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This paper describes the design of processor element architecture for the parallel inference machine pro-
totype, PIM/p. Several innovative features are incorporated in the processor architecture to suit concurrent
logic programming languages such as KL1. The processor’s design is based on tagged architecture. With the
variety of tag handling operations, instructions can be executed by a one-cycle pitch pipeline. Macro-call instruc-
tions are introduced to allow a lightweight subroutine call function for polymorphic operations required in the
execution of high-level languages such as logic programming languages. This makes it easy for system designers
to define high-level instructions without losing the benefits of the pipelining mechanism. Dedicated instructions
are introduced to support incremental garbage collection. Local coherent cache and optimized memory opera-

tions tailored to the memory access characteristics of KL1 can reduce common bus traffic in shared-memory
multiprocessors. In this paper, we describe the design decisions related to these architectural features. The LSIs
are now being fabricated by means of CMOS standard cell technology.

1. Introduction

The Japanese Fifth Generation Computer Systems
(FGCS) project involves the development of paralle] in-
ference machine systems based on a logic programming
framework [9, 7]. The current interest in parallel pro-
gramming stems from its declarative semantics, which
facilitates the writing and debugging of programs and
removes most of the need for explicit uncovering and
control of synchronization in concurrent programming.

KL1 [4], the kernel language of the parallel inference
machine system, was designed on the basis of GHC [23].
GHC is a concurrent logic programming language with
clear and simple semantics, which allows programmers
to express important concepts in parallel programming,
such as inter-process communication and synchroniza-
tion.

We hope to realize very high execution performance
for logic programming in KL1 to promote research on
parallel logic programming applications. However,
KL1 has features that make conventional machines un-
suitable for efficient execution. Three of these features
are as follows: (1) unification is a polymorphic opera-
tion, usually on dynamically constructed linked data
structures; (2) the execution context, though small, is
frequently switched because of data flow synchroniza-
tion; and (3) the single assignment feature demands a
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high memory bandwidth and an efficient memory
management scheme.

A parallel inference machine prototype (PIM/p)
tailored to KL1 is now being developed, and is planned
to include up to 512 processor elements arranged in a
hierarchical structure. Eight processor elements form a
cluster, communicating through shared memory over a
common bus. The clusters are connected with one
another by a multiple hypercube packet switching net-
work. This article presents the processor element design
for PIM/p.

Some of the innovative features introduced in the
PIM/p processor element architecture are (1) a
lightweight subroutine call function using macro-call in-
structions, which exploits the advantages of both hard-
wired reduced instruction set computers and micropro-
grammable high-level instruction set computers; (2) ar-
chitectural support for incremental garbage collection;
and (3) local coherent cache and optimized memory
operations tailored to KL1 parallel execution, which
can reduce common bus traffic within shared memory
multiprocessors, such as a PIM/p cluster.

This paper is organized as follows. The concurrent
logic programming language, KL 1, is briefly introduced
in Section 2, and its influence on the processor architec-
ture described. Section 3 and Section 4 describe the
design decisions related to the CPU and cache, and in-
novative architectural features tailored to KLI1 pro-
grams. Section 5 presents on overview of the processor
element implementation. Finally our, conclusions are
given outlined in Section 6.
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2. Characteristics of KL1

To understand the underlying motivation of the pro-
cessor element design presented later in this paper, it is
beneficial to review the concurrent logic programming
language KL 1 and its execution characteristics.

2.1 Brief Introduction to the KL1 Abstract Machine

KL1 was initially specified as flat guarded horn
clauses (FGHC) [23], and has been extended into a prac-
tical language introducing meta-call and priority
scheduling functions. The general-purpose concurrent
programming capability of KL1 is shown through the
development of a self-contained operating system,
PIMOS [4] for Multi-PSI systems [27, 14].

KL1 execution is modeled as a partially ordered set of
reductions wherein the initial user query (a set of goals)
is reduced to the empty set. In KL1, as in Prolog, pro-
cedures are composed of sets of clauses with the same
name and arity, of the form: H: —G,,...G.,|B\,Bs,...,B,
where H is the head of the clause, G; are guards, ‘1’ is
the commit, and B, are the body goals. Execution pro-
ceeds by attempting to unify a goal (the caller) and a
clause head (the callee), followed by guard unification.
If these unifications succeed, the procedure call ‘‘com-
mits’’ to that clause (other candidate clauses are dismiss-
ed) and the input goal is reduced to the body goals in
that clause. To make the KL1 goal reduction efficient,
an abstract machine called KL1-B [12, 7] has been devel-
oped, which is on a similar level of abstraction to Pro-
log’s WAM [24].

