)

According to Proposition 1, the above formula can
be proved by mathematical induction with N or k.

P{e,=i} is proportional to G(N, i)=XZ¥={ F(N, k, i)
xp(t)N*xq(t) (=1,2,...,N) and normalized,

Y. YosHizawa and T. KINOSHITA

ie. ZX,P{L=i}=1, so, P{L=i}=GN,i)/Z,

G(N, i). From the result of Proposition 2, G(N, i) and

ZX, G(N, i) can be calculated as follows.

Proposition 3.

N=i=Dp(t)q(t)*+2 % p(tYq(t)
(i=14,2,...,N-1

p(YN (i=N)

G(N,)=

; GN,)=p(t)+(N—1)x p(t) X q(t)

Therefore,
N—=i—Dp(t)~'q(tY+2p(t)~'q(t)
1+ (N—1)g(?)
i=1,2,...,N—-1)
P{L=i}= p()N!
1+ (N—1)q(1)
(i=N)

Finally Eyx which is the expectation of L, can be
represented as:
N

Ex=2ix P{L=i}=N/{1+(N~1)g(1)}.

B

The probability, p;, that i distinct users complete at
least one input each within a UT is evaluated. Let ¢ be
the UT of a user A. The probability that user X (not A)
stops his UT during ¢ is: p(f)=1-—exp (1 —At). Thus,
the probability, pi(t), that i out of n—1 users stop their
UT within ¢, is given by: pi(t)=C(n—1,i)x P(ty
q(t)"~!, where g(¢)=1—p(?), which is a binomial dis-
tribution. From the assumption of UT, probability p;
is: pi={ P(t)xf(t)dt=1/n, which is a uniform
distribution.

C

Let us show the probability, P(n, my), for which user
A’s WS is kept resident after X’s input. There are two
situations in which user A’s WS remains in the main
storage after X’s input. One is when user X”’s WS is still
resident. This probability is (me—1)/(n—1). In the
other situation, user X’s WS are not resident with
probability (n—mo)/(n—1). In this case, the probabil-
ity that user A’s WS is still resident is (n — mo)(1 — 1/ my)
/(n—1). Consequently, P(n, mp)=(mo—1)/(n—1)
+(n—mo)(1=1/mo)/(n—1)=n(1—1/mg)/ (n—1).