The abstract KL1 architecture can be summarized as
follows [12, 17]. A goal is represented by a goal record,
as in a Prolog environment [24]. Reducible goal records
are stored in a goal pool. A processor fetches a goal
from the goal pool and executes the compiled KL1-B
code sequence corresponding to the goal, attempting to
commit to one of the clauses of its procedure. If a
clause is committed to, the body instructions cause
body goals to be created and put into the goal pool. If
no clause is committed to, but one or more clauses are
waiting for some variables to be bound, the goal is
suspended. When one of these variables is bound at
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some later time, the resumption routine is executed and
restores the suspended goal(s) to the goal pool.

2.2 Conditional Execution Features in KL1

Dereference is required at the beginning of most
unification instructions in KL1-B. In dereference, a
register is first tested to see whether its content is an in-
direct pointer or not. If is is, the cell pointed to is fetch-
ed into the register and its data type is tested again.
Unification is performed according to the data type.

Many instructions in KL1-B include run-time data
type checks even after dereferencing. For example, ac-
tive unification between a KL1 variable X (whose con-
tents are unknown) and a given structure S¢r has one of
four kinds of action, selected by the data type check: (1)
when X is an unbound variable without suspended
goals, Str is assigned to the variable cell; (2) when X is
an unbound variable with suspended goals, these
suspended goals are resumed after the assignment to X;
(3) when X matches the data type of Str, general unifica-
tion for elements of both is performed; and (4) other-
wise, the unification fails.

Consequently, most instructions in KL1-B include
run-time data type checks. The actions that follow the
run-time type check are very different. How to imple-
ment these polymorphic operations is one of the key
issues in the processor design for concurrent logic pro-
gramming languages. Therefore, tagged architecture is
chosen as the basis of the PIM/p processor element,
and tag conditional macro-call instructions are introduc-
ed to perform polymorphic operations in KL.1-B, which
will be discussed in Section 3.

2.3 Incremental Garbage Collection by MRB

KLI1 is a concurrent language with no side effects.
Destructive memory assignment is not allowed at the
KL1 language level. Therefore, naive implementations
of KL1 tend to consume memory area very rapidly, so
that garbage collection must occur frequently. The local-
ity of memory references is supposed to be very low dur-
ing garbage collection, because most garbage collection
schemes [5] walk around a wide memory area. As a
result, cache misses and memory faults often occur. In
sequential Prolog [24], this problem is not very serious
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because of the backtracking feature. However, since
concurrent logic programming languages have no
backtracking, an efficient garbage collection method
with high memory reference locality is important in
KL1 implementation.

Incremental garbage collection by multiple reference
bit (MRB) [3] is introduced in KL 1 architecture. MRB is
a one-bit tag in a pointer to show whether the referenc-
ed data object may be referenced from other data ob-
jects (on-MRB) or not (off-MRB). When a pointer to a
data object has off-MRB, the corresponding memory
area can be reclaimed after its contents have been read,
because there will be no other paths to the data. The
reclaimed memory area is usually linked to free-lists for
reallocation. As an optimization, the reclaimed
memory area can be reused immediately with its con-
tents.

The contents of a data object are read during unifica-
tion. Therefore, the KL1 compiler detects places where
cells may become garbage, and inserts garbage collec-
tion instructions at appropriate places. Unification in
KL1 may produce a chain of variable cells containing in-
direct pointers. These indirection cells with off-MRB
can be reclaimed during dereferencing.

The locality of memory references can be raised by us-
ing MRB incremental garbage collection instead of
allocating new areas at completely irrelevant addresses,
because memory areas that have recently been read are
likely to be reclaimed and reused. The MRB is also used
to implement constant time stream merging and array
updating in KL1 programs. For example, an array ele-
ment can be destructively updated without destroying
the logic programming semantics when the array is
referenced by an off-MRB pointer. These features are
very important in making a general-purpose programms-
ing language.

MRB information maintenance and incremental
memory management include conditional execution
with bit manipulation. This is a costly operation for con-
ventional machines, because MRB information has to
be maintained in each unification. Therefore, the MRB
scheme in KL1 architecture requires low-level architec-
tural support.

3. CPU Architecture Design

As discussed in Section 2, KL1 has some features that
are difficult to implement efficiently on conventional
computers. These include polymorphic operations and
incremental garbage collection. In this section, the key
issues in CPU architecture design tailored to KL1 are
discussed.

3.1 Alternatives to KL1-B implementation

Unifications include polymorphic operations for a
variable cell whose type is not known until run-time. In
addition, the incremental garbage collection by MRB is
embedded in dereferencing. Therefore, tagged architec-
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ture is vital to the efficient implementation of KL1.

Most Prolog machines, such as PSI [15], have been
implemented as high-level instruction set computers
with microprograms, that is, with WAM [24] interpreta-
tion by microprograms. However, KL1-B interpreta-
tion by microprograms has the following disadvan-
tages. First, it is difficult to make full use of micro-in-
struction fields, because the actions of each KL1-B in-
struction are determined by run-time data type checks,
as explained in Section 2.2. Next, the data type check
often proceeds to the next instruction without any
operations or with just a simple operation. Therefore,
when each KL1-B instruction is interpreted by a
microprogram, the cost of dispatching to a
microprogram from a fetched instruction will be rela-
tively large.

Tagged architecture has recently been incorporated
into reduced instruction set computers (RISC) [11], tak-
ing advantage of compile-time optimization and low
cost in hardware design. However, this architecture has
the following disadvantages in KL1 implementation.

When KL1-B instructions are expanded by low-level
RISC instructions, the static code size of compiled pro-
grams will be very large. In addition, these compiled
programs may include many branch instructions. This
is because most KL1-B instructions involve polymor-
phic operations. As a result, instruction cache misses
often occur and common bus traffic may increase in
tightly-coupled multiprocessors with local coherent
cache [2], such as a PIM/p cluster (see Section 4). Soft-
ware simulation by Matsumoto et al. [13] found that
the compiled code of the original KL1-B code, when ex-
panded two times and four times, caused 15% and 70%
increases in the common bus traffic of a PIM/p cluster,
so that the total performance of a cluster will be degrad-
ed by 5% and 30% [10]. Certainly, high-level instruc-
tion set computers with microprograms are advan-
tageous for reducing common bus traffic.

The compiled programs in RISC-like instructions
can, of course, be kept small by using small conditional
subroutine calls. However, subroutine calls have a high
cost in conventional methods. Therefore, to use only
the best features of both RISC and high-level instruc-
tion computers, we aimed to design a processor that
facilitates an efficient conditional subroutine call func-
tion on data tag, accompanied by a RISC-like instruc-
tion set. As a result, the PIM/p processor element in-
struction set includes RISC-like instructions and an
efficient one-level subroutine call function by tag condi-
tion. These are presented in the following subsections.

3.2 Basic Instructions

The processor element of PIM/p has two kinds of in-
structions, external and internal. External instructions
are mainly used to represent the compiled codes of user
programs, while internal instructions are used to define
high-level instructions, as described later in Section 3.4.
Most of these instructions are RISC-like instructions, in
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Table 1 Form of Basic Instructions.
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Table 2 Tag conditions in the PIM/p processor instructions.

ALU instructions

ALU-op Rsl, Rs2, Rd

ALU-op Rsl, imm, Rd

Memory access instructions

read sub-op Rd, Ra, ofst

write sub-op Rs, Ra, ofst

Branch instructions

jump cond Rt, mask8, (imms8,) ofst

Rd«<Rsl op Rs2;
Rd«<Rsl op imm;

Rd<M|[Ra +ofst];
Rs—M[Ra + ofst];

if condition is true,

(delayed jump) PC+~PC+ofst

jump_and_link  Ra, Rd, retofst, ofst Rd<PC +retofst,

(delayed jump_and_link) PC+<Ra+ofst;

skip cond Rt, mask8, (imms8) if condition is true,
skip next

the sense that they can be executed by a one-cycle
pipeline. However, there are almost 100 varieties of in-
structions, which is more than in other RISC pro-
cessors. This is because instructions for tag handling
and dedicated instructions for KL1 are added, as de-
scribed later.

Table 1 shows the form of basic instructions. Basical-
ly, ALU instructions have three register operands (one
of the source operands may be a short immediate value).
In memory access instructions, the memory location is
specified by a register and an immediate offset. The sub-
opcode sub-op can specify the transferred data width,
which can be 8, 16, 32 bits, 32 bits with an 8-bit tag, or
64 bits. 64-bit data is loaded to (or stored from) two
neighboring registers. As will be shown in Section 5.3,
branching costs three additional cycles. Thus one-cycle
delayed branch instructions and conditional skip in-
structions are provided.

3.3 Tagged Architecture

Taking practical KL1 implementation into considera-
tion, 40-bit (8-bit tag+32-bit data) registers and tag
branch instructions are provided in the CPU. The MRB
is assigned in one of the 8-bit tags.

As discussed in Section 2.2, most unification includes
a multi-way branch based on the KL1 data type. Some
Prolog machines, such as the PSI [21], have a hardw-
are-supported multi-way branch function. The pro-
cessor element of PIM/p does not have such hardware.
This is because (1) it is costly to adopt a hardware-sup-
ported multi-way branch to a pipeline processor; and
(2) branches taken in run-time are biased; not all
possibilities have equal chances of being chosen. The
PIM/p instruction set has only a two-way tag condition
in macro-call instructions and in tag branch instruc-
tions, but various tag conditions can be specified in the
instructions, as follows.

The tag conditions can be specified as bit-wise logical
Operations between the tag of a register Rt and the 8-bit
tag value imm8 in the instruction, as in Table 2. The
(Not-)XOR checks whether the tag of Rt matches
imm8. In addition to these exact matching conditions,
tag conditions are provided to examine only specified
bits in the tag of a register. The mask8 value is used to

XOR, Not-XOR

OR, Not-OR

AND, Not-AND
XORmask, Not-XORmask

tag(Rt)=immS8, or not
tag(Rt)Imask8=all 1, or not
tag(Rt) & mask8=all 0, or not
(tag(Rt) & mask 8)=imm8 or not

specify the bit field in the tag of Rt. The (Not-)OR condi-
tion examines whether the specified bits are all one,
while the (Not-)AND examines whether they are all
zero. The (Not-)XORmask examines whether the
specified bits match imm8. By these tag conditions,
various groups of data types, as well as the combination
with MRB, can be specified in two-way branch instruc-
tions, such as jump, skip, and macro-call instructions.

In the processor element of PIM/p, various hard-
ware flags, such as the condition code of ALU opera-
tion or an interrupt flag, can be accessed as the tags of
dedicated registers. Therefore, these flags can also be ex-
amined in the same way as KL1 data types.

3.4 Macro-call Function

A macro-call instruction can be regarded as a
lightweight subroutine call with tag conditions, whose
form is

MCall cond, R1, R2/imm8, R3/imm8, i-Addr

where i-Addr is the entry address of the internal instruc-
tion memory, and R1, R2, and R3 are the register
numbers. R2 and R3 can be 8-bit immediate values
(imm8). The macro-call instruction first tests the data
type of a register, given as its operand R1, then invokes
or does not invoke its macro-body in the internal in-
struction memory (IIM), depending on the result of the
test. The contents of these registers, as well as the im-
mediate values, can be accessed through indirect access
registers and indirect value registers in the macro-body,
as described later.

The macro-bodies stored in the internal instruction
memory are written in internal instructions by system
designers. Here, most external and internal instructions
are held in common. Therefore, system designers can
easily specify a high-level instruction, using one kind of
RISC-like instructions instead of the complicated
micro-instructions used in conventional computers. In
view of the difficulty of making full use of long micro-in-
structions, this scheme is advantageous to system
designers. In addition, the specification of a high-level
instruction is very flexible, because a macro-body can in-
clude subroutine calls in external instructions stored in
main (shared) memory, as well as subroutine calls in the
internal instruction memory.

One of the overheads in usual subroutine calls is the
branching cost both for call and return. As described in
Section 5.3, the tag condition for macro-call is tested at
the second stage of a four-stage pipeline. When the con-
dition is true, the program counter for external instruc-
tions is frozen, and the execution stream is switched to
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the internal instructions by putting entry address (i-Ad-
dr) in the internal program counter. Therefore, the cost
of invoking macro-body is only one additional cycle,
while usual jump instructions cost three additional
cycles to take the branch. The cost of returning from
the macro-body is also minimized, as follows. Each in-
ternal instruction has an additional bit, called, eoi, to
specify the exiting point from the macro-body, so that
the execution of the macro-body can finish at any non-
branch instruction. When the internal instruction with
eoi is put into the pipeline, the external instruction
follows without branching costs, melting the external
program counter.

Another overhead is the cost of the arguments pass-
ing to and from the subroutine bodies. To avoid these
costs, two kinds of virtual registers are provided. In-
direct value registers are used to get the operand of the
macro-call instruction as an immediate value, and in-
direct access registers are used to access the contents of
the register that is specified in the macro-call operand.
Each of these virtual registers corresponds to the
operand position of the macro-call instruction.
Therefore, the arguments of macro-call can be efficient-
ly passed to and from its macro-body.

3.5 Support for Dereferencing and MRB Garbage
Collection

As explained in Section 2.3, garbage collection sup-
port is one of the most important issues in parallel in-
ference machines. The PIM/p instruction set includes
several instructions tailored to MRB garbage collection.

In MRB incremental garbage collection, each
variable cell or structure is allocated from a free list.
When reclaimed, its memory area is linked to a free list.
To support these free list operations, the Push and Pop
instructions listed in Table 3 are provided. Push links a
cell to the free list, and Pop allocates it from the free
list, in one machine cycle. PushTag and PopTag put a
new tag into the register. For example, allocation of a
list cell referenced by ‘‘LIST”’ tag can be done by one in-
struction:

PopTag Rd, Ra, ofst, LIST

The MRB of each pointer and data object has to be
maintained correctly in all unification instructions.
Here, the most primitive operation is MRB
maintenance during dereferencing. In dereferencing the
MRB of the dereferenced result should be off if and
only if MRBs of both the pointer and the cell are off. In
this case, the indirect word cell can be reclaimed immedi-
ately, because the indirect word cell has no other
reference paths to it. Two dedicated instructions,
ReadOrMRB and Deref, support this operation.
ReadOrMRB accumulates both the address register’s
MRB and the destination register’s MRB, then sets the
result in the destination register. Deref performs MRB
accumulation along with the Pop operation. This
means that
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Table 3 Instructions for dereferencing and MRB garbage collectic

Intruction Operands Comment

Push Rs, Ra, ofst M[Ra+ ofst]<Rs, Rs—Ra;

PushTag Rs, Ra, ofst, imm8  M[Ra+ ofst]«<Rs,
data(Rs)«<data(Ra),
tag(Ra)«<imms§;

Pop Rd, Ra, ofst Rd+Ra, Ra<=M[Ra+ofst];

PopTag Rd, Ra, ofst, imm8 Rd«Ra, tag(Rd)—imms3,
Ra—M[Ra+ofst];

ReadOrMRB Rd, Ra, ofst Rd<M|[Ra +ofst],
mrb(Rd) < mrb(Ra) | mrb(old
Rd);

Deref Rd, Ra, ofst Rd+Ra, Ra—M[Ra+ofst],
mrb(Ra)«<mrb(Ra) | mrb(old
Ra);

Deref Reg, Ptr

saves the pointer Reg to the dereferenced cell to anoth
register, Ptr, then reads the contents into Reg wi
MRB accumulation. Therefore, succeeding instructio
can reclaim the cell referenced by Ptr by examining t
MRB of Reg.

These instructions can minimize the costs of free-I
operations and dereferencing with MRB manageme
in PIM/p.

4. Cache Architecture Design

PIM/p has a hierarchical structure, as shown in Fi
1. Eight processor elements (PEs) form a cluste

communicating through shared memory (SM) over
common bus. Processor elements within each clust
share one address space, so that they can quickly cor
municate by reading or writing shared memor
However, KL1 programs require high memory ban:
width, because data structure manipulations domina
whole computation rather than arithmetic comput
tion. Therefore, we optimized local coherent cache fi
the memory access characteristics of KL1.

4.1 Motivations for Cache Design

As explained in Section 2.1, a processor executes go
reductions of a relatively small granularity (compare
with those in procedural languages). Thus, focusing ¢
the parallel processing within a PIM/p cluster, the:
are significant differences in KL1 memory referencir
characteristics from the characteristics of convention
multiprocessor systems such as Symmetry [18].

First, the frequency of memory write is higher than i
conventional languages. Memory access characteristic
of KL1 benchmarks, gathered by simulation, indica
that the data write frequency is 36% [8].

Next, the processors communicate more often wit
each other, through the logical variables, than the usu:
parallel processing on the Symmetry system, becau:
parallel goals share logical variables. In addition, con
munication is necessary for scheduling KL1 goals. Tht
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it is important for a locally parallel cache to have an
efficient cache-to-cache data transfer mechanism as well
as to work as a shared global memory cache.

Finally, there are many exclusive accesses to com-
municate through shared logical variables. The fre-
quency of locking shared data in the KL1 execution is
relatively high. However, we can expect that exclusive
memory accesses seldom conflict with each other [17].

4.2 Cache Protocol

Copyback cache protocols have been proved effective
for reducing common bus traffic in shared-memory
multiprocessors for procedural languages, as shown by
Goodman [6] and Archibald [1], among others. Thus
the basis for the PIM/p cache is a copyback protocol.
Local coherent cache protocols [e.g. 1,2, 16, 19] use
both invalidation and broadcast to ensure that all
caches are consistent. Invalidation reduces common bus
traffic when the frequency of shared block write ac-
cesses is low, while broadcast is better when many pro-
cessors frequently write data to the same shared blocks
[1]. In view of the single-assignment feature of KLI,
most logical variables are shared by only two KLI
goals. Thus broadcasting is not necessary for most pro-
grams, and invalidation suffices.

4.3 Local Coherent Cache Optimized for KL1

The PIM/p cache protocol is similar to the Illinois
protocol [16], but has several memory operations op-
timized for KL1 as listed in Table 4.

In normal write operations, a fetch-on-write strategy
is used. However, it is not necessary to fetch the con-
tents of shared global memory when a new cache block
is allocated for a new data structure. For example, in
KL1, new data structures are created dynamically on
the top of the heap area when the free lists for those
structures are empty. To accomplish this, the direct-
write instruction is introduced to avoid useless swap-in
from shared memory. The direct-write instruction can
also be useful for stack pushing operations in WAM-
based architectures.

In KL1 parallel architectures, interprocessor com-
munication (such as for goal distribution) uses a shared
message buffer. In this case, swap-in and swap-out of
meaningless data can be avoided by invalidating the
sender’s cache block after a cache-to-cache transfer and
by purging the receiver’s cache block after the receiver
finishes reading. To accomplish this, the exclusive-read,
read-invalidate, and read-purge instructions are in-
troduced.

These new memory access instructions can reduce
common bus traffic by avoiding useless swap-in and
Swap-out operations. Cache simulations [8] indicate
that these optimizations reduce bus traffic by 40-50%
Wwith respect to an unoptimized system. Direct write
affords a 35-45% reduction and other optimizations
only a 5% reduction. From the evaluation in Tick [22],
we believe these optimizations will prove effective on
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Table 4 Optimized memory access instructions.

Instruction Operation

read_invalidate After cache misses, the source cache block is in-
validated.

Otherwise, the same as Read.

After CPU reads, the cache block is purged. The
shared blocks in other caches are also purged.
For the last word in a cache block, same as
Read_Purge. Otherwise, the same as Read_In-
validate.

read_purge

exclusive_read

direct_write If cache misses at block boundary, write data
into cache without fetching from memory. Other-
wise, ordinary memory write.

lock_read Lock a memory word, then read the content.

write_unlock Memory write, followed by unlock.

unlock Unlock a memory word.

other parallel logic programming architectures as well.

Lock operations are essential in shared global
memory architectures. The KIL1 language processor
uses lock operations for heap and communication area
accesses [17]. The frequency of locking and unlocking
shared data is high. The simulation result in Goto et al.
[8] shows more than 5% of all MEmOory accesses.
However, actual lock conflicts seldom occur [17].
Therefore, it is effective to introduce a hardware lock
mechanism that has a lower overhead when there are no
lock conflicts.

The PIM/p cache allows a lightweight lock and
unlock operation by using the cache block status, lock
address registers, and busy-wait locking scheme. When
the CPU issues a lock command to its cache to attempt
a lock-read instruction, the cache checks the corre-
sponding address tag and status tag. If the address hits
and its status is exclusive, the address can be locked
without using the common bus. The locked address is
held in a lock address register. When another processor
attempts to access the locked address, the access itself is
automatically postponed until the address is unlocked.
This lock protocol is effective for reducing the bus
traffic of lock/unlock operations: for KL1, no bus
cycles are needed for the high percentage of lock reads
hitting in exclusive blocks and unlocks to non-waiting
locks.

S. Processor Element Implementation

A PIM/p processor element will be implement on a
single board, which includes the CPU, internal instruc-
tion memory (IIM), cache system, and two Co-pro-
cessors: a network interface unit (NIU) and a floating
point processor unit (FPU), as shown in Figure 2. The
target of the basic machine cycle is 50 nanoseconds. The
LSIs are now being fabricated by CMOS standard cell
technology that can include up to 80K gates.

PIM/p has a 4G-byte global virtual address space on
each cluster. KL1 data is represented by a 40-bit word
(an 8-bit tag and 32-bit data). Normal KL1 data is plac-
ed by 40-bit KL1 tagged data in aligned 64-bit words in
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Instruction Cache address

| Instruction
cache ccu

(cache
Data cache controller
unit)

Local I
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Adopter

Common Bus

Fig. 2 PIM/p Processor Element Configuration.

the PIM/p memory system, while instructions and
some data structures, such as strings or floating point
numbers, are placed on a byte boundary.

5.1 Cache System

The processor element includes two caches: an in-
struction cache and a data cache. The instruction cache
supplies the instruction buffer in the CPU with an exter-
nal instruction stream in parallel with data accesses by
the CPU. The contents of both cache memories are iden-
tical, so that, in a branch instruction, the CPU can
fetch a branch target instruction from the data cache as
shown in Section 5.3.

The cache controller unit (CCU) manages the instruc-
tion cache and the data cache. The cache address array
would be updated by both commands from both the
CPU and a common bus. To avoid the access conflict,
the common bus adopter has a copy of the cache ad-
dress array with cache block status.

In general, a larger cache is necessary to maintain a
high hit-ratio. The simulation in Goto et al. [8] shows
that a capacity of at least 64K bytes is necessary for
KL1. However, it is preferable not to attempt to form a
large cache by enlarging the cache block size, since the
simulation results [8] also show that a cache block
larger than four tagged words causes an increase in
shared blocks between caches in parallel execution of
KL1, so that mutual cache invalidation may increase.
On the other hand, the results show that it is difficult to
provide an address array for 64K bytes of 32-byte
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blocks (four tagged words), because the size of the
cache address array is restricted by the LSI capacity of
the cache controller unit (CCU). In view of these obser-
vations, we designed the following cache system. The
capacity of both the instruction and data caches is 64K
bytes. The CCU has a block status tag for each 32-byte
block, and an address tag for each two blocks, that is,
every 64 bytes. Our simulation result also shows that
this scheme does not decrease the performance so much
as a full 32-byte block cache of the same capacity.

5.2 Registers

The CPU in the processor element includes 32
general-purpose registers, several dedicated registers, in-
direct value registers, and indirect access registers (see
Section 3.4). These registers are specified by a 6-bit
register specifier in most instructions. Each general-pur-
pose register has an 8-bit tag and 32-bit data.

The dedicated registers include a condition code
register and a slit-check register (see Section 5.4). Most
flags, such as the condition code, are placed in the tag
part of the dedicated registers, and can be tested by the
tag-branch instruction.

In addition to the above registers, NIU and FPU have
several co-processor registers, which are handled only
by co-processor interface instructions.

5.3 CPU Execution Pipeline

The CPU has two instruction streams, one from the
instruction cache, and the other from the internal in-
struction memory (IIM). The CPU uses an instruction
buffer and a fourstage pipeline, DATB, to attempt to
issue and complete an external instruction every cycle.
External instructions are either four or six bytes long
and therefore the instruction buffer has a hardware
aligner. Each internal instruction requires two addi-
tional stages before stage D, to set the internal instruc-
tion address (stage S) and to fetch the instruction (stage
Q).

Table 5 shows the pipeline stages and their corre-
sponding operations. General-purpose registers are up-
dated only in the last stage, thereby avoiding write con-
flicts. Internal forwarding is done by hardware, so that
the result of a register-to-register instruction can be
used by the next instruction even though that result has

Table 5 Pipeline Stages and Their Operations.

ALU operation Memory access Branch
Decode/ Decode/
D Decod . .
ecode register read (address)register read (address)
A Operand address Branch address

calculation calculation

T Register read Cache address access Cache address access

B ALU operation/
register write

Cache data access/ Cache data access/
(register write) condition test
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Fig. 3 Macro-call Instruction Mechanism.

not yet been written to the general registers.

In a branch instruction to an external instruction, the
branch target instruction is fetched at stage B in the
same way as memory read instructions. Therefore, or-
dinary branch instructions may cost three additional
cycles to branch. Delayed branch instructions can avoid
one of the three cycles by executing an effective instruc-
tion.

Most tag branch instructions test their condition at
stage B. However, macro-call instructions and internal
branch instructions test their condition at stage A.
Figure 3 shows the invocation mechanism of the macro-
call instruction, and Figure 4 shows their pipelining
features. A macro-call instruction puts the entry ad-
dress in the program counter for internal instructions
and initiates the internal instruction fetch (stage S) at
stage D, then tests its condition at stage A. When the
condition is true, the program counter for external in-
structions is frozen at this point, cancelling the next ex-
ternal instruction. Therefore, it costs only one addi-
tional cycle for a macro-call instruction to invoke a
subroutine in the internal instruction memory. In addi-
tion, delayed macro-call instructions are provided to
avoid the penalty. The return from macro-call, that is,
the return from internal instructions to external instruc-
tions, can be indicated by a one-bit flag, eoi, in each in-
ternal instruction except for branch instructions. When
an internal instruction with eoi is put into the pipeline,
the instruction stream is switched back to external at
stage D, and the external instruction frozen by the
previous macro-call instruction follows without waiting
cycles (see Fig. 4).

5.4 Slit-check and Interrupt

Various events may arise asynchronously during KL 1
execution; for example, other processors may require a
garbage collection of shared memory. However, the ac-
tions corresponding to these events are delayed until a
current goal reduction finishes, even if the event occur-
red during a goal reduction. This is because garbage col-
lection is difficult to start during a goal reduction.
Therefore, the actions may be delayed until after the
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: macro-call instruction
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End of macro body:
S C D AT B
S C (cancelled)
S (cancelled)
D A TB

: internal instruction eoi
: internal instruction
: internal instruction

: next external instruction

Fig. 4 Pipelining Features of Macro-call Instruction.

goal reduction is finished. The detection of these events
at the end of goal reduction is called slit-checking.
The processor element of PIM/ p incorporates a hard-
ware mechanism for slit-checking, as well as ordinary in-
terrupts for debugging and error detections. A hard-
ware interrupt, in general, causes the program status to
be saved automatically, whereas slit-checking does not.
Each processor element has flag registers, each of which
can keep an individual event, such as a signal from an-
other processor or a network packet arrival. The slit-
checking mechanism has an additional flag to show
whether any event has happened or not, this can be
tested by one conditional branch instruction.
Therefore, the KL1 language processor can detect nor-
mal but asynchronous events by itself at an appropriate
point. On general-purpose computers, the slit-checking
might be implemented by using normal interrupt
mask /unmask operations and a cumbersome interrupt
handler. It would cost to much for the KL.1 system. By
incorporating the hardware slit-checking mechanism,
the processor element can avoid frequent mask/un-
mask operations and interrupt handling overhead.

6. Conclusion

This paper described the design of the processor ele-
ment architecture for parallel inference machine pro-
totype, PIM/p. The execution features of the concur-
rent logic programming language, KL1,were observed,
and its architectural issues were discussed. The in-
novative processor architecture for KL1 was presented,
together with the decisions related to its design. The pro-
cessor is designed on the basis of tagged architecture.
With the variety of tag handling operations, instruc-
tions can be executed by a one-cycle pipeline. Macro-
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call instructions are introduced to allow a lightweight
subroutine call function for polymorphic operations in
unification, so that system designers can easily define
high-level instructions. Dedicated instructions are in-
troduced to support incremental garbage collection
embedded in KL! unifications. The design includes
local coherent cache and optimized memory operations
tailored to the memory access characteristics of KL1,
which can reduce the common bus traffic within shared
memory multiprocessors. These features incorporated
in the processor architecture can be expected to suit
other concurrent logic programming languages. The
LSIs are now being fabricated by CMOS technology.
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